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(en = 1,2-diaminoethane): a neutral bimetallic zwiterionic polyborate system containing 

the ‘isolated’ dodecaborate(6-) anion. 
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Abstract: The title compound, [(H3NCH2CH2NH2)Zn{3O,O′,O′′-B12O18(OH)6-

1O′′′}Zn(en)(NH2CH2CH2NH3)]
.8H2O (en = 1,2-diaminoethane) (1), was prepared as a 

crystalline solid in moderate yield from the reaction of B(OH)3 with [Zn(en)3][OH]2 in aqueous 

solution (15:1) ratio.  The structure contains a neutral bimetallic complex  comprised of a 

unusual dodecaborate(6-) anion ligating two [H3NCH2CH2NH2Zn(en)n]
3+ centres in a 

monodentate (n =1) or tridentate (n = 0) manner. 

 



 

 

 

1. Introduction 

 Oxidoborates (or more correctly hydroxyoxidoborates) are anionic boron species with 

boron atoms linked solely to oxygen atoms and such compounds are commonly referred to a 

‘borates’ [1].  Polyborate anions can be readily categorized as ‘isolated’ or ‘insular’, containing 

discrete anionic moieties,  or ‘condensed’ with more condensed 2D or 3D polymeric chains, 

sheets or networks [2-4]. These anions contain numerous fused B-O rings and cages with the 

‘boroxole’{B3O3} ring system a very common structural motif.  Salts containing polyborate 

anions have attracted recent attention due to their applications as bulk chemicals and possible 

applications as luminescent, second harmonic generation, ferroelectric, flame retardant and 

non-linear optical materials [5-16].   

  Polyborates are readily synthesized by solvothermic methods or the addition of B(OH)3 

to a basic aqueous solution containing templating cations: polyborate salts containing isolated 

anions are generally obtained from aqueous solution, whereas solvothermal methods often give 

the more condensed species [17].  Polyborates crystallize from aqueous solution as cation 

templated self-assembled solids [18] since in basic aqueous solution B(OH)3 exists as a 

dynamic combinatorial library (DCL) [19,20] of numerous polyborate anions [21-25]. 

Polyborate salts containing the pentaborate(1-) anion, [B5O6(OH)4]
-,  are very common and 

this is because these salts have a strong 3-dimensional H-bonded anionic lattice and this lattice 

is sufficiently flexible to accommodate many medium sized non-metal unicharged cations 

[26,27]. 



 We are interested in the synthesis of structurally novel polyborate anions and have 

adopted a strategy of templating such anions by the use of non-innocent (sterically demanding 

or multi H-bond donating) and/or more highly charged transition-metal cations. We have 

recently reported the synthesis of salts containing isolated polyborate anions partnered with 

inert cobalt(3+) complexes and have described the synthesis and structures of two previously 

unobserved isolated polyborate anions: heptaborate(3-) and octaborate(2-) [28,29]. We have 

also prepared a series of salts and neutral complexes containing more labile copper(2+) centres 

where pentaborate(1-) or hexaborate(2-) ions are found coordinated to the metal centre [30].  

We now report an unusual neutral zwitterionic bizinc complex, 

[(H3NCH2CH2NH2)Zn{3O,O′,O′′-B12O18(OH)6-
1O′′′}Zn(en)(NH2CH2CH2NH3)]

.8H2O (en 

= 1,2-diaminoethane) (1), derived from a self-assembly in methanolic aqueous solution of  

B(OH)3 and components of the labile complex salt,  [Zn(en)3](OH)2. 

 

2. Results and Discussion 

 2.1 Synthesis and characterization. The title compound, 

[(H3NCH2CH2NH2)Zn{3O,O′,O′′-B12O18(OH)6-
1O′′′}Zn(en)(NH2CH2CH2NH3)].8H2O (1), 

was prepared in moderate yield (40 %) as a colourless crystalline material by a self-assembly 

process involving a prolonged (30 day) recrystallization period of an aqueous methanolic 

reaction mixture originally containing B(OH)3 and [Zn(en)3](OH)2 (Equation 1).  The  

[Zn(en)3](OH)2 was obtained from [Zn(en)3]Cl2 by use of an ion exchange resin.  

 

 

 



(Equation 1) 

 

 

 Compound 1 was characterized primarily by single-crystal XRD study (see below) and 

its structure is fully consistent with other characterization data that we were able to obtain. 

Compound 1 is  formulated as a neutral molecule although it is zwitterionic with several atoms 

possessing formal charges and it contains some interesting features (see below). The bulk 

sample gave satisfactory elemental analysis and its powder XRD pattern was consistent with 

that derived from the single-crystal XRD analysis, confirming homogeneity. Compound 1 is 

diamagnetic with a molar magnetic susceptibility of -414.2×10-6 cm3 mol-1 and its IR spectrum 

shows several strong absorptions in the B-O stretching region which are further assigned as 

follows: 1355 cm-1 (asymmetric Btrig-O stretch), 1163 cm-1 and 1041 cm-1   (asymmetric Btet-O 

stretch), 951 cm-1 and 900 cm-1 (symmetric Btrig-O stretch), and 856 cm-1 (symmetric Btet-O) 

[31]. Compound 1 is decomposed by dissolution in aqueous solution with (1H and 13C) NMR 

consistent with the ethylenediamine species  and 11B NMR showing a single peak (+16.1 ppm) 

indicative of one signal arising from rapid B(OH)3/OH- exchange equilibria [21-25].  

 

2.2 Solid-state structure. Crystallographic data for compound 1 are given in Table 1, and the 

structure of 1, together with associated atomic numbering scheme is given in Figure 1. Its 

structure is best represented as comprised of a [B12O18(OH)6]
6- ligand coordinated to, and 

bridging two zinc(II) centres.   

 Compound 1 contains a dodecaborate(6-) anion.  This anion was first reported in 1990 

in Ag6[B12O18(OH)6]
.3H2O [32] and was described as an ‘insular’ polyborate anion.  The anion 



is comprised of 6 boroxole rings linked together in such a way as to produce a larger central 

12-membererd {B6O6} ring (Figure 2), with each boron atom within this ring being 4-

coordinate and carrying a formal negative charge. These six 4-coordinate boron centres (B1-

B6) have B-O bond lengths ranging from 1.435(5)-1.499(6) Å and the O-B-O angles ranging 

from 106.3(3)-112.6(3)o. The other 6 boron centres in the anion, B7-B12, are 3-coordinate and 

have significantly shorter B-O bonds {1.349(6)-1.389(6) Å} and larger O-B-O angles which 

range from 116.1(4)-123.9(4)o.  These distances and angles are very similar to distances and 

angles observed in the previously reported Ag6[B12O18(OH)6]
.3H2O [32] and in acyclic 

polyboroxole ‘chain’ species, [B5O6(OH)4]
- [33-38], [B7O9(OH)5]

2- [39-43], [B9O12(OH)6]
3- 

[44-46], and related boroxole systems [47-49] containing both 3- and 4-coordinate boron 

centres bound to oxygen. The dodecaborate(6-) in 1 is closely related to deprotonated structures 

Na8[B12O20(OH)4] [50] and Zn6[B12O24] [51] and is an alternative (but not isomeric) to the 

hydrated dodecaborate found in K4[B12O16(OH)8] [52] which has four 4-coordinate boron 

atoms and carries a charge of 4-.  

 The dodecaborate(6-) anion in 1 utilizes its ‘inner’ ring oxygen atoms to coordinate to 

the Zn(II) centres and due to their stereochemistry the dodecaborate(6-) anion is ideally set up 

to bridge metal centres. The dodecaborate(6-) anion has been previously observed coordinated 

tridentate to metal centres in the following compounds: Na2Cs4Ba2[B12O18(OH)6](OH)4 [53], 

K7[(BO3)Mn{B12O18(OH)6}].H2O [54], and  K7[(BO3)Zn{B12O18(OH)6}].H2O [55] with the 

latter also containing a zinc(II) ion. The coordination modes of the dodecaborate(6-) ligand  

towards the Zn centres are separated out in Figure 3. Both Zn  atoms in 1 are 4-coordinate and 

Zn1 is coordinated by the dodecaborate(6-) ligand in a tridentate fashion through oxygen 

donors O1, O3 and O5 with bond lengths to Zn1 of 1.971(3), 1.976(3) and 1.937(3) Å, 

respectively. The Zn2 atom is coordinated by the dodecaborate(6-) anion in a mondentate 

manner solely through O2 with as Zn2-O2 distance of 1.931(3) Å.  The coordination number 



of four is completed on Zn2 by a bidentate en (ethylenediamine) ligand and a monodentate 

[enH]+ group, whist Zn1 just has one additional monodentate [enH]+ group.   The Zn-N 

distances range from 2.018(5) - 2.043(4) Å, whilst borate O-Zn atom distances (listed above) 

are significantly shorter and range from 1.937(3)-1.976(3) Å, and are comparable to those 

observed elsewhere related zinc-borate species [56-63] which typically range from 1.919(2)  to 

2.0099(14) Å. The Zn-N distances are comparable to those observed in related zinc borate 

complexes with organoamino ligands [56-63] and ethylenediamine complexes such as 

[Zn(en)3]Cl2
.2H2O [64]. 

 The hydroxyl hydrogen atoms of the [B12O18(OH)6]
6- anion, the amino hydrogen atoms 

of the en ligands and protonated en ligands, and the waters of crystallization form multiple 

intramolecular H-bond donor interactions which are presumably responsible for the remarkable 

self-assembly of 1 from its component parts. In particular, all 6 hydroxyl groups in the 

polyborate anion of 1 are involved in energetically favourable R2
2(8) interactions (Etter 

nomenclature [65]) with 6 neighbouring molecules of 1, as shown in Figure 4.  Details of these 

H-bond interactions can be found in the caption to Figure 4.  In addition, the protonated ends 

of the mondentate H2NCH2CH2NH3 ligands further H-bond to two more molecules of 1 

forming a supramolecular chain (Figure 5) giving an overall ‘coordination number’ of  8 for 

each molecule of 1. The amino hydrogens of the en ligand on Zn2 are involved in an 

intramolecular H-bond (Figure 5) and H-bond donation to water molecules, and the waters of 

crystallization H-bond to each other and dodecaborate anions to further glue the structure 

together. 

 

 

 



3. Conclusion 

The zwitterionic bimetallic complex, [(H3NCH2CH2NH2)Zn{3O,O′,O′′-B12O18(OH)6-

1O′′′}Zn(en)(NH2CH2CH2NH3)]
.8H2O has been synthesised in moderate yield from a self-

assembly [18] process involving the basic labile zinc(II) complex salt [Zn(en)3](OH)2 and a 

DCL of polyborate anions [19-25] derived from B(OH)3.  The structure as determined by a 

single-crystal XRD study reveals that all six borate hydroxyl groups are involved in 

intermolecular H-bond donor interactions in pairwise R2
2(8) rings.  Intramolecular and 

intermolecular H-bonds emanating from the amino hydrogen atoms of the ethylenediamine 

ligands further template the formation of the self-assembled structure. 

 

 

4. Experimental 

4.1 General. NMR spectra were obtained on a Bruker Avance-400 spectrometer in D2O 

Solution at 128, 400 or 101 MHz for 11B , 1H, and 13C  respectively, and referenced to either 

BF3.OEt2 (
11B) or TMS (1H and 13C).  FTIR spectra were obtained as KBr pellets on a Perkin 

Elmer 100FTIR spectrometer.  Powder X-ray diffraction was carried out on a Phillips X’Pert 

2040/60 XRD diffractometer with spectra obtained using the Phillips X’Pert Data Collector 

software. Single-crystal X-ray diffraction was performed at the EPSRC National 

Crystallographic Service at the University of Southampton. Magnetic susceptibility 

measurements were performed on a Johnson-Matthey magnetic susceptibility balance. CHN 

analyses were obtained from OEA Laboratories (Callingham, Cornwall). 

 4.2 Preparation of [Zn(en)3]Cl2∙2H2O. Tris(ethylenediamine)zinc(II) chloride dihydrate was 

prepared as described in the literature [64]. A slight excess of the ethylenediamine (en) (2.10 



g, 70%, 24.45 mmol) was added to an aqueous solution of zinc(II) chloride (3.0 g, 22.0 

mmol) in distilled water (10 mL). The solution was concentrated by gentle evaporation on a 

warm water bath before being cooled in an ice bath to yield colourless crystals of 

tris(ethylenediamine)zinc(II) chloride dihydrate (5.4 g, 70%). M.p. = 185-187 °C. χm = -

211.5×10-6 cm3 mol-1. 1H/ppm: 2.7 (m, 12H, CH2 of en), 4.8 (s, 16 H, NH2, H2O). 

13C{1H}/ppm: 39.1. IR (KBr/cm-1): 3383(s), 3261(s), 3154(s), 2949(s), 2933(s), 2885(s), 

1651(m), 1587(s), 1458(s), 1331(s), 1275(s), 1147(m), 1023(s), 998(s), 976(m), 645(s), 

511(s). [Lit. 3385, 3275, 3150, 2940, 2882, 1653, 1595, 1460, 1335, 1272, 1144, 1022, 996, 

977, 644, 515] [66]. 

4.3 Preparation of [Zn2(en)(enH)2{B12O18(OH)6}]∙8H2O (1). A solution of 

tris(ethylenediamine)zinc(II) chloride dihydrate (1.0 g, 2.8 mmol) in water (10 mL) was added 

to an aqueous suspension solution of excess activated Dowex 550A (50 g) monosphere anion 

exchange resin in water (40 mL). The resulting mixture was stirred at room temperature for 24 

hours. The Dowex 550A resin was separated by filtration with a Buchner funnel and washed 

four times with a distilled water (4 × 5 mL). The solution of [Zn(en)3](OH)2 was reduced to a 

volume of 15 mL using a rotary evaporator. Methanol (15 mL) was added to the concentrated 

solution, followed by boric acid (2.6 g, 42 mmol). The reaction mixture was gently warmed for 

3 hours. The solution volume was reduced to 5 mL using a rotary evaporator. The concentrated 

solution was left for 30 days in NMR tubes for crystallization to yield colourless crystals of 

[Zn2(en)(enH)2{B12O18(OH)6}]∙8H2O (0.55 g, 40%). M.p. = > 300 °C. χm = -414.2×10-6 cm3 

mol-1. C6H48B12N6O32Zn2. Anal. Calc.: C = 7.4%, H = 5.0%, N = 8.6%. Found: C = 6.9%, H = 

4.7%, N = 8.3%. 1H/ppm: 2.75 (m, 12H, CH2 of en), 4.8 (s, 34 H, NH2, H2O, OH). 

13C{1H}/ppm: 39.4. 11B/ppm: 16.1. IR (KBr/cm-1): 3433(s), 3373(s), 3268(s), 2986(m), 

1637(w), 1550(w), 1355(s), 1163(sh), 1041(s), 951(m), 900(s), 856(m), 758(w), 692(w), 



646(w), 616(w), 519(w). p-XRD d-spacing/Å (% rel. int.): 9.40 (68), 8.05 (39), 7.59 (100), 

6.78 (75), 4.21 (22), 3.82 (22), 3.14 (28), 2.91 (45). 

4.4 X-ray crystallography. Crystallographic data for compound 1 is given in Table 1. A suitable 

crystal (0.10×0.09×0.04) mm3 was selected and mounted on a MITIGEN holder in oil on a 

Rigaku FRE+ equipped with HF Varimax confocal mirrors and an AFC12 goniometer and HG 

Saturn 724+ detector diffractometer. The crystal was kept at T = 100(2) K during data 

collection. The data collection was carried out using CrystalClear [67] and cell determination 

and data reduction was carried out using CrysAlisPro [68]. Using Olex2 [69], the structure was 

solved and Superflip [70] structure solution program, using the Charge Flipping solution 

method. The model was refined with version 2014/7 of ShelXL [71] using Least Squares 

minimisation. 
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Table 1. Crystallographic data for compound 1.  

Formula  C6H48B12N6O32Zn2  

Dcalc./ g cm-3  1.870  

/mm-1  1.505  

Formula Weight  976.96  

Colour  colourless  

Shape  block  

Size/mm3  0.100×0.090×0.040  

T/K  100(2)  

Crystal System  monoclinic  

Flack Parameter  -0.006(7)  

Hooft Parameter  -0.019(7)  

Space Group  Cc  

a/Å  17.2990(5)  

b/Å  12.5264(3)  

c/Å  16.6091(4)  

/°  90  

/°  105.358(3)  

/°  90  

V/Å3  3470.58(16)  

Z  4  

Z'  1  

Wavelength/Å  0.71073  

Radiation type  MoK  

min/°  2.436  

max/°  27.484  

Measured Refl.  21551  

Independent Refl.  7310  

Reflections Used  7109  

Rint  0.0253  

Parameters  536  

Restraints  3  

Largest Peak  1.054  

Deepest Hole  -0.455  

GooF  1.048  

wR2 (all data)  0.0865  

wR2  0.0856  

R1 (all data)  0.0334  

R1  0.0322  
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Figure 1.  Diagram showing atomic numbering scheme for [(H3NCH2CH2NH2)Zn{3O,O′,O′′-

B12O18(OH)6-1O′′′}Zn(en)(NH2CH2CH2NH3)] (1). 

  



 

      

Figure 2. The dodecaborate(6-) ligand as found in 1.  The central {B6O6} ring as shown on the left is 

non-planar with oxygen atoms (red) alternating ‘up’ and ‘down’ as shown in the side-on view (right).  

Boron atoms are pale pink. 

  



 

    

Figure 3.  Diagrams showing the two coordination modes of the dodecaborate(6-) ligand. The 4-

coordinate Zn1 atom has a tridentate dodecaborate(6-) ligand and a monodentate protonated en ligand 

(left). The 4-coordinate Zn2 atom a monodentate dodecaborate(6-) ligand, a bidentate en ligand, and a 

monodentate protonated en ligand coordinated to it.  

 

 

 

 

 

 

  



 

 

 

Figure 4. The [B12O18(OH)6]6- anion in 1 forms 6 H-bond donor interactions with six neighbouring 

dodecaborate(6-) units. The interactions involve 8-membered rings R2
2(8) with D…A oxygen atom 

distances as follows: O19H19…O14*, 2.779(4) Å; O20H20…O16*, 2.634(4) Å; O21H21…O17*, 

2.701(4) Å; O22H22…O8*, 2.899(5) Å; O23H23…O10*, 2.695(4) Å; O24H24…O11*, 2.680(4) Å, 

where * indicates an acceptor oxygen atom of a neighbouring unit. H2O molecules omitted for clarity. 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 5.  Intermolecular H-bond interactions involving the amino hydrogen atoms link the 

dodecaborates(6-) anions into an extended chain. The D…A oxygen atom distances as follows: 

N2H2C…O7*, 2.914(5) Å; N2H2C…O18*, 3.068(5) Å;  N11H11B…O13*, 3.053(5) Å; 

N12H12A…O4*, 2.903(5) Å, where * indicates an acceptor oxygen atom of a neighbouring unit. The 

intramolecular H-bond interaction is also shown: N21H21B…O4, 2.871(5) Å. H2O molecules omitted 

for clarity. 

 

 

 

 

 


