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Abstract 

Several recent studies have demonstrated reduced visual aftereffects, particularly to 

social stimuli, in autism spectrum disorder (ASD). This putative impairment of the adaptive 

mechanism in ASD has been put forward as a possible explanation for some of the core social 

problems children with ASD experience (e.g. facial emotion or identity recognition). We 

addressed this claim in children with ASD and typically developing children by using an 

established methodology and morphed auditory stimulus set for eliciting robust aftereffects to 

vocal expressions and phonemes. While children with ASD were significantly worse at 

categorising the vocal expressions compared to the control stimuli (phoneme categorisation), 

aftereffect sizes in both tasks were identical in the two participant groups. Our finding suggests 

that the adaptation mechanism is not universally impaired in ASD and is therefore not an 

explanation for the social perception difficulties in ASD. 

Keywords: autism; adaptation; aftereffects; voice; emotion 
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Introduction 

Autism spectrum disorder (ASD) is a heritable, neurodevelopmental condition, which 

is in part characterised by lifelong impairments in social communication and interaction 

(American Psychiatric Association, 2013) as well as altered sensory processing (Marco, 

Hinkley, Hill & Nagarajan, 2012). Difficulties with processing the social information from faces 

and voices are a commonly cited aspect of ASD, particularly with regards to identifying and 

discriminating between facial identities (e.g. Weigelt, Koldewyn, & Kanwisher, 2012 for a 

review) and emotional expressions from both faces (e.g. Harms, Martin, & Wallace, 2010 for 

review; Uljarevic & Hamilton, 2013) and voices (e.g. Globerson, Amir, Kishon-Rabin, & Golan, 

2015; Hobson, Ouston, & Lee, 1988; Stewart, McAdam, Ota, Peppe, & Cleland, 2013). 

Pellicano, Jeffery, Burr and Rhodes (2007) have suggested that one underlying cause of face 

perception difficulties may be an impaired adaptation mechanism.  

Adaptation is thought to be a universal mechanism across all sensory systems (Møller, 

2002) and refers to a change in neural firing and therefore behaviour as a result of continued 

stimulation or exposure to the same sensory stimulus (Quiroga & Panzeri, 2013). The 

generally accepted view is that adaptation is essential for efficient coding and processing of 

stimuli by allowing novel features to appear more salient (Webster, 2011). Research using 

adaptation has revealed neural populations tuned to respond to specific stimulus attributes by 

isolating and subsequently distorting the perception of these attributes (Grill-Spector et al., 

1999; Winston, Henson, Fine-Goulden, & Dolan, 2004). Adaptation has therefore been a 

useful tool to investigate different levels of processing including “low-level” stimulus properties 

such as motion, shape or colour (e.g. Wright, 1934) but also “higher-level” properties such as 

facial or vocal features (e.g. emotional expressions).  

Webster and MacLin (1999) were the first to show that extended exposure to faces 

can generate aftereffects, i.e. a perceptual bias in which the test face was interpreted as being 

distorted in the opposite direction to that of the adaptor face. Adaptation to consistently 

distorted faces (e.g. expanded features) caused subsequently viewed unmanipulated faces to 
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appear distorted in the opposite direction of the adapting stimulus (e.g. compressed features). 

This effect transferred to faces of different identities. Later studies demonstrated that these 

contrastive aftereffects are robust to changes in the retinal position (Leopold, O'Toole, Vetter, 

& Blanz, 2001), size (Zhao & Chubb, 2001) and angular orientation (Watson & Clifford, 2003) 

of the adapting stimulus, suggesting that adaptation to those low-level features cannot fully 

explain face aftereffects. Thus, adaptive coding is a strategy employed by the neural system 

throughout the perceptual processing hierarchy and is not only employed at early stages of 

visual information processing. Moreover, even high-level, socially important properties such 

as facial identity (Leopold et al., 2001), attractiveness (Rhodes, Jeffery, Watson, Clifford, & 

Nakayama, 2003), eye-gaze (Jenkins et al., 2006) and expression (Fox & Barton, 2007; 

Webster et al., 2004) can be isolated using adaptation. Researchers have interpreted the 

resulting aftereffects as reflecting a neural strategy for optimising perception, including a 

recalibration of neural processes to continuously updated stimulation (Webster & MacLin, 

1999). While research has used these contrastive aftereffects as a tool to evaluate face 

perception models (e.g. Bestelmeyer et al., 2008; Bestelmeyer, Jones, DeBruine, Little, & 

Welling, 2010; Jones, Feinberg, Bestelmeyer, DeBruine, & Little, 2010; Leopold, O'Toole, 

Vetter, & Blanz, 2001; Leopold, Rhodes, Muller, & Jeffery, 2005; Little, DeBruine, & Jones, 

2005; Webster, Kaping, Mizokami, & Duhamel, 2004; Welling et al., 2009), it has recently been 

shown that corresponding auditory aftereffects can also be elicited for voices (e.g. identity: 

Zaske, Schweinberger, & Kawahara, 2010; gender: Schweinberger et al., 2008; age: Zaske & 

Schweinberger, 2011; and affect: Bestelmeyer, Rouger, DeBruine, & Belin, 2010; Skuk & 

Schweinberger, 2013). 

 In an influential paper, Pellicano et al. (2007) reported that children with ASD show 

significantly reduced facial identity aftereffects compared to IQ-matched, typically developing 

children. While face identification was actually unimpaired in both groups the authors 

suggested that an impaired adaptive face-coding mechanism in ASD may be responsible for 

the commonly reported face perception problems as well as some of the core social deficits 
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in ASD. A follow-up study ascertained that these reduced aftereffects in ASD are not caused 

by a lack of attention to the adapting stimulus (Ewing, Leach, Pellicano, Jeffery, & Rhodes, 

2013) supporting that children with ASD have difficulties with adaptive norm-based coding of 

face identity. Siblings and parents of children with ASD also show this reduction in aftereffect 

size to identity adaptation suggesting that this behavioural difference may have the potential 

to serve as an endophenotype for ASD (Fiorentini, Gray, Rhodes, Jeffery, & Pellicano, 2012). 

Recent evidence of reduced adaptation despite intact recognition of biological motion (van 

Boxtel, Dapretto, & Lu, 2016), another social stimulus, further strengthens the possibility that 

changes in the adaptation mechanism contribute to the social phenotype in ASD. 

 The literature is not entirely unequivocal regarding reduced aftereffects to social stimuli 

in ASD. For example, recent studies have shown that reduced aftereffects can also be 

observed to non-social stimuli, e.g. reduced aftereffects to numerosity (Turi et al., 2015) and 

audio-visual asynchrony (Turi, Karaminis, Pellicano & Burr, 2016), although not consistently 

to all non-social stimuli, e.g. intact adaptation to perceptual causality (Karaminis et al., 2015). 

Similarly, it is interesting that many of the reduced face aftereffects found in children with ASD 

cannot be replicated in adults with ASD (e.g. Cook, Brewer, Shah, & Bird, 2014; Walsh, 

Maurer, et al., 2015; Walsh, Vida, Morrisey, & Rutherford, 2015). In isolation, this last pattern 

of results would suggest that reduced contrastive aftereffects for faces in children with ASD 

reflect delayed or atypical development of adaptive mechanisms and as such may not be a 

core feature of the disorder. However, this notion is in contrast to Fiorentini et al.’s (2012) 

finding of reduced visual aftereffects in relatives (including adult relatives) of ASD children. If 

future work confirms that reduced face aftereffects are merely due to developmental delays, 

they are unlikely to be specific to autism and may not be useful as an endophenotype of ASD. 

 In light of these findings, several questions remain unanswered regarding the 

specificity of reduced or sometimes even absent contrastive aftereffects in ASD. First, it is 

unclear from the current literature whether this alteration in adaptation strength is specific to 

the stimulus type (e.g. social or non-social), developmental stage or, indeed, modality. Only 
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one paper has explored adaptation in ASD in the auditory domain. Lawson, Aylward, White, 

and Rees (2015) showed that continuous stimulation with sound of a certain volume caused 

a reduced magnitude and rate of simple loudness adaptation in ASD but not in typically 

developing children. While this finding theoretically provides support for a generalized 

reduction in adaptation in ASD, it may instead be in line with increased sound sensitivity in 

ASD and does not rule out the possibility that adaptive mechanisms to more complex sound 

categories (e.g. social stimuli) are intact. Thus whether children with ASD also show reduced 

contrastive aftereffects in response to adaptation using more complex auditory stimuli has not 

been determined. The advantage of using auditory over visual stimuli to assess the specificity 

of the reduced aftereffect to certain stimulus types (social vs non-social) is that even 

distractible children cannot ignore auditory stimuli presented via headphones as easily as 

visually presented stimuli on a small computer display. 

 The aim of the current study was to address some of these remaining questions. First, 

we examined whether reduced contrastive aftereffects in ASD also extend to high-level stimuli 

in the auditory domain. Second, we assessed whether aftereffects are smaller or even absent 

in a task with emotionally salient stimuli compared to a control task in ASD. More specifically, 

we were interested in group differences in the perceptual plasticity of two vocal features with 

differing emotional content, which could form part of the phenotype of ASD. Using auditory 

voice morphing we created blends between two instances of two stimulus categories; 

emotional vocalisations (anger and fear) and phonemes (‘m’ and ‘o’). Given the previous 

literature, we predicted both a main effect of participant group and a significant interaction 

between stimulus type and group when measuring the magnitudes of contrastive aftereffects. 

In other words, we expected a reduction in aftereffects across all stimuli in the ASD group as 

well as a greater aftereffect reduction in ASD to the more socially salient emotion stimuli, 

compared to the phoneme stimuli. We expected the typically developing children to show 

robust aftereffects across condition and be unaffected by stimulus type. 
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Methods 

Participants 

Based on the between group difference reported by Pellicano et al. (2007), we 

performed a power analysis in G*power 3 (Faul, Erdfelder, Buchner, & Lang, 2009). This 

analysis determined that at an alpha level of α = .05 (2-tailed), an effect size of d = .81 and a 

power of β = .8 a sample size of 25 participants is required in each group. We therefore 

recruited a total of 30 Caucasian children with ASD as outpatients of the Department of Child 

and Adolescent Psychiatry and Psychotherapy, Medical Faculty, University of Freiburg, along 

with 26 age- and culture-matched, typically developing controls. Due to incomplete data sets 

or misunderstandings of the task, we had to exclude 3 ASD and 2 typically developing children. 

Our analyses are therefore based on 27 (2 female) children with ASD and 24 (8 female) 

typically developing children. Table 1 summarises age and IQ as measured by the Cattell 

Culture Fair Intelligence Test (CFT-2R; Weiss, 2006) for the included participants of both 

groups except for one of the children with ASD were IQ was assessed using the Snijders-

Oomen nonverbal IQ test (Tellegen, Winkel, Wijnberg-Williams & Laros, 1998). His score was 

78 and is not included in Table 1.  Children with ASD had a diagnosis according to ICD-10 

and DSM IV criteria. Diagnoses of ASD are based on the international standard, including the 

German versions of the Autism Diagnostic Observation Schedule (ADOS; Rühl, Bölte, 

Feineis-Matthews, & Poustka, 2004), the Social Responsiveness Scale (SRS; Bölte & 

Poustka, 2007) and of the Autism Diagnostic Interview (ADI-R; Bölte, Rühl, Schmötzer, & 

Poustka, 2006) which is a semi-structured interview of the caregiver and their observations of 

their child. Table 1 provides means, standard deviations and ranges of the social, 

communication and total ADOS score, the SRS raw and T-Norms as well as the three 

categories indicating autistic behaviour of the ADI-R (“social interaction”, “social 

communication” and “restricted, repetitive, stereotyped behaviours”) for the children with ASD. 

In our sample, all participants but one were above cut-off in the ADI-R category “social 

interaction”, only one was under the cut-off for “communication”, four participants did not reach 
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the cut-off for “restricted, repetitive, stereotyped behaviors”. Overall, all patients exceeded cut-

off at least in two domains of the ADI-R (which is a criterion for a diagnosis of ASD) and also 

scored in the third “autistic” domain (although often under cut-off). Moreover, in the ADOS all 

patients but two (who scored slightly under cut-off) received an ADOS-diagnosis of autism 

spectrum or autism. These two patients were above cut-off at least in two domains of the ADI-

R. Only one participant (not previously mentioned) scored under cut-off for deficits of social 

responsiveness.  

Our sample is high-functioning with good cognitive and communication abilities and 

the severity of symptoms can be considered at level 2 (middle) according to DSM-V. The 

symptom severity of our sample is comparable to that of Pellicano et al. (2007). This study 

was approved by the ethics committee of Bangor University for piloting with healthy adults and 

of Freiburg University for the testing done with the children. Parents of all children gave written 

informed consent at the beginning of the test session. 

 

TABLE 1 HERE 

 

Stimuli 

Recordings of the emotional sounds were taken from the Montreal Affective Voices 

database (Belin, Fillion-Bilodeau & Gosselin, 2008) in which actors were instructed to produce 

emotional interjections using the vowel /a/. The voices from four identities (two female) 

expressed anger and fear. Recordings of the phonemes (/m/ and /o/) were made in a double-

walled sound attenuated booth at Bangor University using again four different German native 

speakers (two female). The phoneme recordings were edited using CoolEditPro 2.0 

(Syntrillium, Inc.) to single utterances of ‘m’ and ‘o’ sounds (i.e. editing was comparable to that 

of the emotional expressions in Belin et al. (2008)). All sounds were normalised in energy (root 

mean square). 
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We created morph continua separately for each identity in the emotion and in the 

phoneme condition using Tandem STRAIGHT (Banno et al., 2007; Kawahara et al., 2008; see 

also http://www.wakayama-u.ac.jp/∼kawahara/STRAIGHTadv/index_e.html for more 

information). Each continuum consisted of five steps corresponding to 5/95%, 35/65%, 

50/50%, 65/35% and 95/5% fear/anger or ‘m’/’o’. The original angry (0/100%) and fearful 

(100/0%) voices were used as adaptors in the emotion task and the original ‘m’ (0/100%) and 

‘o’ (100/0%) sounds were used as adaptors in the phoneme task. Tandem STRAIGHT 

performs an instantaneous pitch-adaptive spectral smoothing of each stimulus for separation 

of contributions to the voice signal arising from the glottal source (including f0) versus 

supralaryngeal filtering (distribution of spectral peaks, including the first formant frequency, 

F1). Voice stimuli were decomposed by Tandem STRAIGHT into five parameters: f0 (the 

perceived pitch of the voice), frequency, duration, spectrotemporal density and aperiodicity. 

Each parameter can be manipulated independently. For each voice we manually identified 

one time landmark with three frequency landmarks (corresponding to the first three formants) 

at the onset of phonation and the same number of landmarks at the offset of phonation. 

Morphed stimuli were then generated by re-synthesis based on the interpolation (linear for 

time; logarithmic for F0, frequency, and amplitude) of these time-frequency landmark 

templates (see also Schweinberger et al. (2014) for a recent discussion of the voice morphing 

technique). Stimuli were normalised in energy (root mean square) before and after morphing. 

Acoustic analyses to illustrate the validity of the morphing technique with affective bursts, 

along with sample stimuli, are published elsewhere (Bestelmeyer et al., 2010). The duration 

of the vocalisations within each continuum was kept constant and ranged between 0.6 and 

0.9s across continua. We used E-prime2 (Psychology Software Tools, Inc.) for stimulus 

presentation. Sounds were presented via headphones at a comfortable sound level for the 

child. 

To insure that stimulus categorisations for both emotion and phoneme tasks would 

yield similar sigmoid shaped curves with comparable points of subjective equality and slope 
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we first tested both tasks on 57 young, healthy undergraduate students (35 female; mean age 

= 20.86; S.D. = 5.19). The slopes of the curves for each task were not significantly different 

(t(56) = -1.00, p = .322). Both tasks resulted in a significant main effect of adaptation (emotion 

task: F(2, 112) = 79.261, p < .001; speech task: F(2, 112) = 147.64, p < .001). The emotion 

stimuli are the same as the ones used in several other studies for which categorisation 

consistently resulted in sigmoid shaped curves (Bestelmeyer, Maurage, Rouger, Latinus, & 

Belin, 2014; Bestelmeyer et al., 2010; Pye & Bestelmeyer, 2015) and robust contrastive 

aftereffects in adults. 

 

Procedure 

Participants were asked to complete a total of five blocks for each task. All tasks 

required a two-alternative forced choice judgement. The emotion task required a judgment as 

to whether the ambiguous vocal morph sounded more angry or fearful and the phoneme task 

required a judgment as to whether the vocal morph sounded more like the letter ‘m’ or ‘o’. 

Each task consisted of one pre-adaptation or baseline block, which was always administered 

before the four adaptation blocks of each task. The trials of the baseline block consisted of 

individual morphs that had to be categorised. Each baseline block was comprised of three 

repetitions of each of the five morph steps per identity (2 male, 2 female) leading to a total of 

60 trials. Morphs were presented in randomised order but blocked for gender.  

The trial structure of the adaptation tasks consisted of one adapting voice played four 

times in succession and followed by an ambiguous morph (test stimulus) after a silent gap of 

one second. The inter-trial interval was response-terminated at a maximum of ten seconds 

long before the next trial would commence. During this interval the participants categorised 

the test stimulus using one of two keys (“Does the person sound angry or fearful”/”Does the 

person say ‘M’ or ‘O’”). Each of the four adaptation blocks (2 emotion x 2 gender or 2 phoneme 

x 2 gender) and each of the five test morphs per identity were repeated six times leading to a 
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total of 30 trials per block. Trials were presented in randomised order but blocked for task type 

and adaptation condition (i.e. both blocks consisting of female and male fear adaptation were 

presented in succession rather than mixing the emotion adaptation conditions). 

To avoid adaptation to task irrelevant factors such as identity-specific or low-level 

acoustic properties, participants were always tested on a different identity than the one they 

were adapted to. Half of the participants were adapted to angry and then fearful voices while 

the remaining participants were presented with the reverse order of blocks. The same protocol 

was used for the phoneme adaptation task. Task order was also counterbalanced across 

participants. The raw data for this experiment is published with Mendeley 

(doi:10.17632/dzcszhwsfp.1). 

 

Results 

For each participant, responses were averaged as a function of the five morph steps, 

adaptation condition and task. We then fitted the data with a logistic function with four free 

parameters: the minimum and maximum x- and y-values at the centre of symmetry of the 

curve (the point of subjective equality (PSE)) and the slope of the curve at the PSE. Excellent 

fits were obtained for both tasks across all conditions for each participant group (emotion task 

for the ASD group: mean R2 = .926, SD = .186 and the TD group: mean R2 = .956, SD = .123; 

phoneme task for the ASD group: mean R2 = .987, SD = .027 and the TD group mean R2 = 

.992, SD = .013). 

Figure 1 illustrates the psychometric curves fitted to the mean data for the participant 

groups and tasks. Figure 1 A and D illustrate the mean responses of the emotion and phoneme 

baseline conditions (no adaptation), respectively. Figure 1 B and E illustrate the mean 

responses of the adaptation conditions to emotions and phonemes, respectively. The group 

PSE is illustrated with a star on all average curves in corresponding colour. The slopes in the 

baseline tasks are not significantly different, suggesting similar difficulty levels across tasks. 
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Aftereffect sizes do not differ across participant groups. The bar graphs in Figure 1 C and F 

show the aftereffect sizes (condition A – condition B at the PSE) for the emotion and phoneme 

tasks, respectively, as well as individual participant’s data (black circles). 

 

FIGURE 1 HERE 

 

To ensure that the tasks did not differ in difficulty we calculated the slope for the 

baseline curves. Using a mixed design ANOVA (2 groups x 2 tasks) we found no significant 

main effects of task (F(1, 49) = .503; p = .482; pɳ2 = .010) or group (F(1, 49) = .524; p = .472; 

pɳ2 = .011) and no significant interaction between group and task (F(1, 49) = .217; p = .643; 

pɳ2 = .004) on the slope of the curves. Interestingly, from Figure 1A, it is obvious that the 

extreme emotion categories were less accurately categorised in the children with ASD than 

the typically developing children (one-way ANOVA for the two extreme morph steps; anger: 

F(1, 49) = 5.124; p = .028 and fear: F(1, 49) =  5.894; p = .019). This pattern was not evident 

in the control task (Figure 1B; both F(1, 49) < 1.079; p > .304).  

To assess any group differences in aftereffect size in each task and adaptation 

condition (including the baseline condition) we carried out a mixed design ANOVA (2 

participant groups x 2 tasks x 3 adaptation conditions) on the PSE abscissa values, which 

revealed a significant main effect of adaptation condition (F(2, 98) = 151.821; p < .001; pɳ2 = 

.756). Pairwise comparisons revealed significant differences between all adaptation 

conditions, including the baseline task (all at p < .0001). Contrary to our hypotheses, there 

was no significant main effect of group (F(1, 49) = .699; p = .407; pɳ2 = .014) and no significant 

interaction between group and task (F(1, 49) = .326; p = .571; pɳ2 = .007). We did find a 

significant interaction between task and adaptation condition, which was driven by a 

significantly larger aftereffect to the phoneme sounds than to the vocal expressions. There 

were no other significant main effects or interactions.  
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We also examined the possibility that children with ASD adapt more slowly by testing 

for aftereffect differences between the two groups in only the first half of trials. This analysis 

resulted in the same pattern as the analysis on the full set of trials (i.e. no main effect of group 

or significant interaction between group and task). We also explored the possibility that 

variables such as age, IQ and AQ might co-vary with our effects of interest but none of these 

variables did (all F < 1.6; p > .22). Similarly, none of these variables significantly correlated 

with the aftereffect size (PSE of fear – PSE of anger adaptation; PSE of O adaptation – PSE 

of M adaptation; all r < -.19; p > .19). 

 

Discussion 

The current study tested two key questions: first, will differences in contrastive 

aftereffects previously shown using visual stimuli in children with ASD be evident within the 

auditory domain; and second, will such differences be seen only in response to the more 

socially salient stimuli? Recent influential work has suggested that changes in adaptive 

mechanisms in ASD may be at the root of some of the core aspects of the social phenotype 

in ASD, including deficits in social cognition and social interaction. However, using auditory 

stimuli, our within-subjects study revealed no differences in aftereffect sizes for the two 

participant groups in either the more socially salient or the well-matched control stimuli. In 

other words, children with ASD did not show any reductions in aftereffect sizes compared to 

typically developing children regardless of auditory stimulus type. We also found no 

suggestions of a slowed adaptation rate in ASD compared to typically developing children. It 

is important to note here that this is not simply a null finding; instead, we report robust 

adaptation effects that are independently significant in each group and virtually identical in 

magnitude across groups.  

Several research groups have reported that the mere categorisation or recognition of 

social stimuli is impaired in ASD (e.g. emotional faces: Harms et al., 2010; Teunisse & de 
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Gelder, 2001; emotional faces and speech prosody: Globerson, Amir, Kishon-Rabin, & Golan, 

2015; Philip et al., 2010; Taylor, Maybery, Grayndler, & Whitehouse, 2015). Interestingly, we 

observed a similar pattern in the ASD group to the socially salient vocal expressions of anger 

and fear endpoints in the baseline categorisation task confirming limitations in recognizing 

emotional expressions also in the auditory domain. In a seminal paper, Pellicano et al. (2007) 

suggested that this poorer performance in categorising social stimuli may be caused by, or 

may at least be related to, impairments in the adaptive mechanism in ASD. Our data do not 

support this claim. While we replicate previous findings of poorer categorisation performance 

of the emotional expressions in the ASD group, we find no group differences in the magnitude 

of the aftereffects to emotional expressions. This pattern of results suggests that impaired 

recognition of emotions but intact perceptual plasticity in ASD are unlikely to be causally 

linked. 

There were several differences in terms of task design and stimulus type between 

Pellicano et al.’s study and the present one which preclude a definite answer as to whether 

adaptive coding plays a role in the cognitive phenotype of ASD. While both studies employed 

social stimuli (facial identity, vocal emotion) our paradigm was not designed around an 

arguably more complex game. Rather, our study was based on a traditional cognitive 

adaptation paradigm with four repetitions of the adaptor followed by a test stimulus that is 

known to yield robust adaptation effects. While our paradigm may have been less engaging 

because it was not embedded in a story, it is possible that at least some children, particularly 

those with ASD, might find our paradigm easier to deal with because no social understanding 

or involvement was required to complete the task. More specifically, it is possible that the task 

used by Pellicano et al. was actually less suitable for children with ASD due to the social 

framing of the task which might put children with ASD at a disadvantage. Whether the 

discrepancy in results of the two studies is due to differences in modality or task therefore 

remains an open question because later face adaptation studies in ASD also typically use 

tasks designed around a game or story. 



 15 

 Lawson et al. (2015) investigated two types of low-level auditory adaptation in adults 

with ASD. First, participants had to repeatedly judge the loudness of a quiet, continuously and 

monaurally presented sound. This type of adaptation (simple loudness) was impaired in adults 

with ASD compared to healthy controls and may give rise to increased sound sensitivity in 

ASD. Second, participants had to judge the volume of a much louder, continuously presented 

sound while a distracter sound was intermittently played to the other ear. This type of 

adaptation (induced loudness) was intact in the autism group. The authors point out that 

different neural substrates likely underpin each adaptation type but it is unclear why the 

participants with ASD were impaired for simple but not induced loudness adaptation. The 

results do suggest, however, that the basic adaptation mechanism is not impaired in ASD.  

Studies following Pellicano’s seminal paper have not been entirely unequivocal 

regarding reduced aftereffects to social stimuli in ASD. Most studies have shown diminished 

aftereffect sizes (Ewing et al., 2013; Pellicano et al., 2007; Pellicano, Rhodes, & Calder, 2013; 

Turi et al., 2015; 2016), one recent study has shown a priming effect in ASD but not the control 

group (Rutherford, Troubridge, & Walsh, 2012) and only a few studies, on adult participants 

with ASD, have found no group differences in the face adaptation effect size (Cook et al., 

2014; Walsh, Maurer, et al., 2015; Walsh, Vida, Morrisey, & Rutherford, 2015). Participant 

numbers (or statistical power) are unlikely to explain the differences between previous results 

and results of the current study as participant numbers in the current study are larger than in 

many of the aforementioned reports (all but Ewing et al., 2013 and Walsh, Maurer et al., 2015). 

There are several possible explanations for these discrepancies. For example, while 

adaptation is a ubiquitous and fundamental mechanism across sensory modalities, it is 

possible that differences or developmental delays in visual adaptation are modality specific 

and do not affect adaptation to high-level auditory stimuli. Equally, it is plausible that auditory 

stimuli are less prone to attentional lapses than visual stimuli and that, despite attempts to 

control attention in visual paradigms (Ewing et al., 2013), reduced attention to the adapter 

stimuli in ASD does play a role, particularly in the child population. Importantly, if atypical 
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adaptation to faces is only seen in children with ASD, then the effect may be due to delayed 

or atypical development and therefore would not be a stable aspect of the condition. 

Additionally, as our study demonstrates typical adaptation aftereffects to a “social” (albeit 

auditory) stimulus in childhood, atypical adaptation in ASD also cannot be assumed in 

response to all social stimuli. Thus the suitability of impaired adaptation as an endophenotype 

is unlikely. At this point, smaller aftereffects demonstrated in some studies but not others may 

be due to a myriad of factors but it cannot be seen as a robust or universal impairment. We 

can therefore exclude impaired aftereffects as reliably descriptive of the cognitive phenotype 

of ASD.  

Our results highlight the need for a more systematic investigation of adaptation in 

autism to account for the inconsistent findings in the literature. To understand the nature of 

the putative impairment of the adaptation mechanism in ASD, a thorough investigation of 

contrastive aftereffects using different stimulus types (social, non-social) at different levels of 

the processing hierarchy (low-level vs high level), for various modalities and across different 

stages of development is required.  

Conclusion 

 We show for the first time that auditory contrastive aftereffects in children with ASD are 

intact for both socially salient stimuli and control stimuli thereby challenging the widely-held 

belief that adaptation mechanisms are specifically impaired in autism spectrum disorders. 

While children with ASD were significantly worse at categorising the endpoints of the vocal 

emotion continua during the baseline task, our results demonstrate that these differences are 

not directly related to the functioning of the adaptation mechanism. When using a traditional 

adaptation paradigm with a categorisation task on the high-level dimensions of sound, the 

adaptation mechanism in ASD is intact.  
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Measure t p-value

N Mean SD Range N Mean SD Range

Age 27 11.87 2.38 8.10 - 17.69 24 12.20 2.14 6.46 - 15.22 -0.52 0.607

IQ (CFT 20-R) 25 96.00 14.02 71 - 122 24 109.08 14.89 84 - 141 -3.26 0.002

SRS Raw Score 27 99.48 33.82 30 - 170

SRS T Norms 27 80.89 11.79 55 - 100

ADOS (social) 27 7.85 1.83 4 - 11

ADOS (communication) 27 3.89 2.04 0 - 8

ADOS (total) 27 11.74 3.05 6 - 17

ADI-R (social) 26 18.58 5.14 10 - 26

ADI-R (communication) 26 12.77 5.18 1 - 21

ADI-R (repetitive behaviour) 26 5.12 3.34 0 -13 

Children with autism Typically developing children 

Table 1. Participant demographics and test scores.

Figure 1. Psychometric functions were fitted for the mean responses to each morph step and separately for each task and participant group. 
Solid lines always indicate the performance of the children with ASD; dashed lines always indicate the performance of the typically 
developing children (TDC). The point of subjective equality (PSE) is plotted as a star on each curve (stars for the PSEs of the ASD children 
are filled; stars for the PSEs of the TDC children are white). Baseline tasks for the emotion and phoneme task are plotted in A and D, 
respectively. Adaptation tasks for the emotion and phoneme task are plotted in B and E. Error bars represent standard error of the mean. C 
and F show the aftereffect sizes for each participant group based on the PSE in each condition as well as individual participant’s data (black 
circles).




