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ABSTRACT 

Hand loss can now be reversed through surgical transplantation years or 
decades after amputation. Remarkably, these patients come to use their new 
hand to skilfully grasp and manipulate objects. The brain mechanisms that 
make this possible are unknown. Here we test the hypothesis that the anterior 
intraparietal cortex (aIPC) – a multimodal region implicated in hand 
preshaping and error correction during grasping – plays a key role in this 
compensatory grasp control. Motion capture and fMRI are used to 
characterize hand kinematics and brain responses during visually guided 
grasping with a transplanted hand at 26 and 41 months post-transplant in 
patient DR, a former hand amputee of 13 years. Compared with matched 
controls, DR shows increasingly normal grasp kinematics paralleled by 
increasingly robust grasp-selective fMRI responses within the very same brain 
areas that show grasp-selectivity in controls, including the aIPC, premotor and 
cerebellar cortices. Paradoxically, over this same time DR exhibits significant 
limitations in basic sensory and motor functions, and persistent amputation-
related functional reorganization of primary motor cortex. Movements of the 
non-transplanted hand positively activate the ipsilateral primary motor hand 
area – a functional marker of persistent interhemispheric amputation-related 
reorganization. Our data demonstrate for the first time that even after more 
than a decade of living as an amputee the normative functional brain 
organization governing the control of grasping can be restored. We propose 
that the aIPC and interconnected premotor and cerebellar cortices enable 
grasp normalization by compensating for the functional impact of 
reorganizational changes in primary sensorimotor cortex and targeting errors 
in regenerating peripheral nerves. 
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INTRODUCTION 

Upper extremity amputation causes major disability and adversely impacts 

body image (Gaine et al., 1997), and the rates of rejection for prosthetic 

devices are high (Biddiss et al., 2007). Allogeneic hand transplantation offers 

an alternative intervention, and the number of individuals having undergone 

this procedure now exceeds 75 (Shores et al., 2015). Despite persistent and 

significant limitations in basic sensory and motor functions (Breidenbach et 

al., 2008; Landin et al., 2012), kinematic measures of reach-to-grasp reveal 

remarkably proficient use of the grafted hand to grasp and manipulate objects 

(Huchon et al., 2016). The brain mechanisms that enable this recovered 

functional use of the hand are unknown, and are the focus of this study. 

Both animal model and human data converge on the fact that injuries to the 

peripheral nerves, including upper extremity amputation, lead to “massive” 

changes in the functional organization of the undamaged motor and sensory 

cortices (Pons et al., 1991; Ramachandran et al., 1992). As a result of 

decreased afferent/efferent activity, there is an expansion of adjacent maps 

into the cortical territory formerly devoted to the affected body part (Merzenich 

et al., 1984; Garraghty and Kaas, 1991). For hand amputees, such plasticity 

has been demonstrated in representations of the laterally neighboring face 

(Elbert et al., 1994; Yang et al., 1994; Flor et al., 1995; Karl et al., 2001), 

medially adjacent residual limb (Cohen et al., 1991a; Lotze et al., 2001), and 

even interhemispherically, as seen for movements of the intact hand (Hamzei 
et al., 2001; Bogdanov et al., 2012).  

The functional significance of these changes is controversial, and a topic of 

ongoing interest (Flor et al., 1995; Frey et al., 2008; Flor et al., 2013; Makin et 

al., 2013; Frey, 2014; Philip and Frey, 2014; Makin et al., 2015). It has, 

however, been suggested that persistent reorganization in primary 

sensorimotor cortex may contribute to poor functional outcomes in human 

adults following surgical repairs of peripheral nerves in the hand or forearm 

(Almquist and Eeg-Olofsson, 1970; Wall et al., 1986; Lundborg and Rosen, 

2007).  



4 
 

 

Functional MRI (fMRI) responses during passive sensory stimulation 

(Neugroschl et al., 2005; Frey et al., 2008; Hernandez-Castillo et al., 2016) or 

simple volitional movements (Giraux et al., 2001; Lanzetta et al., 2004; 

Brenneis et al., 2005) of a transplanted hand consistently reveal sustained 

amputation-related reorganizational changes in primary sensory (S1) and 

motor (M1) cortices even long after the procedure. These changes, coupled 

with reinnervation errors in regenerating peripheral nerves, are thought to limit 
recovery of basic sensory and motor functions (Frey, 2014).  

It is well understood that reach-to-grasp movements involve a network of 

cortical and subcortical structures within the distributed sensorimotor system. 

Grasping requires configuring the hand according to target object properties 

(Jeannerod et al., 1995; Castiello, 2005; Grafton, 2010), and even in healthy 

individuals this necessitates rapid detection and compensation for errors that 

arise from many sources (Tunik et al., 2005; Rice et al., 2006). An abundance 

of evidence implicates the aIPC as essential for this adaptive, multimodal 

control of the hand during visually guided grasp (Binkofski et al., 1998; 

Culham et al., 2003; Frey et al., 2005). Patients with damage to the aIPC 

show impaired anticipatory preshaping of the hand during grasping (Binkofski 

et al., 1998), and perturbing the functions of the aIPC with transcranial 

magnetic stimulation (TMS) impairs preshaping in healthy controls (Rice et al., 
2006; Davare et al., 2007).  

On the basis of this evidence, we hypothesize that the aIPC enables 

successful grasping with a transplanted hand by compensating for errors that 

arise from limited recovery of basic sensory and motor abilities. Specifically, 

improvements in hand preshaping during visually guided grasping are 

predicted to parallel increasingly normative grasp-selective responses in the 

aIPC, despite persistent basic sensory and motor deficits and S1/M1 

reorganizational changes. Functional MRI and high-resolution kinematic 

recordings are used to evaluate these predictions in DR, a right-hand 

dominant male who suffered traumatic amputation of his left hand in 1998 

(age 23) and underwent hand transplantation 13 years later (age 36). Both 
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fMRI and behavioral grasping data are collected at 26 (Test 1) and 41 (Test 2) 

months post-transplant. Functional mapping of primary sensorimotor cortex is 

completed at 44 months post-transplant. Data are compared with those of 
healthy controls matched for age, gender and hand dominance. 

MATERIALS AND METHODS 

Hand transplant recipient  
DR suffered traumatic transpalmar amputation of his left, non-dominant hand, 

and a crush injury to his right hand, in 1998 (age 23). He underwent 

simultaneous surgical amputation of the residual left hand and wrist and left-

hand transplantation at the level of the distal forearm 13 years later (age 36). 

Rejection is controlled with daily oral Prograf and Rapamune. DR has no 

history of prosthesis use.  

Healthy controls  

All controls were male and right-handed, as determined by the Edinburgh 

handedness questionnaire (Oldfield, 1971), with no prior history of 

neurological disease. A group of 24 control participants (mean age = 43 yrs., 

range = 26 - 64 yrs.) took part in the fMRI grasp study. From this group, 17 

participants completed the fMRI sensorimotor mapping study (mean age = 45 

yrs., range = 27 - 64 yrs.). A separate group of six control subjects (mean age 

= 33 yrs., range = 27 - 45 yrs.) completed the reach-to-grasp experiment 
performed outside of the MRI scanner.  

All participants provided informed consent in accordance with the University of 

Missouri IRB and Department of Defense Human Research Protection Office, 

and received financial compensation for their efforts.   

Behavioral grasping task   
Participants sat at a table and performed a reach-to-grasp task. Kinematics 

were recorded at 100 Hz using an Optotrak Certus (Northern Digital; Toronto, 

CA) system. Infrared emitters (IRED) were affixed to four locations: (1) the tip 

of the participant’s thumb, (2) the tip of their index finger (3) the middle 
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phalange of the index finger, and (4) the metacarpophalangeal joint of the 
index finger. An IRED comprised two adjacent emitters (1-3mm separation). 

On each trial, participants were asked to reach-to-grasp an object and 

place it in a bowl. The objects were small (1cm3), medium (2cm3), and large 

(4cm3) wooden cubes. Objects were positioned on a flat tray, at a distance 

that allowed a comfortable reach at less than full arm extension. Between 

trials, participants kept their hands on a rest key, with their thumbs and index 

fingers lightly pinched together. The distance between the rest key and the 

target object, and between the object and the bowl was 20cm. During the 

inter-trial interval, vision was blocked using Plato visual occlusion spectacles 

(Translucent Technologies; Toronto, Canada) as the experimenter prepared 

the next object for the upcoming trial. At the start of each trial, the spectacles 

cleared allowing the participant to see the object and initiate their reach-to-

grasp response. After picking up the object, participants placed the object in a 

bowl located in front of the body midline, at the same distance as the tray. The 
spectacles remained clear until participants returned to the start position. 

The experiment comprised 96 trials, divided into four blocks of 24 trials 

each. Each block involved the use of one hand and included 8 repetitions of 

each of the three object sizes. The same hand was always used for two 

consecutive blocks. The full experiment included performing movements with 

both the left and right hands and with and without full vision of the hand. 

These conditions were run in separate blocks. Only data from the left hand full 

vision condition is presented here (24 trials), for purposes of comparison with 

the fMRI task. Object size was counterbalanced within each block. Hand and 
visual condition were counterbalanced across participants.  

Kinematic Data Analysis 
The position of the IREDs was exported to text files using NDI First Principles 

Motion Capture Software (Northern Digital Inc., Ontario, Canada). The signals 

were then processed with a customized Matlab program (Mathworks, version 

R2015b, Massachussets, USA). The data were prepared in three steps: first, 

marker coordinates were low-pass filtered at 5 Hz with a bidirectional 4th-
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order Butterworth filter. Second, trials that had blocked markers during the 

movement were excluded from the analyses (12.5 % of the trials, 24/192). 

Next, the mean distances between the two adjacent markers were computed. 

The time profile of both the grip aperture and the hand transport velocity were 

then estimated, and time-normalized. The grip aperture was computed as the 

Euclidean distance between the x, y, and z, coordinates of the index finger 
and thumb markers. 

The resultant velocity of hand transport was obtained after differentiation of 

the x, y, z coordinates of the metacarpophalangeal joint of the index finger. 

Movement offset was determined semi-automatically as the time when the 

velocity profile fell and remained below 5% of its peak for 50ms. This criterion 

was chosen to isolate the reach-to-grasp phase – the remaining parts of trials 

were not analyzed. Movement time (MT) was calculated as the time between 

movement onset (at the button release) and offset. The following kinematic 

variables were defined: peak grip aperture (pGA); time to peak grip aperture 

(ttpGA); peak transport velocity (pV); time to peak transport velocity (ttpV). 

The temporal variables are reported in percentage of the movement time. For 

the control group, descriptive statistics were reported (including means, 
standard deviations, and 95% confidence intervals). 

fMRI grasping task  

Participants manually interacted with a plastic cube (2cm3) presented using 

the apparatus shown in Figure 1. The platform was specifically adjusted for 

each individual so that the cube could be reached with minimal movement of 

the arm, and the workspace could be viewed through mirrors. The problems 

associated with movements of the head were thoroughly explained, and 

participants were told that their hand actions should not involve movements of 

the upper arm or shoulder, and that their head should be kept still at all times. 

Padding was used to elevate the arms, and an adjustable strap was fastened 

across the upper arms and chest to further minimize potential shoulder 
movements (not shown in Fig 1A).  



8 
 

 

Fig 1. Methods. (A) Setup showing the apparatus used to present the target object. 
(B) Experimental conditions involved Grasp or Touch actions. (C) Timing of events 
within and between trials, and the shape and timing of the predictor function used in 
the general linear model. 

In the start position, participants rested the hand they were instructed to 

use for grasping (the left hand) in a relaxed posture (visible in the top left 

photographs, Fig 1A). The distance from the resting hand position to the 

target cube was ~11cm, on-center. Their other hand was positioned along 

their side and remained still. Participants were instructed to close their eyes 

during rest periods, and to listen for auditory cues: “grasp” or “touch”. When 

they heard “grasp”, they opened their eyes, transported the left hand to the 

target and gripped the cube along its y-dimension, using a lateral pinch with 
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their thumb and fingers in opposition. They then returned to the rest position, 

closed their eyes and awaited the start of the next trial. They were instructed 

to move slowly and smoothly, and to lightly grip the cube.  Similarly, when 

they heard “touch”, they opened their eyes and touched the cube near its 

center using the proximal interphalangeal joints of the hand, and then 

returned to the start position. An MR-compatible camera system (MRC 

Systems GmbH) was used to record participants’ hand actions; videos were 
evaluated offline for errors.  

Grasp and touch conditions were defined as 6s periods, beginning with 

(500ms duration) auditory cues, followed by 21s rest periods to allow for the 

blood oxygen-level dependent (BOLD) signal to return to baseline levels. 

Each run began with 12s of rest, comprised 16 trials (8 per condition), and 

lasted 7min and 33s. Participants performed five runs. A custom Matlab 

(R2011b) script was used to create 6 distinct run orders whereby trial history 

(N-1) was balanced for condition within runs. Run orders were randomized for 

presentation across individuals (although N = 6 controls received orders 1-5, 
in that sequence).  

Absent or incorrect responses were excluded from analyses (i.e., assigned 

a predictor of no interest in the GLM). Due to technical problems, 5% 

(95/1920 trials) of video data from controls were unavailable. Specifically, in 

four subjects one complete run was unavailable, while in four other subjects, 
2, 2, 8, and 9 trials of video data were not collected. 

Video data confirm that DR performed the task correctly in 77/80 trials 

during Test 1. He did not respond during two trials of one run, and responded 

incorrectly (performing a Touch instead of a Grasp response) during one trial 

of a separate run. During Test 2, DR correctly responded in 70/80 trials; he 

reported falling asleep during part of two runs and hence did not respond for 

9/32 of these trials. He also responded incorrectly (performing a Grasp 
instead of a Touch response) during one trial in a separate run.  
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Control participants performed correctly in 1801/1825 trials (mean = 1 +/- 

1.9). Errors included no responses (mean = 0.13 +/- 0.49), prolonged holding 

of object after grasping (mean = 0.13 +/- 0.49), multiple grasps during the 

same trial (mean = 0.08 +/- 0.28), and incorrect responses (mean = 0.67 +/- 
1.7) (total errors = 3, 3, 2, and 16, respectively).  

fMRI sensorimotor mapping task 
Participants were positioned supine in the scanner and moved different body 

parts according to auditory cues: “left hand”, “right hand”, “left foot”, “right 

foot”, or “lips”. Each cue was followed by a series of 10 tones presented at a 

rate of 1 Hz, and participants were instructed to move the cued body part in 

pace with the onset of each tone. Movement blocks ended with the cue “stop”, 

and were 13s in duration including movement instruction and stop cues. Each 

movement block was followed by 18s rest-periods. Participants were asked to 
keep their eyes closed throughout. 

Movements of the hands and feet involved small-amplitude flexion-

extension movements of the fingertips and toes, respectively. Mouth 

movements involved pursing the lips while keeping the jaw and mouth closed 

and motionless. Prior to scanning, the experimenter demonstrated appropriate 

movements for each condition. The importance of keeping the head still was 
emphasized. 

Each run began with 8s of rest, comprised 10 movement condition blocks 

(two per condition), and lasted 5min and 18s. A custom Matlab (R2011b) 

script was used to create four distinct run orders whereby block history (N-1) 

was balanced for condition within runs. Participants completed four runs, each 
with a distinct condition-presentation order.   

Imaging parameters 
Imaging was performed on a 3-Tesla Siemens TIM Trio MRI scanner with a 

conventional 8-channel birdcage head coil. The T1-weighted anatomical 

images were collected using a multiplanar rapidly acquired gradient echo 

(MP-RAGE) pulse sequence: time to repetition (TR) = 1920ms; time to echo 
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(TE) = 2.92ms; flip angle = 9°; matrix size = 256 x 256; field of view (FOV) = 

256mm; 176 contiguous sagittal slices; slice thickness = 1mm; in-plane 

resolution = 1mm x 1mm. Auto Align Scout and True FISP sequences were 

executed before the start of each functional run to ensure that slices were 

prescribed in exactly the same positions across runs. Functional MRI volumes 

were collected using a T2*-weighted single-shot gradient-echo echo-planar 

imaging (EPI) acquisition sequence: TR = 3000ms; TE = 30ms; flip angle = 

84°; matrix size = 64 x 64; FOV = 200mm; slice thickness = 3mm; in-plane 

resolution = 3.125mm x 3.125mm; acceleration factor (integrated parallel 

acquisition technologies, iPAT) = 2 with generalized auto-calibrating partially 

parallel acquisitions (GRAPPA) reconstruction. Each volume comprises 48 

contiguous (no gap) axial slices spanning from the most superior point of 
cortex ventrally to include the entire cerebellum (i.e. whole-brain coverage). 

fMRI data preprocessing and analyses  
Imaging data were preprocessed and analyzed using tools from fMRIB 

Software Library (FSL v.5.0.4; http://fsl.fmrib.ox.ac.uk/fsl) (Smith et al., 2004). 

Each functional run was assessed for subject head motion by first examining 

cineloop animations and then motion-detection parameter plots generated by 

FSL 3-D motion correction algorithms on the untransformed two-dimensional 
data. Non-brain structures were removed using BET.  

Functional data were preprocessed with high-pass temporal frequency 

filtering to remove frequencies below 0.01 Hz. Functional volumes were then 

aligned to high-resolution anatomical volumes using FLIRT, and transformed 

to standard stereotaxic space (Montreal Neurological Institute, MNI-152 

template) using FNIRT nonlinear registration algorithims. Data were spatially 
smoothed using a Gaussian kernel of 6mm (full-width at half-maximum).  

Data were analyzed at single-subject levels using fixed-effects general 

linear models (GLMs), carried out in FEAT v.6.0, with FILM applied to correct 

for serial correlations (Woolrich et al., 2001). To enable valid between-run and 

-subject statistics, each run underwent intensity normalization using “grand 

mean scaling”, effectively giving each run a mean signal of zero and 
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converting beta weights to units of standard deviations. Group-level voxel-

wise analyses were implemented using random-effects, FLAME 1 (Woolrich 

et al., 2004). The Duvernoy anatomical atlas was used as a guide to name 
active brain areas (Duvernoy, 1999). 

GLMs included independent explanatory variables (EVs) per condition, and 

their temporal derivatives. Condition-specific EVs were modeled as 

rectangular wave functions, high during the condition and low during all other 

conditions, convolved with a double-gamma basis function to estimate 

spatiotemporal properties of the BOLD response, aligned to the onset of 

auditory cues (Fig 1C). For runs without Errors, “dummy” predictors 

comprising columns of all zeros in the design matrix were included. Additional 

EVs of non-interest included head motion translation/rotation parameters from 

motion correction outputs, and spike predictors corresponding to abrupt signal 

changes between temporally adjacent volumes of +/- 1 SD from the mean, as 
identified using FSL outlier detection.  

fMRI grasping task  
Voxel-wise analyses 

Per individual, four orthogonal contrasts (one-tailed t tests) were carried out at 

the first-level, single-run analyses: (1) Grasp > rest; (2) Touch > rest; (3) 

Grasp > Touch; (4) Touch > Grasp. The resulting contrasts of parameter 

estimates (COPEs) then served as input to higher-level, across-run (second 

level), fixed-effects analyses, and for controls, across subject (third level), 

random-effects analyses. Unless otherwise indicated, Z-statistical maps were 

thresholded at Z = 2.3, p < 0.011, cluster-size corrected for multiple 

comparisons at p < 0.05. The contrast Grasp > Touch was used to identify 
areas exhibiting grasp-selective responses.  

Functional-anatomical masks 

At both the individual-subject and group levels, final GLM results were 

constrained according to functionally- and anatomically-defined inclusive 

masks. The purpose of this method was to increase the sensitivity of 

subsequent statistical tests (i.e. Grasp > Touch) by reducing the number of 
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voxels considered for correction for multiple comparisons to those that (1) 

showed task-related activity increases (functional criterion) and (2) were likely 

to overlap with brain areas important for sensorimotor control of the hand 

(anatomical criterion). This was particularly useful given our aim to 

characterize grasp-related activity at individual-subject/patient levels, where, 

due to limited data, the use of corrected thresholds may be too conservative 
(Smith et al., 2005; Lieberman and Cunningham, 2009). 

Functional masks were defined at single-subject (second level, fixed 

effects) and group (third level, random effects) levels by selecting those 

voxels significantly active for either (1) Grasp > rest, or (2) Touch > rest, 
thresholded at Z = 3.1, p < 0.001, uncorrected. 

The following anatomical masks were defined according to the Juelich 

Histological Atlas (JHA), Harvard-Oxford Subcortical Atlas (HOSA), or the 

Cerebellar Atlas in MNI-152 space after normalization with FNIRT (CerebA-

152). All structures were defined bilaterally at a minimum subject-overlap 
threshold of > 5%.  

§ Structures defined by the JHA: (1) Anterior Intraparietal Sulcus (hIP1, 

hIP2, hIP3); (2) Primary Motor Cortex (BA4a, BA4p); (3) Primary 

Somatosensory Cortex (BA1, BA2, BA3a, BA3b); (4) Secondary 

Somatosensory Cortex/Parietal Operculum (OP1, OP2, OP3, OP4); (5) 

Premotor Cortex (BA6); (6) Ventral Premotor Cortex/Broca’s Area 

(BA44). 

§ Structures defined by the HOSA: (1) Pallidum; (2) Putamen; (3) 

Caudate; (4) Thalamus. 

§ Structures defined by the CerebA-152: (1) Cerebellum (bilateral lobules 
and the Vermis: IV; V; VI; Crus I; Crus II; VIIb; VIIIa; VIIIb; IX; X). 

Functional-anatomical masks were defined by conjoining those voxels that 

satisfied both functional and anatomical criterion. In other words, the resultant 

masks comprised voxels within the specified anatomical structures that were 
also significant activated above rest for either Grasp or Touch conditions.  
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Voxel-wise single-subject-overlap maps 
A critical aim was to characterize the patterns of activity associated with 

grasping at the single-subject/patient levels. To summarize these results in 

our group of healthy controls, we created a statistical map that reflects the 

number of overlapping subjects per voxel showing significant Grasp > Touch 

activity as qualified at single-subject thresholds. The approach provides a 

reasonable estimate of the probable range of variable grasp-selective 

responses in healthy controls at single-subject-levels. Critically, because 

thresholds were the same for all controls and DR (set to a minimum Z = 2.3, p 

< 0.011, cluster-size corrected for multiple comparisons at p < 0.05), this 

approach permits direct comparison of controls’ data with those of patient DR 
from either testing session.  

To quantify these data, we calculated the proportion of active voxels in DR 

at Tests 1 and 2 that are non-overlapping with at least one control 

participant’s thresholded activity map. We then used the same approach to 

estimate the probable range of uniquely active voxels at individual subject 

levels in our control group. For each control participant’s thresholded maps 

we calculated the proportion of voxels non-overlapping with at least one other 

control participant’s thresholded map. We then computed the group mean and 
95% confidence intervals.   

ROI analyses  
Regions of interest (ROIs) were functionally defined at the group-level in 

healthy controls based on results of the contrast Grasp > Touch. ROIs 

included those independent clusters of activity that were: (1) identified at Z = 

2.3, p < 0.011, uncorrected thresholds, and (2) whereby a minimum of five 

controls (> 20%) also showed activity in these brain areas at cluster-size 
corrected thresholds in single-subject analyses. 

For each ROI, the voxel with the highest Z-value was identified, a 5mm-

diameter-sphere was centered on this coordinate, and all significantly active 

voxels (thresholded at p < 0.05, uncorrected for multiple comparisons) within 

the sphere were included in computing average percent BOLD signal change 
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(%-BSC) values from the region. The choice of a more liberal (p < 0.05) voxel-

selection-threshold was made to increase the chance of equating the sizes of 
ROIs across brain areas.  

Importantly, the data used to define ROIs (from controls) were independent 

from the data that were extracted and further examined (from patient DR). 

Extracted data from DR comprised second-level COPEs, expressed as the 

mean %-BSC values for the contrast Grasp > Touch. To obtain a measure of 

variability of the COPEs extracted from each ROI we calculated one-sided 

(lower-bound) 95% confidence intervals around the means according to the 

standard error measures across runs, using a one-tailed t-statistic with the 
number of runs as the degrees of freedom.  

Although conservative, this was a reasonable approach to evaluate 

whether DR’s fMRI responses within the control-group-defined ROIs reliably 

showed the predicted Grasp > Touch effects. The alternative, more common 

method of using the control’s data to estimate confidence intervals for 

comparison is statistically invalid in this case (Kriegeskorte et al., 2009), since 

the ROIs are defined by the contrast Grasp > Touch. Estimates of effect-sizes 

and confidence intervals with this approach are biased in the direction of 

Grasp > Touch; specifically, %-BSC effect sizes would be overestimated and 
error underestimated. 

At the request of an anonymous reviewer, we also performed a leave-one-

subject-out (LOSO) analysis (Esterman et al., 2010) to estimate the %-BSC 

effects sizes and 95% CIs from the control group’s data, per ROI. This 

method is thought to sidestep the problem of non-independence, described 

above. Group-level GLMs are computed using all but one participant’s data. 

Each new LOSO GLM result is then used to redefine ROIs within the 

neighborhood of those defined by the full group’s model. Specifically, for each 

LOSO GLM result, we identified the peak Z-value that represents the ROIs 

defined in the full model, used to evaluate DR’s data. A 5mm-diameter-sphere 

was centered on this coordinate, and those voxels within the sphere that also 

showed significant Grasp > Touch activity (at p < 0.05, uncorrected) for that 
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particular LOSO GLM result were defined. This method matches precisely the 

method we used to define ROIs in the full group model, to evaluate DR’s data. 

Critically, for each LOSO GLM result the data from the subject that was left 

out of the model is extracted per ROI, expressed as %-BSC values for the 

contrast Grasp > Touch. As such, these data are independent from the data 

used to define the ROIs. The procedure was repeated, iteratively, until all (24) 

LOSO GLMs were computed, and for each new ROI, the data from the 

excluded subject was extracted. The group-level means and 95% CIs were 

then computed from ROIs that constitute the same brain region (e.g. 24 
LOSO-defined ROIs from contralateral primary sensorimotor cortex). 

fMRI sensorimotor mapping task  
ROI analyses  

The right-hemisphere primary sensorimotor hand area was defined in DR and 

a subgroup (N=17) of our healthy controls (at single-subject-levels) using the 

contrast: Left Hand (move) > rest. In each individual, the voxel with the 

highest Z-value that was also located within primary motor/sensory cortex 

(25% likelihood of overlapping BA1-4) was identified. All significantly active 

voxels (thresholded at Z = 2.3, cluster-size corrected for multiple 

comparisons, p < 0.05) within a sphere 5mm-diameter-sphere around this 
coordinate were included. 

For each individual for each ROI we then extracted the mean second-level 

COPEs expressed as the mean %-BSC values for the contrasts: Right Hand 

> rest, Left Foot > rest, Right Foot > rest, Mouth > rest. For controls, 95% 

confidence intervals were calculated according to the variability of the mean 
COPE values across participants. 

RESULTS 

DR exhibits persistent limitations in basic sensory and motor functions and 

remains dependent on vision when grasping small objects. As summarized in 

Table 1, sensory thresholds are elevated to levels indicative of diminished 

light touch, and the inability to localize supra-threshold stimuli and to pick up 
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and identify small objects without vision reflects limited protective sensation. 

DR is able to experience hot, cold and painful sensations, but remains unable 

to complete the Grating Orientation (Johnson and Phillips, 1981) and Purdue 

Pegboard tests (Tiffin and Asher, 1948). His grip strength exhibits some 

improvements during this same period, but still remains far below that of his 

natural hand, and he reports a 20% increase in the use of his new hand 

during unilateral or bilateral activities of daily living. This subjective account is 

supported by small improvements on tests of hand function performed with 

vision, including both the Carroll (Carroll, 1965) and Moberg Pickup Tests 

(Amirjani et al., 2007). However, DR’s ability to use his transplanted hand to 

grasp objects remains highly dependent on vision, making completion of the 
Moberg Pickup Test impossible with eyes closed.  

Table 1. DR’s basic-level sensory and motor abilities. 

All scores reflect testing conducted at the time points closest to fMRI grasp data 
collections. When available, normative values are reported along with associated 
references. Alternatively, scores are reported for the non-transplanted right hand, if 
available. Note, however, that the right hand was also injured and underwent multiple 
surgeries that have compromised both sensory and motor functions. 1Tested on volar 
distal tips of thumb, index and small fingers (Mackinnon et al., 2010). 2Stimuli were 
applied to the volar surfaces of the tips of the thumb, index and little fingers. 
Performances reflect diminished light touch (Hunter et al., 1995). 3Values reflect 
average error computed across 15 locations distributed across the palm and all five 
digits (Noordenbos, 1972). 4These values indicate diminished protective sensation 
(Amirjani et al., 2007). 5(Carroll, 1965). 

Grasp kinematics  
The following kinematic variables are defined: movement time (MT), peak grip 

aperture (pGA); time to peak grip aperture (ttpGA); peak transport velocity 
(pV); time to peak transport velocity (ttpV).  

DR’s grasp kinematics.  The atypical aspects of DR’s reach-to-grasp control 

are high pV, which exceeded the control group’s upper 95% CI during both 

 Two Years Post-Transplant Four Years Post-Transplant 
 Left Hand Right Hand/Normative Left Hand Right Hand/Normative 

2-point Static1 15mm < 6mm 15mm < 6mm 

2-point Moving1 14-15mm 2 - 3mm 15mm 2 - 3mm 
Semmes-Weinstein Thresholds2 4.56 <=2.83 4.56 <=2.83 

Touch Localization w/o vision3 34.4mm 6.25mm 19.1mm 5.4mm 
Grip Force Power Grip 21.2lbs  65.6lbs 31.6lbs 77.4lbs 
Grip Force Lateral Pinch 3.0lbs N/A 4.0lbs N/A 
Moberg Test w/ Vision 14.6secs 8.1secs 12.4secs 9.6secs 
Moberg Test w/o Vision4 Unable to complete 20.8secs Unable to complete 23.7secs 
Object Identification 0/12 11/12 0/12 11/12 
Carroll Test5 83/96 N/A 86/96 N/A 
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Tests [62.60 to 53.22 cm/s, Z: 2.52 and 1.18, Controls: 44.87 ± 7.05 (SD) 

cm/s, CI: 37.47 – 52.27], and earlier ttpV than the control’s in Test 1. By 

contrast, all other kinematic variables assessed in DR are within the 95% CIs 

of healthy controls at both 26 and 41mths post-transplant, and those that 

reflect grasp preshaping more closely approximate the control mean during 
the second testing session (Table 2).  

Table 2. Reach-to-grasp variables for the left hand of control subjects and 

D.R.’s affected hand, assessed at 26 and 41mths post-transplant. 

Variables Control ± SD (95%CI) D.R. 26 D.R. 41 
MT (s) 0.96 ± 0.19 (0.76 – 1.16) 0.85 1.16 
pGA (cm) 8.90 ± 1.13 (7.72 – 10.09) 10.02 9.24 
ttpGA (%) 63.20 ± 10.84 (53.01 – 73.39) 49.21 67.25 
pV (cm/s) 44.87 ± 7.05 (37.47 – 52.27) 62.60‡ 53.22‡ 
ttpV (%) 35.18 ± 7.16 (27.66 – 42.70) 21.24§ 41.38 
Values are means ± SD for six control subjects, with the 95% CI in parenthesis. 
Single measures are presented for each assessment of D.R. ‡ indicates values above 
and § values below the 95% CI of the control group. MT, Movement Time; pGA, Peak 
Grip Aperture; ttpGA, Time to Peak Grip Aperture; pV, Peak Transport Velocity; ttpV, 
Time to Peak Transport Velocity. 
 

More precisely, DR’s mean pGA decreased between Tests [10.02 and 9.24 

cm, Z: 0.99 and 0.30, Controls: 8.90 ± 1.13 (SD) cm, CI: 7.72 – 10.09], 

consistent with preshaping that more closely matches the sizes of target 

objects, thereby leaving smaller margins for error. Also, at Test 2, the ttpGA 

occurs later in the reaching movement [49.21 and 67.25 %, Z: -1.29 and 0.37, 

Controls: 63.20 ± 10.84 (SD) %, CI: 53.01 – 73.39], as does the ttpV [21.24 

and 41.38%, Z: -1.95 and 0.87, Controls: 35.18 ± 7.16 (SD) %, CI: 27.66 – 

42.70]. These temporal changes in grasp control indicate that DR is spending 

less time preshaping the hand during the deceleration phase of reaching; a 
change that is consistent with decreased reliance on feedback-based control. 

To better understand the nature of DR’s atypical hand velocity measures, 

we performed two additional analyses. First, we computed hand velocity at 

different percentages of movement time, focusing on the approach phase. 

Second, we computed a spatial trajectory curvature index (IC), a/b, where a is 

the maximal normal distance from the path to a straight line joining start and 
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end points, and b is the straight-line distance. If IC = 0, the trajectory is a 
perfect straight line; if IC = 1, the trajectory is closer to circular. 

Table 3 shows that DR continues to move with a greater hand velocity 

relative to controls even during the final approach phases of his grasping 

movements, and that the spatial trajectories of his movements have more 

curvature than those of controls. We interpret these data as consistent with 

the use of a more ballistic movement strategy. Such a strategy may minimize 
the influence of noisy somatosensory and kinesthetic feedback. 

Table 3. Hand velocity during approach and index of curvature of the hand 

trajectory.  

Variables Control ± SD (95%CI) D.R.26 D.R.41 
V at 60% 
(cm/s) 24.65 ± 5.96 (18.39 – 30.91) 32.01‡ 29.17 

V at 80% 
(cm/s) 11.66 ± 3.58 (7.90 – 15.42) 12.11 12.62 

V at 95% 
(cm/s) 5.88 ± 1.06 (4.77 – 6.99) 9.48‡ 7.81‡ 

V at 100% 
(cm/s) 4.25 ± 0.64 (3.58 – 4.92) 6.72‡ 5.08‡ 

IC 0.0049 ± 0.0008 (0.0041 – 0.0058) 0.0071‡ 0.0060‡ 
IC: index of curvature. V = hand velocity at different percentages of movement 
time. 

Grasp fMRI  
DR’s grasp-selectivity over time. At 26mths post-transplant, the contrast 

Grasp > Touch reveals a relatively large cluster of significant activity within 

DR’s contralateral central sulcus extending rostrally into his precentral gyrus 

and caudally through the post-central gyrus (primary sensorimotor cortex, 

SMC) into the aIPC (Fig 2A). We refer to this area of activity as the 

contralateral sensorimotor-anterior intraparietal cortex (SM-aIPC), to indicate 

that this includes primary motor and somatosensory as well as the anterior 

intraparietal cortex. Significant grasp-selective responses are also evident 

bilaterally in medial aspects of the superior frontal gyrus (mSFG) and medial 

primary sensorimotor cortex (mSMC), the supplementary motor area (SMA), 

and ipsilaterally within the medial intraparietal cortex (mIPC) and the parietal 
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operculum (SII, putative secondary somatosensory cortex). Not shown in 

Figure 2A, significant Grasp > Touch activity is also evident along the lateral 
and inferior edge of the contralateral cerebellum. 
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Fig 2. Grasp-selective responses in DR. (A) Statistical activation maps showing 
significant Grasp > Touch responses in DR at Test 1. (B) Same as (A), but at Test 2. 
(C) These data at uncorrected thresholds: Test 1 (red), Test 2 (blue), and the overlap 
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(yellow). Abbreviations: medial superior frontal gyrus (mSFG); medial primary 
sensorimotor cortex (mSMC); primary sensorimotor and anterior intraparietal cortices 
(SM-aIPC); supplementary motor area (SMA); medial intraparietal cortex (mIPC); 
secondary somatosensory cortex (SII); dorsal premotor cortex (dPMC); ventral 
premotor cortex (vPMC); cerebellum (Cereb.).  

When tested again at 41mths post-transplant, significant grasp-selective 

activity within DR’s contralateral SM-aIPC is again detected (Fig 2B). The 

results now also reveal significant grasp-selectivity straddling the central 

sulcus ipsilateral to the grasping – transplanted – hand. This activity 

comprises two, spatially distinct clusters: one anterior to the central sulcus, 

overlapping with dorsal premotor cortex (dPMC), and a second cluster 

posterior to the central sulcus, overlapping with the post-central gyrus and the 

aIPC. Significant grasp-selective responses are also evident in the 

contralateral middle frontal gyrus and ventral premotor cortex (vPMC), and the 
ipsilateral cerebellum (Cereb.).  

Single-subject comparisons of fMRI data based on cluster-corrected 

thresholds can overestimate differences between sessions (Smith et al., 

2005). We therefore recomputed the Grasp > Touch contrasts from each 

session without cluster-wise corrections, binarized these images and overlaid 

the results on DR’s structural scan (Fig 2C). Under these conditions, grasp-

selective responses appear much more consistent across Tests and include: 

bilateral aIPC, dPMC and the SMA, contralateral vPMC, and the ipsilateral 

cerebellum (yellow regions, Fig 2C). With the exception of the SMA, all of 

these areas show more statistically robust grasp-selectivity at 41mths. 

Conversely, those areas that show little evidence for replication across Tests 
– mSFG, mSMC, mIPC, SII – are identified at 26mths only.  

To summarize, our results are consistent with the hypothesis that skilled, 

coordinated grasping with a transplanted hand relies on the functions of the 

aIPC and other key nodes of the extended sensorimotor network known to 

play an important role in hand control. Across both Tests, grasping with the 

transplanted hand preferentially activates contralateral aIPC and vPMC, 

bilateral dPMC and the SMA, and the ipsilateral cerebellum. Further, our data 

suggest that over time grasping is associated with a more consolidated set of 
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brain areas. A number of areas that are significantly activated at 26mths are 

no longer detected at 41mths. These changes accompany more robust 
ipsilateral recruitment of aIPC, dorsal premotor cortex, and the cerebellum.  

DR’s grasp-selectivity compared with healthy controls. In order to 

determine whether DR’s grasp-selective results fall within the range of normal 

individual variability, we show the single-subject-level results from our cohort 

of healthy controls as the number of subjects per voxel (min. one individual) 

who show significant Grasp > Touch activity (at the same single-subject 

statistical thresholds that are applied to DR’s data, Fig 3A). In addition to 

contralateral sensorimotor cortex, these results reveal bilateral aIPC, dPMC, 
SMA, basal ganglia (BG), cerebellum, and contralateral vPMC.  

Fig 3. Grasp-selective responses in healthy controls compared with DR. (A) 
Voxel-wise results showing the number of subjects with significant activity for Grasp 
versus Touch at single-subject thresholds. To provide a clear view of the absolute 
minimum end of this range, voxels identified in a single control participant are shown 
in cyan. (B) These same results thresholded at a minimum of one participant (cyan), 
shown with DR’s significant grasp-related activity from Test 1 (red) and the overlap 
(magenta). (C) Same as (B), but with DR’s data from Test 2 (blue). (D) The 
proportions of active voxels in DR at Tests 1 and 2 that are non-overlapping with the 
results of at least one control participant, and the control group mean proportion of 
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active voxels that are non-overlapping with the results of at least one other control 
participant. Abbreviations: primary sensorimotor and anterior intraparietal cortices 
(SM-aIPC); anterior intraparietal cortex (aIPC); supplementary motor area (SMA); 
dorsal premotor cortex (dPMC); ventral premotor cortex (vPMC); basal ganglia (BG); 
cerebellum (Cereb.).  

To visualize common and distinct activity between these and patient DR’s 

data, the single-subject-overlap results from healthy controls are set to a 

minimum threshold of one subject, binarized and then overlaid with DR’s 

thresholded results from either Test (Fig 3B and C). At 26mths post-

transplant, DR’s grasp-selective activity that overlaps with the probable range 

of normal grasp-selective responses is restricted to contralateral primary 

sensorimotor and the aIPC, and the SMA. Conversely, at 41mths post-

transplant, DR’s pattern of grasp-selectivity now includes ipsilateral dPMC, 

aIPC, and cerebellar cortices, all of which are identified as within the range of 
normative responses. 

DR’s contralateral vPMC at 41mths partly overlaps with the location of 

activity seen in two healthy controls, and thus may also be considered within 

our estimate of the range of normative responses. Notably, however, the 

majority of active voxels in DR in vPMC are non-overlapping with the control’s 

data from this region. This suggests that the level – extent and strength – of 

functional recruitment of the contralateral vPMC for grasping in DR at 41mths 
exceeds our normative estimates. We return to this result in our Discussion.  

Figure 3D shows the total number of active voxels in DR at Tests 1 and 2 

that are non-overlapping with at least one control participant’s thresholded 

activity, expressed as a proportion of the total number of active voxels in DR 

at each Test, respectively. For comparison, we computed a similar metric for 

each individual control. Figure 3D shows the group mean proportion of active 

voxels in single-level control participant’s thresholded data maps that are non-

overlapping with at least one other control participant’s data, with 95% 

confidence intervals. This provides an estimate of the probable range of 

activity that is unique to a single individual’s data – non-overlapping with any 
other participant’s data from our group.  
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At 26mths, 53.7% of the total volume of thresholded voxels in DR is non-

overlapping with the thresholded activity of at least one control participant. 

This result is outside the 95% CIs of healthy controls. Two areas stand out, in 

particular: mIPC and SII. Conversely, at 41mths the proportion of activity in 

DR that does not overlap with at least one control participant’s data drops to 

20.4%, to within the 95% CIs of our controls. These results complement our 

qualitative observations detailed above, and suggest that between 26 and 

41mths post-transplant DR’s grasp-selective responses are restored to within 
the range of measures defined by healthy controls. 

DR’s grasp-selectivity in normatively-defined ROIs. To independently and 

quantitatively evaluate DR’s data within and across our two testing sessions, 

the healthy control group’s data are used to define regions-of-interest (ROIs) 

based on the contrast Grasp > Touch (Fig 4). Six ROIs are defined: 

contralateral SMC and aIPC, two independent clusters within ipsilateral aIPC 

(one identified as a dorsolateral focus, named i-aIPCd) and the ipsilateral 

dPMC and cerebellum. The ROI defined as aIPC is identified as a local 

statistical maximum, contiguous with the same cluster of activity that defines 

the SMC ROI, but the two ROIs comprise distinct voxels. 

We use two methods to evaluate DR’s data within these ROIs. First, per 

ROI, we compute the one-sided, lower-bound 95% CIs around the mean %-

BSC values from DR’s data from Tests 1 and 2 for the contrast Grasp > 

Touch. This provides an estimate of whether DR’s responses are reliably non-

zero in these areas. The method is, however, conservative, given that the 

degrees of freedom used to calculate the CIs is 4.  

According to this method, DR displays significant grasp-selectivity in 

contralateral SMC at both Tests 1 and 2, and within contralateral aIPC, 

ipsilateral dPMC, i-aIPCd, and the cerebellum at Test 2. DR’s responses at 
Test 1 nearly reach significance in aIPC, dPMC, and the cerebellum. 

Our second method involves a leave-one-subject-out (LOSO) analysis (see 

Methods, for details) (Esterman et al., 2010). The method permits estimation 
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of %-BSC effects sizes and 95% CIs from the control group’s data per ROI, 

while reducing the problem of statistical non-independence (Kriegeskorte et 
al., 2009).  

According to this method, for nearly all control-group-defined ROIs1, the 

strength of Grasp > Touch responses in DR are within the range of normal 

responses at Test 1, and exceed this range at Test 2 (Fig 4). The exception is 

during Test 1, within the i-aIPC. Here, DR’s mean %-BSC values are below 
the lower-arm of the 95% CIs estimated from our control’s data.  

Notably, the LOSO method used here is likely biased, and may 

underestimate the control group’s error estimates – 95% CIs – from ROIs. 

Individual LOSO GLM results (Supplementary Figure 1), and the locations of 

the peak Z statistics used to define ROIs (Supplementary Table 1) show little 

variation. The results closely mirror the results of the full GLM analyses. While 

keeping consistent with our method used to evaluate DR’s data based on the 

full group GLM, the use of peak statistics to define ROIs in our LOSO 

analyses may have biased these results; ROI selection is closely guided by 

the results of the full group model (for discussion, see Esterman et al., 2010). 

For these reasons, we choose not to emphasize the apparent hyper-activity 
seen in DR at Test 2.  

To summarize, we use two methods to evaluate DR’s responses in control-

group-defined ROIs, one that is likely too conservative, and the other that is 

likely too liberal. The findings intersect, however, and reveal that by 41mths 

post-transplant DR demonstrates a pattern of grasp-selectivity that is within 
the normal range of responses defined by healthy controls.  

                                                
1 In the full group GLM aIPC is identified as a local maximum, contiguous with but distinct 
from the voxels that comprise the SMC ROI. Conversely, in 7/24 LOSO GLM results, the 
voxels overlapping with aIPC do not constitute an independent, local maximum. As such, the 
control group’s mean and 95% CIs for aIPC are computed on the basis of 17 control 
participant’s data. Similarly, in the full model i-aIPCd is identified as independent from i-aIPC. 
Conversely, the two ROIs form a contiguous cluster in 6/24 LOSO GLM results. An 
independent peak for i-aIPCd is not identifiable. As such, the mean and 95% CIs estimates 
for i-aIPCd are based on the data from 18 controls. All other results are based on 24 controls. 
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Fig 4. DR’s grasp responses within control-group-defined ROIs. The control-
group-averaged results from the contrast Grasp > Touch (top panel). Six ROIs are 
defined: sensorimotor cortex (SMC), anterior intraparietal cortex (aIPC), two ROIs 
within ipsilateral anterior intraparietal cortex (i-aIPC, and a region dorsolateral to this, 
i-aIPCd), ipsilateral dorsal premotor cortex (dPMC), and ipsilateral cerebellum 
(Cereb.). The * indicates those regions defined at uncorrected thresholds. From 
these ROIs, DR’s data from either Test are extracted, expressed as the mean %-
BSC values for the contrast Grasp > Touch. Error bars reflect one-sided 95% 
confidence intervals. Also shown for each ROI are the control group %-BSC 
estimates using the LOSO method (see Methods: ROI analyses), with 95% CIs. To 
facilitate comparisons, the red and blue lines indicate DR’s mean responses at Tests 
1 and 2, respectively. 
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fMRI sensorimotor mapping 
As shown in amputees (Hamzei et al., 2001; Bogdanov et al., 2012; Philip and 

Frey, 2014), and in a transplant recipient soon after surgery (Frey et al., 

2008), DR exhibits increased activity of the ipsilateral primary sensorimotor 

hand territory during movements of his natural right hand even at 44mths 

post-surgery. These responses occur in the very same region that responds 

during movements of his left, transplanted hand (Fig 5). 

Fig 5. Responses to hand, feet, and lip movements in right primary 
sensorimotor cortex. (A) Right primary sensorimotor cortex ROIs are defined in 
each individual subject and in DR by movements of the left/transplanted hand. DR’s 
ROI is shown in magenta and controls are shown in green. (B) Mean percent BOLD 
signal change (%-BSC) values are extracted from ROIs for each of the other body-
part movement conditions, shown for DR (grey) and the control’s group-average 
(white). Error bars for controls indicate 95% confidence intervals, and for DR, 
standard deviations. 
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DISCUSSION 

Our data reveal for the first time that even after more than a decade of living 

as an amputee the normative functional brain organization responsible for the 

visual control of grasping can be restored following hand transplantation. 

Improved grasp performance parallels the normalization of grasp-selective 

fMRI responses in the aIPC, premotor and cerebellar cortices. Functional 

normalization of this network for visually guided grasping develops despite 

prevailing amputation-related functional changes in primary sensorimotor 

cortex (S1/M1) and significant low-level sensory and motor impairments. We 

conjecture that this brain network supports the restoration of grasp function 

following hand transplantation primarily through the use of visual feedback to 

compensate for errors arising from persistent reorganizational changes in 
S1/M1, and reinnervation errors in regenerating peripheral nerves. 

Largely normal grasp kinematics despite persistent sensorimotor 
impairments  

Improvements in basic sensory and motor abilities following hand 

transplantation are variable and continue over many years (Breidenbach et 

al., 2008; Landin et al., 2012; Shores et al., 2015). At 26 and 41mths post-

surgery, DR continues to display moderate-to-severe limitations across a 

variety of basic sensory and motor evaluations. In spite of these limitations his 

reach-to-grasp kinematics are remarkably typical, a pattern that is consistent 

with recent data from other transplant recipients (Huchon et al., 2016). With 

the exception of peak reach velocity, all other kinematic measures of DR’s 

reach and grasp performance are within the 95% confidence intervals defined 

by healthy controls. His peak reach velocity is atypically high. Although 

speculative, higher peak velocity may reflect the use of a more ballistic 

movement strategy, heavily reliant on feed-forward control mechanisms. This 

would minimize opportunities for the influence of noisy sensory feedback. 
Clearly, however, more work is needed to evaluate this speculation. 

Of particular note, DR’s timing and scaling of grip aperture become 

increasingly similar to controls at 41mths. At 26mths, peak grip aperture 
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tended to exceed that of controls, and was achieved earlier in the reach. This 

may reflect compensation for limitations in hand control. Larger grip aperture 

allows a greater margin for error in hand preshaping, and the early time to 

reach peak aperture enables more time to use visual feedback to adjust the 

grasp during the deceleration phase of the movement. By 41mths, peak grip 

aperture and its temporal organization more closely approximate the mean of 

the control group. Together, these data indicate increasing normalization of 

the control of hand preshaping, a function that has been repeatedly ascribed 

to the aIPC and interconnected regions of the premotor cortex (Jeannerod et 

al., 1995; Castiello, 2005; Grafton, 2010; Davare et al., 2011). Our results 

provide critical new support for this model.  

Normalization of grasp-selective fMRI responses  

As early as 26mths post-transplant, DR exhibits grasp-selective responses in 

contralateral sensorimotor cortex and aIPC. By 41mths, grasp-selectivity is 

more robust in these areas, and is now also detected in the ipsilateral aIPC, 

cerebellum, and premotor cortices; the same network of areas showing grasp-

selectivity in healthy controls. The data reveal that by 41mths post-surgery, 

DR’s fMRI responses associated with grasping are within the range of normal 
variation defined by controls. 

This evidence is consistent with the possibility that DR is recruiting the 

same regions that are likely to have controlled grasping with his own hand 

prior to amputation. Our ROI results provide further support for this 

interpretation. At 26mths, DR shows significant grasp-selectivity in the control-

group-defined SMC, and by 41mths, responses in the control-group-defined 
aIPC, dorsal premotor cortex and cerebellum reach significance. 

DR’s data also indicate that over time the network of brain areas 

associated with grasping is refined. Specifically, at 26 but not at 41mths DR 

shows grasp-selective responses in numerous other brain areas (mSMC, 

mIPC, SII) not reliably identified in controls. These results indicate that 

atypically organized grasp-selective responses are evident early and resolve 
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over time, and as noted above, these changes parallel improvements in the 
control of hand preshaping. 

An important part of the current work is the demonstration of substantial 

individual variation in the network of regions in healthy adults that exhibit 

grasp-selective responses. These differences can be obscured using group-

averaged methods alone, thereby making comparative interpretations with 

individual patient data problematic. In this case, we would conclude that DR 
shows a predominately atypical pattern. This would be mistaken. 

Our data define the aIPC, dPMC and vPMC, and the cerebellum as part of 

the normative cortical network selective for grasping in healthy controls. The 

involvement of these areas in grasp control is consistent with a range of 

evidence from multiple domains (Castiello, 2005; Grafton, 2010; Davare et al., 
2011).  

Increased cerebellar activity may reflect greater reliance on predictive, 

feed-forward control in DR. The cerebellum is widely held to play an essential 

role in feed-forward control mechanisms (Wolpert et al., 1995; Wolpert et al., 

1998; Flanagan et al., 2003; Miall and King, 2008). This interpretation is 

consistent with our account of DR’s atypically high peak velocities as related 

to a greater reliance on feed-forward control. Alternatively, non-synergistic 

control of the fingers for grasping may place greater demands on motor 

function, and this may lead to increased activity in the contralateral SMC and 
ipsilateral cerebellum. Future work is needed to distinguish these possibilities.  

The Compensatory Control Hypothesis 
We began this project with a simple question: how can a transplant recipient 

exhibit relatively normal reach-to-grasp kinematics in spite of significant 

limitations in basic sensorimotor functions? Our results suggest that the 

answer involves compensation enabled by a network of brain areas upstream 

from S1/M1, including the aIPC, the dorsal and ventral premotor cortices, and 

the cerebellum. We speculate that this compensatory control is accomplished 
primarily through the use of visual feedback.  
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Monkey area AIP located at the anterior extent of the intraparietal sulcus is 

densely interconnected with ventral premotor area F5 in the arcuate sulcus 

(Sakata and Taira, 1994; Rizzolatti and Luppino, 2001), and together these 

regions constitute a circuit that transforms visual information about the spatial 

properties of objects (e.g., shape) to motor programs for configuring the hand 

during grasping (Jeannerod, 1981; Jeannerod et al., 1995; Schaffelhofer and 

Scherberger, 2016). There are cells in area AIP with visual response 

properties consistent with a role in monitoring movements of the hand during 

grasping, in addition to those tuned to object properties (Sakata et al., 1995; 
Gardner et al., 1999; Murata et al., 2000).  

Convergent evidence suggests that human aIPC and premotor cortex 

comprise a functionally similar circuit (Jeannerod et al., 1995; Castiello, 2005; 

Culham and Valyear, 2006; Grafton, 2010; Davare et al., 2011). Perturbation 

studies reveal that TMS to the aIPC interferes with the ability to compensate 

for errors in the motor program on the basis of visual feedback, suggesting 

that the aIPC plays a key role in this updating function (Tunik et al., 2005; 

Rice et al., 2006). Specifically, the model supported by this work implicates 

the aIPC as critical for integrating the motor commands that specify the 

spatiotemporal parameters of intended actions with incoming visual 

information online, after actions are initiated, to rapidly detect and adjust for 

differences between them. We suggest that this is precisely the kind of 

corrective function that is likely to be essential for controlling a transplanted 
hand with limited and noisy sensory feedback.   

Our data also reveal the involvement of bilateral dPMC and ipsilateral 

cerebellum. The dPMC is commonly identified in fMRI studies of grasping 

(see meta-analysis, Valyear et al., 2017), and TMS to dPMC disrupts the 

timing of grip and lift features of grasp control (Davare et al., 2006). Like 

monkey area AIP, dorsal premotor area F2 in monkeys appears to play an 

important role in monitoring hand actions on the basis of visual feedback 
(Raos et al., 2004).  
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The cerebellum is essential for feed-forward control (Wolpert et al., 1995; 

Wolpert et al., 1998; Flanagan et al., 2003; Miall and King, 2008), as noted 

earlier, and has been strongly implicated in motor skill learning (Wolpert et al., 

2001). In monkeys, the cerebellum and basal ganglia have direct inputs to 

area AIP (Clower et al., 2005), and together, this circuit may be essential for 
enabling rapid corrective adjustments to ongoing actions.    

On the basis of our new findings, and in light of these prior data, we 

hypothesize that the aIPC, d- and vPMC, and the cerebellum constitute a core 

network of brain areas that together enable normative grasp performance with 

a transplanted hand by using vision to correct for errors in the initial motor 

program, and from noisy somatosensory and kinesthetic feedback, that arise 
as a consequence of incomplete sensory recovery. 

We further conjecture that these same areas are important for the flexible, 

compensatory control of the hand in other circumstances where modality-

specific inputs are limited, such as with peripheral neuropathies and tool use. 

Consistently, using handheld tools reliably activates the aIPC and premotor 

areas (Jacobs et al., 2010; Valyear et al., 2012; Gallivan et al., 2013; Brandi 
et al., 2014). 

Recent unpublished data suggest that visual feedback during grasping is of 

significant benefit to DR (Mattos et al., 2016). Grasping a glowing object in the 

dark without vision of his moving limb negatively affects his performance. 

Conversely, however, other research shows that forcing bilateral transplant 

recipients to grasp remembered targets by removing vision entirely does not 

substantially compromise their grasp control (Huchon et al., 2016). Although, 

one patient was entirely unable to complete the task (for one hand) without 

vision. More work is necessary to understand the role of vision in grasp 
control with a transplanted hand.   

Alternate interpretations 
Our hypothesis stated above may be said to underplay other aspects of our 

results. First, our data identify atypical grasp-selectivity in DR early, at 
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26mths. In particular, grasping preferentially activates an area in DR’s 

posterior and medial intraparietal cortex (mIPC), and within the parietal 

operculum, likely overlapping with SII. Both responses are seen ipsilateral to 

his transplanted hand. No single control participant shows activity in either of 
these areas.  

The significance of these results is unclear. The mIPC is implicated in the 

control of the arm for reaching (Astafiev et al., 2003; Beurze et al., 2007, 

2009), hypothesized to correspond functionally with monkey area MIP (a key 

component of the parietal reach region) (Vesia and Crawford, 2012; Andersen 

et al., 2014). Why this area would be selectively active in DR at 26mths, and 
only ipsilaterally with respect to his acting limb, is puzzling, however.  

One reviewer draws attention to recent data that call into question the 

classic view of separate dedicated parietofrontal systems for reaching versus 

grasping (Pitzalis et al., 2005; Monaco et al., 2011; Fattori et al., 2017), and 

notes that ipsilateral engagement in DR may make sense given that as an 

amputee, this system would have continued to drive the use of his intact limb. 

Such conditions may promote ipsilateral control following transplantation, at 

least early on. That is, perhaps DR’s ipsilateral mIPC contributes to the 

control of his transplanted hand, in particular, soon after surgery, during the 

early stages of his recovery. This hypothesis is speculative, and clarification 
will require future longitudinal work with other hand transplant recipients.  

Likewise, it remains unclear why DR’s ipsilateral SII shows early 

involvement during grasping, and why this resolves over time. In our work with 

unilateral hand amputees, we find that pure cutaneous sensory stimulation of 

the remaining digits activates primary sensory cortices bilaterally (Philip et al., 

2015). As one interpretation, ipsilateral responses reflect changes in the 

balance of interhemispheric inhibition brought on by the dramatic decreases in 

activity contralateral to the missing hand (Calford and Tweedale, 1990; Cohen 

et al., 1991b; Bogdanov et al., 2012). Although speculative, and 

underspecified, the ipsilateral responses in SII in DR at 26mths post-

transplant may relate to persistent changes in interhemispheric functional 
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connectivity between secondary somatosensory cortices as a result of chronic 

hand loss. Future investigations with additional patients will help to better 
understand the importance of these results.  

These aspects of our findings point to a model of grasp recovery after hand 

transplantation that differs from our emphasis above. While our compensatory 

control hypothesis focuses on the importance of increasing recruitment of 

grasp-typical brain areas over time, these results highlight how grasp recovery 
may also involve decreases in grasp-atypical brain responses over time.  

Specifically, these data suggest that early-level recovery involves 

compensation via recruitment of brain regions that are not typically associated 

with grasping in healthy controls – i.e. ipsilateral mIPC and SII. This suggests 

that our compensatory control hypothesis is incomplete. While the restoration 

of grasp control with a transplanted hand may indeed depend on the lasting 

recruitment of aIPC, d- and vPMC, and the cerebellum, and the use of vision 

by this network, temporary early-stage involvement of ipsilateral mIPC and SII 
may also be important.  

Alternatively, this early-stage engagement of grasp-atypical regions may be 

maladaptive, and reflect a form of functional disorganization. Perhaps it is the 

gradual dis-involvement of these areas that promotes the recovery of grasp 

function with time. Further research may tease apart these opposing 
hypotheses.  

Second, DR demonstrates robust grasp-selective responses in vPMC. 

These responses increase in strength over time, evident only at cluster-size 

uncorrected levels at 26mths (Fig. 2C), and robustly, at corrected levels by 

41mths (Fig. 2B). Additionally, few controls show significant grasp-selective 

responses in vPMC. This result contrasts with an interpretation of DR’s data 

as uniformly exhibiting increasingly normative brain responses for grasping 

over time. The level of his vPMC involvement, especially at 41mths, appears 
atypical.  
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We speculate that these results relate to the unique motoric demands 

associated with the control of DR’s transplanted hand. Even at 41mths, DR’s 

basic motor functions remain impaired (Table 1), including an inability to 

individuate the control of his digits, and minimal functionality of the intrinsic 

muscle groups. These limitations are likely to place higher demands on the 

motor control of the hand. We hypothesize that such demands may tax the 
functions of vPMC, in particular.  

Two sets of prior evidence motivate this hypothesis. First, monkey data 

suggest a functional continuum within the AIP-F5 circuit, whereby F5 is more 

directly responsible for encoding the motoric features of grasp control. 

Specifically, multidimensional scaling methods reveal that while object-

selectivity in AIP best reflects structural object features, selectivity in F5 is 

better explained by the hand configurations associated with grasping those 

objects (Murata et al., 2000; Raos et al., 2006; Schaffelhofer and 

Scherberger, 2016). Second, fMRI studies involving complex manual actions 

commonly report vPMC involvement (Valyear et al., 2012; Brandi et al., 2014). 

This contrasts with those studies involving simpler grasping tasks, like the 

current study, where the vPMC is not commonly identified.  

Finally, we recognize that grasp-selectivity in the aIPC in both DR and 

controls is part of a continuous cluster that spans both post and precentral 

cortices; separating the aIPC from S1/M1 involvement requires justification. 

Our rationale is threefold. First, grasp-selectivity in DR and controls overlaps 

with the aIPC. This is clear from the ventral and posterior extents of these 

data (Fig. 2 and 4), non-overlapping with the expected locations of S1/M1, 

and clearly distinct from the focus of peak responses identified via simple 

finger movements, which is situated within the central sulcus (Fig. 5A). 

Second, as reviewed above, a wealth of prior data link the aIPC to grasp 

control. To suggest that our results within the aIPC merely reflect a spread of 

responses from S1/M1 directly conflicts with this evidence. Third, our results 

identify the involvement of d- and vPMC, regions that are known to 

functionally interact with the aIPC during grasping (Davare et al., 2011), and 
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that are clearly spatially distinct from S1/M1. For these reasons, we feel that 

discussion of our data showing aIPC involvement as separate from the 
functional contributions of S1/M1 is justified.  

Implications 
Our results suggest that grasping and the normative functional brain 

organization governing the control of grasping can be recovered during the 

first 2-4 years following allogeneic hand transplantation. These findings have 

positive rehabilitation implications for hand transplant recipients. At the same 

time, as a single case study, we recognize that the current data must be 

considered cautiously; generalizability depends on the results of future 

investigations with additional patients. Nonetheless, this study provides the 

first available measures of brain function related to the return of grasp control 

with a transplanted hand. Our results lay the foundation for future research in 

this area, and provide an invaluable benchmark for which to compare 
subsequent findings. 
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Supplementary Table 1.  

LOSO ROI results. The means and 95% CIs of the MNI coordinates and 
maximum Z statistic for each ROI defined by the LOSO analyses.  

 

 

Maximum Maximum
X Y Z Z statistic X Y Z Z statistic

Mean 48.25 -18.92 50.50 4.99 42.12 -24.00 44.12 4.21
95% CI 0.29 0.86 0.57 0.06 0.25 0.00 0.25 0.08

Maximum Maximum
X Y Z Z statistic X Y Z Z statistic

Mean -35.20 -18.00 61.30 3.01 -39.00 -30.00 45.10 2.97
95% CI 0.43 0.00 0.42 0.05 0.43 0.00 0.43 0.06

Maximum Maximum
X Y Z Z statistic X Y Z Z statistic

Mean -50.78 -24.89 53.33 2.65 -17.00 -54.00 -22.17 2.56
95% CI 0.50 0.61 0.90 0.26 0.43 0.00 0.24 0.06

MNI coordinates MNI coordinates

(A) SMC (B) aIPC

(C) dPMC (D) i-aIPC

(E) i-aIPCd (F) Cereb.

MNI coordinates MNI coordinates

MNI coordinates MNI coordinates



Supplementary Figure 1. LOSO GLM overlap results. Voxel-wise results showing the 
number of LOSO GLM results that identify significant activity for Grasp versus Touch. 
Blue coloured voxels indicate locations where all 24 LOSO GLM results reveal 
significant activity. These locations overlap with all six ROIs identified in Figure 4, based 
on the full group GLM. See Figure 4 for abbreviations. 
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