
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

CD1b-restricted GEM T cell responses are modulated by Mycobacterium
tuberculosis mycolic acid meromycolate chains
Chancellor, Andrew ; Tocheva, Anna S.; Cave-Ayland, Chris; Tezera, Liku;
White, Andrew ; Al-Dulayymi, Juma'a; Bridgeman, John S.; Tews, Ivo; Williams,
Susan ; Lissin, Nikolai M.; Tebruegge, Marc; Marshall, Ben; Sharpe, Sally ;
Elliott, Tim; Skylaris, Chris-Kriton; Essex, Jonathan W.; Baird, Mark; Gadola,
Stephan; Elkington, Paul; Mansour, Salah
PNAS

DOI:
10.1073/pnas.1708252114

Published: 19/12/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Chancellor, A., Tocheva, A. S., Cave-Ayland, C., Tezera, L., White, A., Al-Dulayymi, J.,
Bridgeman, J. S., Tews, I., Williams, S., Lissin, N. M., Tebruegge, M., Marshall, B., Sharpe, S.,
Elliott, T., Skylaris, C-K., Essex, J. W., Baird, M., Gadola, S., Elkington, P., & Mansour, S.
(2017). CD1b-restricted GEM T cell responses are modulated by Mycobacterium tuberculosis
mycolic acid meromycolate chains. PNAS, 114(51), E10956-E10964.
https://doi.org/10.1073/pnas.1708252114

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 11. May. 2021

https://doi.org/10.1073/pnas.1708252114
https://research.bangor.ac.uk/portal/en/researchoutputs/cd1brestricted-gem-t-cell-responses-are-modulated-by-mycobacterium-tuberculosis-mycolic-acid-meromycolate-chains(c01544af-b9f7-4402-8f87-44d2939ffe6e).html
https://research.bangor.ac.uk/portal/en/researchoutputs/cd1brestricted-gem-t-cell-responses-are-modulated-by-mycobacterium-tuberculosis-mycolic-acid-meromycolate-chains(c01544af-b9f7-4402-8f87-44d2939ffe6e).html
https://research.bangor.ac.uk/portal/en/researchoutputs/cd1brestricted-gem-t-cell-responses-are-modulated-by-mycobacterium-tuberculosis-mycolic-acid-meromycolate-chains(c01544af-b9f7-4402-8f87-44d2939ffe6e).html
https://doi.org/10.1073/pnas.1708252114


 
 

1

CD1b-restricted GEM T cell responses are modulated by Mycobacterium 1 

tuberculosis mycolic acid meromycolate chains  2 

 3 

Andrew Chancellora,b, Anna S. Tochevaa#, Chris Cave-Aylandc, Liku Tezeraa, Andrew Whiteb, Juma’a R. Al 4 

Dulayymid, John S. Bridgemane, Ivo Tewsf,g, Susan Wilsona,h, Nikolai M. Lissini, Marc Tebrueggea,g,j,k,l,m, Ben 5 

Marshalla,g,j, Sally Sharpeb, Tim Elliottg,n, Chris-Kriton Skylarisc,g, Jonathan W. Essexc,g, Mark S. Bairdd, Stephan 6 

Gadolaa,g,o, Paul Elkingtona,g,j,k, Salah Mansoura,g,1 7 

 8 
aAcademic Unit of Clinical and Experimental Sciences, Faculty of Medicine, Southampton SO16 6YD, UK 
bPublic Health England, National Infections Service, Porton Down, Salisbury, SP4 0JQ, UK 
cSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, UK 
dSchool of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, UK 
eCellular Therapeutics Ltd, Manchester M13 9XX, UK 
fSchool of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK 
gInstitute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK 
hHistochemistry Unit, University of Southampton, Southampton, SO16 6YD, UK  

iImmunocore Limited, Abingdon, Oxon OX14 4RY, United Kingdom 
jNIHR Southampton Biomedical Research Centre, Southampton, UK SO17 1BJ, UK 
kGlobal Health Research Institute, University of Southampton, Southampton, SO17 1BJ, UK 
lDepartment of Paediatrics, Faculty of Medicine, University of Melbourne, 3052 Parkville, Australia 
mDepartment of Paediatric Infectious Diseases & Immunology, Evelina London Children’s Hospital, Guy’s 

and St. Thomas’ NHS Foundation Trust, London, SE1 7EH, UK 
nCancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK SO16 6YD, UK 
oF.Hoffmann-La Roche Ltd, Basel, Switzerland 
#New address: Department of Medicine, New York University School of Medicine, New York, NY 10016, USA 

 

 
1To whom correspondence should be addressed: s.mansour@soton.ac.uk 9 

 10 

Key words 11 

CD1b, mycolate, Mycobacterium tuberculosis, GEM T cells  12 

 13 

 14 



 
 

2

Abstract 15 

Tuberculosis, caused by Mycobacterium tuberculosis, remains a major human pandemic. Germline-encoded 16 

mycolyl lipid-reactive (GEM) T cells are donor-unrestricted and recognize CD1b-presented mycobacterial 17 

mycolates. However, the molecular requirements governing mycolate antigenicity for the GEM T cell 18 

receptor (TCR) remain poorly understood. Here, we demonstrate CD1b expression in tuberculosis 19 

granulomas and reveal a central role for meromycolate chains in influencing GEM-TCR activity. 20 

Meromycolate fine structure influences T cell responses in TB-exposed individuals, and meromycolate 21 

alterations modulate functional responses by GEM-TCRs. Computational simulations suggest that 22 

meromycolate chain dynamics deep within CD1b regulate mycolate head group movement, thereby 23 

modulating GEM-TCR activity. Our findings have significant implications for the design of future vaccines 24 

that target GEM T cells. 25 

Significance statement  26 

Tuberculosis is a major global pandemic responsible for more deaths than any other infectious disease, yet 27 

no effective vaccine exists. Here we demonstrate CD1b expression within human tuberculous granulomas, 28 

supporting a role for CD1b lipid antigen presentation in host immunity to infection. CD1b presents 29 

mycolates, the dominant Mtb cell wall lipid class and key virulence factors, to αβ T cells. We reveal that 30 

mycolate tail moieties, buried deep within CD1b, are antigenic determinants for the conserved human 31 

germline-encoded mycolyl lipid-reactive (GEM) T cell receptors (TCRs). Computational simulations suggest a 32 

putative mechanism whereby lipid-ligand dynamics within CD1b regulate GEM TCR activity. This work 33 

provides insights for the development of MHC-independent Mtb lipid vaccines, including those that target 34 

GEM T cells. 35 

 36 
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 46 

Introduction 47 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a major human pandemic and is 48 

responsible for more deaths than any other infectious disease (1). The only licensed vaccine, Bacille 49 

Calmette-Guérin (BCG), provides very limited protection against adult TB that leads to transmission (2), and 50 

therefore new strategies to control the disease are needed. Immunological responses considered critical for 51 

long-term mycobacterial control have focused on conventional T cell responses directed at peptide 52 

antigens presented by major histocompatibility complex (MHC) I and II, ultimately leading to secretion of 53 

anti-microbial cytokines, including TNF-α and IFN-γ (3, 4). A number of subunit vaccines based on 54 

immunogenic peptides have been developed, some of which have been evaluated in clinical trials, but 55 

results to date have not been encouraging (5-7).  56 

Mtb is characterized by a lipid-rich envelope that comprises diverse and unique lipid structures (8).  57 

Multiple Mtb lipids are presented by CD1 proteins to lipid-reactive αβ T cells, which are increasingly being 58 

recognised as important components of the host immune response (9-13). The CD1 family comprises five 59 

non-polymorphic MHC class-I-like proteins, CD1a, CD1b, CD1c, CD1d and CD1e, which present lipid-60 

antigens to T cells at the surface of antigen presenting cells (APC), with the exception of CD1e (14). CD1b 61 

has the capacity to bind various Mtb lipid antigens, including mycolates (15), sulfoglycolipids (16), 62 

lipoarabinomannan (LAM) and phosphatidylinositol mannoside (PIM) (17). CD1b-restricted T cells 63 

responsive to mycobacterial lipids secrete anti-mycobacterial cytokines, such as IFN-γ and TNF-α, 64 

supporting their potential role in the host immune response to Mtb infection (9, 18). In humanized mice, 65 

CD1b-restricted T cells generate polyfunctional responses which reduce mycobacterial proliferation in vitro 66 

and accumulate in mycobacteria-induced lung granulomas in vivo (19). Furthermore, CD1b-restricted 67 

polycytotoxic T cells in bronchioalveolar fluid were recently shown to limit Mtb growth ex vivo (20). In TB 68 

patients, CD1b-restricted T cell numbers in peripheral blood and at the site of infection expand and 69 

contract markedly according to pathogen burden, and therefore may contribute to the immune response 70 

to Mtb (18). Taken together, this evidence suggests that T cell responses directed to Mtb lipids presented 71 

by CD1b are important for Mtb containment.    72 

Mycolates are a major lipid component of the Mtb cell wall and are key virulence factors (21). They 73 

comprise long chain β-hydroxy fatty acids, composed of a shorter unfunctionalised α-alkyl chain and a 74 

longer meromycolate chain that typically has two functional groups, providing the main source of structural 75 

diversity (Fig. S1A). Three major mycolate classes exist in Mtb, including α-, keto- and methoxy-, based on 76 

functional groups within the meromycolate chain, which are proximal or distal to the head group moiety 77 

(Fig. S1A) (22). In addition, mycolates occur with different chain lengths, and stereo-arrangements of 78 

functional groups, generating a large spectrum of possible mycolate structures. Mycolates may exist as free 79 
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mycolic acid (MA), which can be esterified to glycerol (Gro-MM), glucose (GMM) or trehalose (TMM) (Fig. 80 

S1B-D).  MA, Gro-MM and GMM are all CD1b-presented lipid antigens (22-24). When bound to CD1b, the 81 

meromycolate chain positions itself within the long A’, T’ and F’ super channel of CD1b, while the shorter α-82 

alkyl chain occupies the C’ channel, via hydrophobic interactions (25). The hydrophilic head group is 83 

exposed above the F’ portal, thus contributing directly to the T cell receptor (TCR) interface (25).  84 

Knowledge of the CD1b-mycolate specific T cell compartment has until recently been based on a few 85 

isolated clones that may not accurately represent the T cell repertoire in vivo (9, 26). More recently, CD1b-86 

tetramers have been developed to efficiently capture GMM-specific T cells (9). Emerging data now suggest 87 

a pattern of TCR conservation, revealing two T cell compartments that differ in their binding affinity to 88 

CD1b. The germline-encoded mycolyl lipid-reactive T cells (GEMs) express a conserved TCR and respond to 89 

Mtb infection by clonal expansion and secretion of anti-mycobacterial cytokines (9). GEM TCRs, which are 90 

defined by their TRAV1-2 usage, bind to GMM-loaded CD1b with high affinity. Depending on TCR β-chain 91 

usage, GEMs can recognise MA or GMM (9). The second compartment contains the semi-invariant LDN5-92 

like T cells, including LDN5, a T cell clone bearing a TCR that binds CD1b-GMM with moderate affinity (27). 93 

Therefore, donor-unrestricted GEM T cells, that are activated by mycolic acids presented by non-94 

polymorphic CD1b molecules, are potentially powerful targets for future vaccines or diagnostics that may 95 

be effective in the majority of the human population.  96 

A central tenet of CD1b-restricted TCR recognition of mycolates is the fine discrimination of the glycolipid 97 

head group moiety (27). However, the major source of mycolate diversity is derived from structural 98 

determinants within the meromycolate chain which are distal to the head group moiety (22). This feature 99 

has not been systematically investigated in relation to T cell activation. We hypothesized that these 100 

structural variations may modulate the activation of CD1b-restricted T cells. We reveal GEM-TCR sensitivity 101 

to meromycolate chain functional group structure and stereo-arrangement. Molecular simulations of CD1b-102 

MA complexes show marked differences in mycolate behaviour, which is related to meromycolate chain 103 

interactions with the binding groove of CD1b. Our findings reveal that activation of GEM-TCRs by mycolates 104 

is finely tuned by meromycolate chain structure, which could be exploited for future vaccine or diagnostic 105 

approaches.  106 

 107 

 108 

 109 

  110 
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Results  111 

CD1b is expressed in human pulmonary TB granulomas 112 

CD1b is expressed in leprosy lesions that exhibit protective immunity (28, 29), whereas it has been reported 113 

that CD1b is downregulated on the cell surface of CD1+ APCs infected with Mtb in vitro (30). To investigate 114 

CD1b expression in human granulomas, we performed immunohistochemical staining of lung biopsies from 115 

five patients with active pulmonary TB. Many of the cells in the granulomas were positive for the 116 

macrophage marker CD68, with diffuse positive staining within caseous necrosis (Fig. 1A and Fig. S2). CD1b 117 

was expressed within the majority of granulomas stained, with immunoreactive cells situated primarily 118 

adjacent to the central caseous core (Fig. 1B and Fig S2 B, D, E, F, J, K). Negative control stains confirmed 119 

absence of non-specific antibody binding (Fig. 1C and Fig S2 C, G, H, I, L, M). Quantitation of 120 

immunoreactive cells in 5 granuloma areas per biopsy showed a range of CD1b expression (Median and 121 

IQR: 6 +/- 10.5 cells/mm2).  Diffuse foci of CD1b immunoreactivity were also observed within the caseous 122 

necrosis (Fig. S3). These results confirm CD1b expression at the site of infection, in line with previous 123 

reports demonstrating upregulation of CD1b in human mycobacterial infection (28, 29), and consistent with 124 

a role for CD1b-mediated presentation of Mtb lipids to T cells in the host immune response.  125 

 126 

GEM18 TCR exhibits promiscuous mycolate head group specificity 127 

Mycolates comprise a structurally diverse species of Mtb cell wall lipids which can activate CD1b-restricted 128 

human T cells (9, 26), including GEM T cells (9, 26). However, antigenic determinants of mycobacterial 129 

mycolates for CD1b-restricted T cells have not been fully defined. To investigate this, we generated human 130 

J.RT3.T3-5 and NFAT-GLuc Jurkat T cells stably expressing the mycolate-specific TCRs, GEM clone 1 (GEM1), 131 

GEM clone 18 (GEM18), and LDN5 (9, 26). Jurkat T cells expressing TCR were activated by CD1b in the 132 

presence of mycolate, whereas no activation occurred in the absence of either the TCR, CD1b or mycolate 133 

(Fig. 2A). To examine the fine specificity of these TCRs to different mycolates, we investigated their 134 

reactivity to JR1080, an α-MA, as free MA or when esterified to glycerol, glucose or trehalose head group 135 

moieties (Fig. 2B). GEM1- and LDN5-TCRs were specific for GMM (Fig. 2C-E) and did not respond to MA, 136 

Gro-MM or TMM.  In contrast, the GEM18-TCR recognised MA and Gro-MM, as well as GMM to a lesser 137 

extent, but did not respond to TMM (Fig. 2E). Similar to a previous report (31), our results demonstrate the 138 

promiscuity of GEM18-TCR toward mycolate head group moieties. This suggests that meromycolate chain 139 

structure might be an antigenic determinant for GEM18-TCR activity. 140 

  141 

 142 

 143 
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Meromycolate chain functional groups dictate GEM-TCR activity 144 

We next investigated the role of meromycolate chain structure on GEM-TCR activity using a panel of 145 

synthetic mycolates. MA derived from pathogenic bacteria such as Mtb generally have distal and proximal 146 

functional groups in the long meromycolate chain, defined by X and Y respectively (Fig. S1A). Functional 147 

groups include cyclopropane, methoxy, keto, epoxy, diene and alkene moieties (Table S1). We first 148 

assessed GEM18-TCR activity to a panel of 12 synthetic MAs that all comprise the same short α-alkyl chains 149 

of C23 or C21, but diverse meromycolate chains containing different functional groups at various locations, 150 

including the Mtb MAs JR1080, AD129, JRRR124, MH140, JR1046, and JRRR121 (Fig. 3 and Table S1).  Initial 151 

dose-response studies showed that 10 μg/ml of MA was optimal to investigate T cell activation.  152 

Stimulation of GEM18 Jurkat T cells with a panel of MAs at 10 μg/ml revealed a distinct hierarchy for 153 

GEM18-TCR activation (Fig. 3A, B). A luminescence-based NFAT-GLuc T cell activation assay confirmed this 154 

pattern (Fig. S4A). Strong T cell activation was mediated by the diene mycolic acid MH157, a MA not 155 

expressed by Mtb (Table S1) (32). Of the Mtb mycolates, JR1080 induced the strongest T cell activation, 156 

which matched the stereochemistry of the expected major Mtb α-mycolate, based on a common 157 

biosynthetic pathway for all three major MA classes (33, 34). This effect was significantly greater than with 158 

the other α-MAs tested, such as MMS131 and MMS130, which are not expressed by Mtb (Table S1). 159 

AD129, matching the chain lengths and expected stereochemistry of the major keto-MA of Mtb, caused 160 

moderate activity, as did JRRR124, matching the expected structure and stereochemistry of the major 161 

methoxy-MA. The keto-MA MH140, matching the corresponding trans-cyclopropane, caused minimal 162 

activation, as did the corresponding trans-cyclopropane containing methoxy-MA, JRRR121.  163 

Stereoarrangements of meromycolate chain functional groups are a naturally occurring feature of 164 

structural diversity. Therefore, to assess whether the stereochemistry of meromycolate functional groups 165 

influenced GEM-TCR activity, we investigated stereoisomers of JR1080, matching the chain lengths of the 166 

most abundant Mtb α-MA (Table S1) (33). This revealed an activation hierarchy dependent on 167 

stereochemistry and identified CDL12DU as a more potent antigen of GEM18-TCR than JR1080, at 168 

concentrations as low as 0.1 μg/ml (Fig. 3C and Fig. S4B). Next, we investigated GEM18-TCR reactivity 169 

against a panel of synthetic Gro-MMs, containing diverse meromycolate chains. GEM18 responded in a 170 

hierarchical, dose dependant manner to three of the six Gro-MMs, based on analysis of CD69 upregulation 171 

(Fig. 3D) and luminescence (Fig. S4C). In addition, five Gro-MMs displayed a similar activation pattern as 172 

MAs containing the same meromycolate chains (Fig. S4D and Table S1). We further assessed the activation 173 

of Jurkat T cells expressing GEM1-, GEM18-, and LDN5-TCRs toward a panel of GMMs that comprise similar 174 

C23 or C21 short α-alkyl chains but structurally variable meromycolate chains (Fig. S5A and Table S1). We 175 

observed differences in GEM18-TCR activation toward these GMMs (Fig. S5B, E). In contrast, minor 176 

differences in T cell activation occurred for GEM1-TCR (Fig. S5C, F), and no differences were observed for 177 

LDN5-TCR towards these GMMs (Fig. S5D). Taken together, these results demonstrate that the functional 178 
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group type, position and relative stereoarrangement within the meromycolate chain strongly impact on 179 

GEM18-TCR activity.  180 

 181 

Mtb mycolates modulate functional human T cell responses 182 

We next determined whether meromycolate structural differences affected activation of human peripheral 183 

blood T cells from Mtb-exposed individuals. We co-cultured MA-loaded autologous CD1b+ monocyte 184 

derived dendritic cells (moDC) with peripheral blood lymphocytes from ten patients with latent TB 185 

infection. Intracellular cytokine staining was performed for IL-2+, IFN-γ+ and TNF-α+ in activated T 186 

lymphocytes. Strong T cell activation was observed with the MA JR1080 and the GMM SMP74, while the 187 

MAs MMS130 and JRRR121 were weakly-stimulatory (Fig. 4A). Significantly more cells produced detectable 188 

levels of IL-2, IFN-γ, and TNF-α following stimulation with JR1080 compared with JRRR121, and in the 189 

majority of patients JRRR121 and MMS130 did not activate any T cells. 190 

To overcome limitations associated with low numbers of CD1b reactive T cells in the periphery ex vivo (9, 191 

35), we transferred the GEM18-TCR into ex vivo derived T cell populations, for high levels of expression to 192 

study functional impact (Fig. S6A). T cell function was measured after co-culture of GEM18-expressing T 193 

cells with CD1b+ T2 lymphoblasts loaded with three strongly-stimulatory (CDL12DU, JR1080, DZ146) and 194 

three weakly-stimulatory MAs (JRRR121, MMS130, JR1046). JR1080 exhibited significantly increased cell 195 

killing in each case when compared to the non-stimulatory ligands (JRRR121 p=0.0003, MMS130 p=0.006, 196 

JR1046 p=<0.0001 [Fig. 4B]). The same was also true of CDL12DU (JRRR121 p=0.0096, MMS130 p=0.02 and 197 

JR1046 p=0.018). We also measured functional cytokine responses, studying pro-inflammatory and anti-198 

inflammatory cytokines known to be critical in anti-mycobacterial immunity (3). Immunogenic MA induced 199 

higher levels of IFN-γ secretion by GEM18-expressing T cells than any of the non-stimulatory mycolates (Fig. 200 

4C). Particularly strong responses were noted for IFN-γ, GM-CSF, IL-2 and TNF-α, which were statistically 201 

significant in all cases  (Fig. 4D and Fig. S6B).  202 

 203 

GEM18-TCR exhibits differential binding to CD1b-MA complexes 204 

We next investigated binding of GEM18-TCR to CD1b molecules treated with MA meromycolate variants. 205 

We first produced soluble recombinant GEM18-TCR (Fig. 5A) and soluble fluorescent GEM18-TCR 206 

dextramers. To investigate GEM18-TCR dextramer binding, we used a recently reported CD1b loading 207 

protocol of methoxy MA developed by Van Rhijn et al. (36), utilising the least hydrophobic lipids in our 208 

panel. We treated CD1b coated beads with three MA that induced differential activity of GEM18-TCR in 209 

Jurkat cellular assays (Fig. 3B). Staining of MA treated CD1b-beads with GEM18-TCR dextramers revealed a 210 

distinct hierarchy of fluorescence intensity (Fig. 5B), which correlated to the results observed in Jurkat 211 
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activation assays. In addition, we treated CD1b monomers with the strongly-stimulatory methoxy MA HA56 212 

and the weaker methoxy MA JRRR124 and then generated soluble fluorescent CD1b-dextramers. Jurkat T 213 

cells expressing GEM18-TCR were positively stained by CD1b-dextramers treated with the strongly-214 

stimulatory MA HA56, and with lower staining intensity by CD1b-dextramers treated with the weaker 215 

JRRR124 (Fig. 5C). CD1b-dextramers treated with MA failed to stain Jurkat T cells expressing irrelevant CD1d 216 

or CD1c restricted TCRs. Together, these findings support the concept that the differential responses 217 

induced by MA variants are mediated either through differential lipid loading or via a direct TCR-CD1b 218 

binding mechanism. 219 

 220 

Meromycolate chain anchoring modulates MA antigenicity 221 

Next, we hypothesized that the differential activity of mycolates upon GEM-TCR activation might be due to 222 

mechanisms related to lipid behaviour within the antigen-binding groove of CD1b. To determine whether 223 

structural alterations in regions of the ligand that are distal to the carboxylate head group might be 224 

communicated to the surface of the CD1b-ligand complex that interfaces with the TCR, we performed 225 

molecular dynamics simulations for CD1b bound to highly-stimulatory and weakly-stimulatory mycolates. 226 

Over the trajectory time course, we examined the position and behaviour of the MA head group with 227 

different meromycolate chain substitutions. Head group position was measured via the distance moved in 228 

reference to the head group of GMM in the existing crystal structure of CD1b-GMM complex (25). Root 229 

mean squared deviation (RMSD) values were calculated to provide a measure of structural similarity to the 230 

putative productive conformation of CD1b-GMM. These simulations showed that JR1080 adopts similar 231 

conformations to the head group of CD1b-GMM, whereas the weakly-stimulatory JRRR121 adopts 232 

markedly different conformations (Fig. 6A). These observations show a substantial increase in overall head 233 

group movement in the weakly-stimulatory MA JRRR121 (Movies S1, S2).  234 

Study of the meromycolate chains were then carried out through visualization and comparison of 235 

substituent centroids, indicating the geometric centre of functional group positions over the trajectory time 236 

period. Marked differences in centroid localization and dynamics were apparent between stimulatory and 237 

weakly-stimulatory MAs. The weakly-stimulatory MAs JRRR121 and JR1046 showed much more 238 

pronounced localization of centroids, in the T' tunnel (distal, red) and A' channel (proximal, blue) (Fig 6B 239 

and Fig S7), whereas the strongly stimulatory MAs MH157 and JR1080 showed greater fluidity (Fig. 6C and 240 

Fig S7). Chain fluidity was further investigated to understand differences in this behaviour. In instances of 241 

strong localisation, this was found to be due to interaction of chain substituents with features of the CD1b 242 

binding pocket. For example, the JRRR121 proximal and distal chain substituents are strongly localised by 243 

their respective interactions with small crevices of the A’ and T' tunnels, thereby resulting in an “anchoring” 244 
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mechanism (Movies S3, S4). This strongly suggests that the different dynamic behaviour of ligands within 245 

the binding pocket is determined by the position and properties of long chain substituents.  246 

 247 

Discussion  248 

TCRαβ+ CD1b-restricted mycolate-specific GEM lymphocytes are a conserved T cell population in humans 249 

which expand upon Mtb infection and exhibit potent anti-mycobacterial effector functions through 250 

production of IFN-γ and TNF-α (9, 31, 37, 38). Our demonstration of CD1b expression within human lung TB 251 

granulomas provides further evidence for lipid-specific T cell immunity in host defence against TB. CD1b is 252 

an attractive target for the development of TB vaccines due to its non-polymorphic nature. However, 253 

development of such vaccines requires a precise understanding of the antigenic determinants for CD1b-254 

presented mycolates that are recognised by GEM-TCRs. Using a panel of synthetic pure mycolates, we 255 

dissected the role of different structural features in defining recognition and functional responses by GEM 256 

TCRs. Our studies reveal a major and unexpected role for structural determinants in the meromycolate 257 

chain, distal to the carboxylate head group moiety and not expected to bind the TCR based on CD1b-GMM 258 

structures, in defining T cell activity.  259 

The concept that deeply buried moieties of CD1-bound lipids can influence T cell activation is supported by 260 

several studies. For example, the alkyl chains of Mtb diacylated sulfoglycolipids (AC2SGL) govern CD1b-261 

mediated T cell activity, including C-methyl substituents, stereochemistry and alkyl chain position (39). T 262 

cell activation is also sensitive to alkyl chain differences in the CD1c-antigen mannosyl-β-263 

phosphomycoketide (MPM), with length, methyl branching pattern and stereoarrangments influencing 264 

responses (40). Furthermore, the length of the alkyl chains and lipid saturation of the CD1d-antigen α-265 

galactosylceramide (α-GalCer) is important for controlling CD1d-restricted invariant NKT cell activity (41). 266 

Consistent with these reports, our data suggest that communication of structural differences in lipid tails to 267 

T cells is a central feature of CD1-lipid antigen presentation. Our findings suggest a mechanism for TCR-268 

ligand interaction, which may also be generalizable for ligand recognition by CD1c and CD1d molecules. It 269 

may also contribute to the fine-tuning of classical peptide-MHC recognition by TCR (42).  270 

We employed molecular dynamics simulations of MAs to gain a mechanistic understanding for how subtle 271 

differences within these lipid structures may impact on the potency of the T cell response. These analyses 272 

supported the notion that ligand dynamics within the CD1b pocket can be strongly influenced by 273 

meromycolate chain substituents. Based on these in silico insights and our experimental data, we propose a 274 

model whereby meromycolate chain dynamics within the CD1b groove are directly linked to the ability of 275 

the hydrophilic head group to adopt productive conformations for TCR binding. In this model, weakly 276 

stimulatory lipids with immobile tails are ‘trapped’ due to the position and nature of their chain 277 

substituents, and this trapping consequently restricts the head group from adopting positions that facilitate 278 
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TCR binding. In contrast, strongly stimulatory lipids have chain substituents that do not ‘catch’ on pocket 279 

features and as such are more readily accommodated by the binding pocket. This manifests as greater 280 

chain mobility, thereby allowing the head group to adopt productive conformations for TCR binding. Thus, 281 

ligand-dynamics have the potential to fine tune GEM T cell recognition and therefore function.  282 

Structural studies of GEM42-TCR in complex with CD1b-GMM recently provided a molecular mechanism for 283 

GMM recognition by so called “typical” GMM specific GEM-TCRs such as GEM1, GEM21, and GEM42 (31). 284 

Arg107α on the CDR3α loop cooperates with Asp113β on the CDR3β loop forming a salt bridge that acts as 285 

a capstone, stabilising the alpha and beta ‘tweezers’ that grip the glucose head group moiety of GMM (31). 286 

This highly rigid and specific mechanism for gripping the glucose moiety likely contributes toward the 287 

insensitivity of such TCRs toward meromycolate changes. Furthermore, contacts between Arg79 and 288 

Thr157 found in the α1 and α2 helices and GMM may stabilize the head group, which may counter any 289 

movement due to a lack of backbone anchoring (25). On the other hand, GEM18-TCR differs from typical 290 

GMM-recognizing GEM-TCRs in that it possesses a Leu107α residue instead of Arg107α on its CDR3α loop, 291 

and Asp113β is absent, therefore GEM18-TCR lacks the stabilising ‘tweezers’ (31). The promiscuity toward 292 

different mycolate head groups suggests that GEM18-TCR recognises a common mycolate epitope that is 293 

shared between MA, GMM, and Gro-MM, likely mediated by Gly110α and Phe112α within the CDR3α loop 294 

(31). The observed weak GEM18-TCR responses toward GMM could have resulted through interference 295 

from the relatively bulky glucose moiety; however, we could not definitively rule out the processing of 296 

GMM to MA post cellular uptake. In addition, our results could not rule out the possibility that MA variants 297 

may have altered loading or TCR recognition. Definitive conclusions must await structural determination of 298 

GEM18-TCR with CD1b mycolate complexes. 299 

Different strains of Mtb and other mycobacteria express significantly different MA structural profiles and 300 

Mtb is known to considerably change its MA composition in response to different growth conditions and 301 

virulence stages (22, 43, 44). It is therefore essential to understand the structure-function relationships of 302 

Mtb-derived mycolates using synthetic lipids due to the complex mixtures and difficulty in isolating a single 303 

natural molecule. Indeed, an earlier study investigating the response of DN1 TCR hinted on a diverse role 304 

for MA structural variants on T cell activity (45). Furthermore, our results are consistent with data from a 305 

recent study by Van Rhijn et al. (36) indicating that MA lipid tails are antigenic determinants for T cells.  306 

Therefore, an emerging concept is that individual MAs should be considered as distinct lipid antigens that 307 

may elicit diverse activation profiles by diverse MA-specific TCRs. It is tempting to speculate that the 308 

differential activity of MA on CD1b restricted TCR may provide a means for Mtb to modulate the host 309 

immune response during infection. Consequently, manipulating mycolate structure could be a key strategy 310 

to generate optimal anti-mycobacterial responses for future vaccines. Functional differences between lipids 311 

were most pronounced for cytokine release relative to cytotoxicity, likely reflecting the latter being a more 312 

downstream effect. Defining the ability of GEMs and other mycolate specific T cells to detect different 313 
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meromycolate structures in vivo and characterizing their role in immunity to Mtb are key areas warranting 314 

further investigation. 315 

In conclusion, we report a systematic investigation of mycobacterial meromycolate chain structure in 316 

regulating CD1b-restricted GEM T cell activity. The fine sensitivity of the conserved GEM-TCR for subtle 317 

meromycolate changes and the co-evolution of humans and Mtb over the last 70,000 years suggests an 318 

intricate role in protection against mycobacterial infection (46). We provide insights into the molecular 319 

antigenic determinants for GEM-TCR activation and our findings may inform future vaccination strategies 320 

that harness the potential of donor-unrestricted T cells to control the ongoing TB pandemic.  321 

 322 

Materials and Methods 323 

 324 

Immunohistochemistry 325 

Paraffin-embedded Mtb-infected human lung tissue was retrieved from the histology archive at University 326 

Hospital Southampton with approval by the Institutional Review Board (Reference 12/NW/0794 SRB04_14).  327 

Sections (4 µm thick) were dewaxed, rehydrated and endogenous peroxidase blocked. Heat induced-328 

epitope retrieval was performed. Non-specific staining was blocked and primary antibodies applied 329 

overnight at 4°C (anti-CD1b mouse monoclonal SN13; K5 1B8-Abcam 1:50; CD68 mouse monoclonal ED1-330 

LifeSpan Bioseciences, 1:200). Negative control sections were incubated with buffer alone. Secondary goat 331 

anti-mouse antibody for CD1b, CD68 and the negative control was used at 1:800. Sections were developed 332 

with avidin biotin-peroxidase complexes (Elite vectastain ABC kit, Vector laboratories), and 3,3'-333 

diaminobenzidine tetrahydrochloride (DAB) (2-component DAB pack, BioGenex). Slides were 334 

counterstained with Mayer’s haematoxylin, dehydrated, cleared, mounted in pertex and dried, then 335 

imaged on an Olympus BX51, CC12 DotSlide microscope. Slides were digitised using an Olympus VS-110 336 

digital slide scanner running Olympus VS-ASW-L100 acquisition software. The number of immunoreactive 337 

cells within the granulomas were counted and granuloma area was measured using Image J software with 338 

BIOP plugin and results presented as cells mm-2.  339 

 340 

Cloning 341 

CD1b Construct: MoDCs were lyzed with Trizol (Invitrogen) and RNA was precipitated. cDNA was 342 

synthesized using superscript III first strand synthesis with random primers (Invitrogen). For PCR of the 343 

CD1b sequences, the following primers were used: 1. forward primer 5’-344 

GCGCGCTAGCCGCCACCATGCTGCTGCTGCCATTTCAACTGTTAGC-‘3, 2. reverse primer 5’-345 
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GCGCGTCGACTCATGGGATATTCTGATATGACC-‘3. CD1b sequences were subsequently digested and cloned 346 

into the third-generation pELNS lentivector kindly provided by James Riley (University of Pennsylvania).  347 

TCR Constructs: The publically available GEM18-TCRα (TRAV1-2, accession JQ778258.1) and TCRβ (TRBV6-2, 348 

accession JQ778257.1) chain sequences (9)  were synthesized by GeneArt (Thermo Fisher) and sub-cloned 349 

into the pELNS lentivector. The TCRβ-chain (TRBV30, accession JQ778264.1) of GEM1-TCR was synthesized 350 

and cloned into the GEM18-cassette; replacing the GEM18 TRBV6-2 sequence. Site-directed mutagenesis 351 

was subsequently performed on the TCRα-chain to yield a complete GEM1 TCRα sequence (TRAV1-2, 352 

accession JQ778263.1), using the following primers: forward 5’-GCCGTGCGGGTCACCGGCGGCT-3’, reverse 353 

5’-AGCCGCCGGTGACCCGCACGGC-3’. LDN5-TCRα and TCRβ (TRAV17/TRBV4-1) was cloned as previously 354 

described (47). 355 

Generating transgenic cell lines: Lentiviruses encoding CD1b or TCRs were generated in HEK293TN cells 356 

after co-transfection of three accessory plasmids; pCMV-VSV-G (1.5 μg), pRSV.REV (3 ug), and pMDL.pg.RRE 357 

(3 μg) in combination with engineered pELNS lentivector (2.5 μg) (48). Lentiviral particles were harvested, 358 

filtered and used directly for transduction of T2 lymphoblasts, J.RT3.T3-5 and NFAT-GLuc Jurkat T cell lines. 359 

Transduced cells were sorted by flow cytometry on a FACSAria (BD Biosciences). For primary T cell 360 

transduction, lentiviral particles were harvested, concentrated, filtered, and then added to enriched T cells 361 

previously cultured overnight with anti-CD28 and anti-CD3 antibody coated Dynabeads (Thermo Fisher). 362 

Cells were then expanded for two weeks, before staining with anti-TRAV1-2 (clone 3C10) antibody to assess 363 

transduction efficiency on a FACSCalibur (BD Biosciences).  364 

 365 

Mycolic Acid preparation and formulation 366 

MA and their sugar esters were prepared as described previously (32, 49-54). Table S1 provides structural 367 

information. Chemically synthesized MA were dried, then resuspended at 1 mg/ml in 9:1 368 

chloroform/methanol, aliquoted, evaporated and then frozen at -20°C for future use. When required, the 369 

aliquots were resuspended in complete media and sonicated for 30 minutes at 80°C before use.  370 

 371 

DC generation 372 

Blood was obtained from asymptomatic donors with latent tuberculosis diagnosed by positive interferon-373 

gamma release assay (QuantiFERON-TB Gold In-Tube assay; Cellestis/Qiagen). Peripheral blood 374 

mononuclear cells (PBMC) were isolated by density gradient centrifugation using Ficoll-Hypaque (GE 375 

Healthcare). Monocytes were positively selected by anti-CD14 magnetic microbeads (Miltenyi Biotec) and 376 

differentiated into moDCs in complete media (RPMI 1640 supplemented with 1% L-glutamine, 1% 377 
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penicillin/streptomycin and 10% fetal calf serum (FCS) (all Lonza)) and 25 ng/ml GM-CSF and 20 ng/ml IL-4 378 

(Miltenyi Biotec) for 5 days.  CD1b expression was confirmed by flow cytometry. 379 

 380 

T cell assays 381 

Activation of Jurkat T cells: T2 lymphoblasts were pulsed with lipid for 16 h and then cultured with Jurkat T 382 

cell lines in a 1:1 ratio in a 96-well plate. After a further 18 h, Jurkat activation was measured by 383 

determining CD69 (clone FN50) upregulation by flow cytometry. Activation of NFAT-GLuc Jurkat T cells was 384 

measured using the Gaussia luciferase kit (New England Biolabs) as per manufacturer’s instructions. GLuc 385 

assay solution was added to cell culture supernatant in a 96-well plate (Corning) and luminescence was 386 

read (Glo-max Discover, Promega).    387 

Intracellular cytokine staining: Monocyte-depleted T cell fractions were rapidly thawed, and allowed to 388 

recover before addition of autologous moDC pulsed with 5 μg/ml lipid in a ratio of 1:2 in a 96-well plate. 389 

The culture was incubated at 37°C for 6 h in the presence of 2.5 μg/ml anti-CD28, 10 μg/ml brefeldin A and 390 

1x monensin (Biolegend). Cells were then transferred to flow cytometry tubes for intracellular cytokine 391 

staining. Positive controls were incubated with phorbol ester (PMA) and ionomycin at 50 ng/ml and 500 392 

ng/ml respectively.  393 

T cell stimulation: GEM18-TCR transduced T cells were thawed rapidly and recovered in complete media for 394 

4 h. Cells were then washed and added to lipid pulsed T2 lymphoblasts in a ratio of 1:2 for 24 h in a total 395 

volume of 200μl in a 96-well plate. After activation, supernatant was removed for cytokine analysis using 396 

xMAP assays (R & D systems) and cell viability was directly assessed using Cytotox-glo cytotoxicity assay 397 

(Promega) according to manufacturer’s instructions, with luminescence measured by Glo-Max Discover 398 

(Promega) after 15 minutes. Then 30 μg/ml digitonin was added to wells to assess total cell death.  399 

Luminex xMAP assays: Concentrations of cytokine were determined using a Bioplex 200 platform (Bio-Rad) 400 

according to the manufacturer’s protocol. Cytokines analyzed included: IL-2, IL-4, IL-6, IL-8, IL-10, IL-401 

12(p70), IL-17a, TNF-α, IFN-γ and GM-CSF (R & D systems).  402 

Soluble TCR and TCR dextramers: Generation of TCR heterodimers were performed as previously described 403 

(47). Briefly, the extracellular domains of TCRα and TCRβ chains were produced in E.coli Rosetta as 404 

inclusion bodies after cloning into the bacterial expression vector pGMT7. To produce stably refolded 405 

disulphide-linked heterodimers, cysteines were incorporated into the TCRα- and β-chain constant domains, 406 

by replacing Thr48 and Ser57, respectively. The disulphide-linked GEM18-TCR αβ heterodimers were 407 

expressed, refolded, and purified as previously described (47). Refolded and purified TCR was assessed by a 408 

reducing and non-reducing SDS/PAGE gel analysis. Precision Plus Protein Prestained Standard (Bio-Rad) was 409 

used as a reference molecular weight (MW) marker. GEM18-TCR dextramers were produced using modified 410 
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TCRβ chains, containing a C terminus BirA-tag motif, which was specifically biotinylated. Biotinylated TCR 411 

was subsequently purified by size-exclusion chromatography before conjugation to dextran-PE (Immudex) 412 

to generate fluorescently labelled TCR-dextramers 413 

MA treated CD1b beads and dextramers: Soluble biotinylated CD1b monomers (Immudex) were treated 414 

with methoxy MA similar to a previously published method (36). Briefly, MA were solubilised in 100µl 415 

50mM citrate buffer pH 4.5 containing 0.6% CHAPS detergent (Sigma) after sonication in a water bath for 2 416 

hours at 40°C. For beads, solubilised MA were incubated with CD1b coated MACSibeads (Miltenyi) at 37°C 417 

overnight. Beads were washed in PBS containing 2% FCS before staining with GEM18-TCR dextramer. For 418 

CD1b-dextramers, 20µg of CD1b monomer was added directly to the sonicated lipid and incubated 419 

overnight at 37°C. Treated CD1b monomers were subsequently neutralized with 1M Tris buffer pH 8.5 and 420 

incubated with dextran-PE to generate soluble fluorescent CD1b-dextramers.  421 

 422 

Flow Cytometry 423 

The following fluorescent reagents were used: anti-CD69-PE (FN50), anti-CD3-APC (UCHT3), anti-CD3-APC-424 

Cy7 (UCHT3), anti-CD161-APC (HP-3G10), anti-IFN-γ-PeCy7 (BS.4S), anti-IL-2-PE (JES6-5H4), anti-TNF-α-425 

Violet-510 (MP6-XT22), anti-CD1b-APC (SN13; K-5B), and anti-TRAV1-2-PE (3C10) (all Biolegend), GEM18-426 

TCR dextramer-PE and CD1b-MA-dextramer-PE. After addition of staining reagents, cells or beads were 427 

incubated for 45 minutes at 4°C, then washed with PBS containing 2mM EDTA. For ICS, cells were then fixed 428 

and permeabilized for 20 minutes at 4°C in the dark (BD Cytofix/cytoperm kit) before addition of 429 

intracellular fluorochrome-conjugated antibodies. Cells or beads were acquired on a FACSCalibur or 430 

FACSAria (BD Biosciences). Fixable live/dead-Violet 450 (Zombie Violet) (Biolegend) or propidium iodide 431 

(Sigma) were used to exclude dead cells. Data was analyzed using Flowjo software version 9.7.6 (Treestar). 432 

 433 

Molecular Dynamics Simulations 434 

A crystal structure of CD1b in complex with a GMM is available (PDB code: 1UQS)(25), however the low 435 

resolution (3.1 Å) prevented its direct use as a simulation starting structure. A 2.26 Å resolution structure 436 

(PDB code: 1GZQ) containing CD1b in complex with a phosphatidylinositol (55) was therefore used to 437 

provide the initial geometry of the CD1b and ß2-microglobulin chains. Initial ligand structures were 438 

generated with the flexible alignment tool of the MOE software package (56) using the 1UQS GMM ligand 439 

as a template. The GMM α-alkyl chain of 1UQS is shorter (C8) compared to the presently considered MA’s 440 

(C21-C23). This left an ambiguity in the placement of the acyl chain that was resolved by allowing the chain to 441 

exit the pocket through a nearby portal of the C’ channel under the apex of the α2 helix, exposing ~5-7 442 

carbons to solvent. Preliminary simulation work with this system showed this initial binding pose to be 443 
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unstable, the solvent exposed chain rapidly re-entering the binding pocket. An observed stable pose 444 

emerging from the preliminary work was selected as a basis for the simulation results reported here. 445 

Molecular Dynamics simulations were performed using the Amber 14 software package (57) with the 446 

ff99SB forcefield. The protein ligand complex was solvated in a box of 91x84x68 Å using the TIP3P water 447 

model and neutralized through the addition of 7 Na+ ions. Bond lengths were constrained using the SHAKE 448 

algorithm, allowing use of a 2 fs time step. Simulations were conducted at 300 K using a Langevin 449 

thermostat with a collision frequency of 3 ps-1. Where relevant below, pressure was regulated using a 450 

Monte Carlo barostat with volume moves attempted every 100 time steps. All systems were initially 451 

equilibrated with protein and ligand heavy atom restraints to preserve secondary structure elements. All 452 

systems were gradually heated from 100 to 300 K over 0.5 ns. The system volume was then allowed to 453 

equilibrate for 2 ns under NPT dynamics. The system was then cooled over 0.1 ns, and the previous process 454 

repeated with restraints on protein backbone heavy atoms only. Protein backbone restraints were then 455 

removed and the system equilibrated for a further 2 ns at 300 K. 456 

 457 

Statistical analysis 458 

GraphPad prism version 7.00 (GraphPad Software Inc.) was used for statistical analysis, and p values ≤0.05 459 

were considered statistically significant. Mann-Whitney U test or One-Way ANOVA were used as stated in 460 

figure legends. The heat map was generated in R software package.  461 
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 619 

 620 

Figure Legends  621 
 622 
Fig 1 CD1b expression within human TB granulomas. Human lung biopsies from patients with 623 
confirmed TB were stained for (A) the macrophage marker CD68 and (B) CD1b. (C) Negative 624 
control with secondary antibody and ABC detection only. Scale bar (A, B, C) 200µm. Box; magnified 625 
insert. 626 
 627 
 628 
Fig 2 Cross reactivity of GEM18-TCR. (A) Representative flow cytometry plots showing GEM18-TCR 629 
activation through upregulation of CD69 (y-axis) on Jurkat T cells. GEM18-TCR transduced Jurkat T 630 
cells, but not mock transduced Jurkat T cells, upregulate CD69 when cultured with CD1b+ T2 631 
lymphoblasts in the presence of the MA JR1080 (Table S1). Phorbol ester PMA and ionomycin 632 
(PMA/Iono) was used as positive control. (B) Structure of free mycolic acid (MA) JR1080 and its 633 
glycerol monomycolate (Gro-MM) OTA-23, glucose monomycolate (GMM) SMP74, and trehalose 634 
monomycolate (TMM) MH176 studied in (C-E). (C) Activation of GEM1, (D) LDN5, and (E) GEM18 635 
Jurkat T cell lines cultured with CD1b+ T2 lymphoblasts in the presence of MA (JR1080), Gro-MM 636 
(OTA-23), GMM (SMP74), TMM (MH176), or no antigen (No Ag). Data are representative of at 637 
least three independent experiments (C, D, E; mean and s.e.m of duplicate measurements).     638 
 639 
 640 
Fig 3 Meromycolate chain structure determines GEM18-TCR activity. (A) Representative flow 641 
cytometry plots of CD69 expression on GEM18 Jurkat T cell lines cultured with CD1b+ T2 642 
lymphoblasts in the presence of no antigen (No Ag), weakly-stimulatory MA (JRRR121) and 643 
strongly-stimulatory MA (JR1080). (B) Activation of GEM18 Jurkat T cells cultured with CD1b+ T2 644 
lymphoblasts in the presence of various MA at 10 µg/ml that contain different meromycolate 645 
chain structures. (C) Activation of GEM18 Jurkat T cells when cultured with CD1b+ T2 lymphoblasts 646 
in the presence of MAs that represent the cyclopropane stereoisomers of the Mtb α-MA (JR1080). 647 
Stimulations performed in a dose response, with TMM (MH176) as the negative control. (D) 648 
Activation of GEM18 Jurkat T cells cultured with CD1b+ T2 lymphoblasts in the presence of Gro-649 
MM that contain different meromycolate chain structures. Stimulations performed in a dose 650 
response, with TMM (MH176) as the negative control. Structures of lipids are shown next to the 651 
graphs. All graphs are representative of at least three independent experiments performed in 652 
duplicate; mycolate concentrations were; 0.1 µg/ml (clear), 1 μg/ml (light grey), 10 μg/ml (dark 653 
grey), 20 µg/ml (black), (B, C, D; mean and s.e.m of duplicate measurements). 654 
 655 
 656 
Fig 4 Mycolic acid meromycolate variants induce diverse functional responses. (A) Ex vivo T cells 657 
from human TB patients were stimulated with autologous monocyte derived DC (moDC) in the 658 
presence of one strongly-stimulatory MA (JR1080) and GMM (SMP74) or the weakly-stimulatory 659 
MAs (JRRR121, MMS130). Intracellular IL-2, IFN-γ and TNF-α were measured by flow cytometry. 660 
Cells were pre-gated on CD3+, CD161-, live lymphocytes. Cytokine positive cells are plotted relative 661 
to negative control. (B) Cell viability of GEM18 transduced ex vivo T cells cultured with CD1b+ T2 662 
lymphoblasts in the presence of indicated MA. Targeted cell killing was assessed using Cytotox-Glo 663 
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assay. (C) Absolute values of IFN-γ cytokine secretion from GEM18 transduced ex vivo T cells 664 
cultured with CD1b+ T2 lymphoblasts in the presence of indicated MA. Cytokine secretion was 665 
measured by luminex array. (D) Heat map summarizing luminex array data showing relative 666 
concentrations of cytokines in response to lipid antigen. Values were normalized to the mean 667 
cytokine concentrations measured in supernatants following stimulation with weakly-stimulatory 668 
MAs. Red indicates high concentrations, blue low concentrations. Data representative of three 669 
independent experiments performed in triplicate. * p <0.05 ***p<0.001, ****p<0.0001 (A; Mann-670 
Whitney U test, B, C; One-Way ANOVA). (B, C; mean and s.d of duplicate measurements).   671 
 672 
 673 
Fig 5 Differential binding of GEM18-TCR to soluble CD1b monomers treated with MAs. (A) 674 
SDS/PAGE analysis of recombinant GEM18-TCR under reducing (R) and non-reducing (NR) 675 
conditions. The predicted molecular weights of the TCRα and TCRβ monomeric proteins and for 676 
TCRαβ heterodimeric proteins are indicated. (B) GEM18-TCR dextramer binding to MACSibeads 677 
conjugated to CD1b treated with the methoxy MAs JRRR121, JRRR124, and HA56. Untreated CD1b 678 
MACSibeads were used as control. (C) Specific staining of Jurkat T cells expressing GEM18-TCR 679 
with CD1b dextramers treated with weakly-stimulatory (JRRR124) and strongly-stimulatory (HA56) 680 
methoxy MAs. HA56 loaded CD1b dextramer binding of Jurkats expressing CD1d (iNKT) and CD1c 681 
(NM4) restricted TCRs are shown as background controls.  682 
 683 
 684 
 685 
Fig 6 Meromycolate chain immobilization affects ligand head group dynamics. (A) Root mean 686 
square deviation (RMSD) value for mycolic acid head group movement relative to head group of 687 
GMM in previously determined CD1b-GMM complex (1UQS). Higher RMSD values indicate 688 
conformations less similar to that observed in 1UQS, whilst a greater spread of values indicates 689 
increased mobility of ligand head group. Vertical bars mark mean values for histograms of the 690 
corresponding colour. Highly-stimulatory antigens have a lower mean RMSD, while the less 691 
stimulatory antigens have a higher mean RMSD. (B, C) Geometric functional group positions are 692 
indicated by centroids (coloured balls). Data was generated from 200ns molecular dynamic 693 
simulations. (B) Representative weakly-stimulatory ligands (JRRR121 and JR1046) and (C) strongly-694 
stimulatory ligands (JR1080 and MH157). Position of proximal (blue) and distal (red) functional 695 
groups are shown. 696 
 697 
 698 
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