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Structured Summary 

AIMS 

Dual-urate lowering therapy (ULT) with xanthine oxidase inhibitor and uricosuric medications is a 

treatment option for severe gout. Uricosurics can cause hyperuricosuria, a risk factor for 

nephrolithiasis and acute uric acid nephropathy. The aims of this study were to simulate the relation 

between suboptimal drug adherence and efficacy, and to quantify the risk of hyperuricosuria in gout 

patients receiving mono and dual-ULTs.  

METHODS 

The impact of poor medication adherence was studied using 2-compartment PK models based on 

published evidence and a semi-mechanistic, 4-compartment pharmacodynamic (PD) model. The 

PKPD model was used to simulate mono and dual-ULT in gout patients with either under-excretion 

(lowered clearance) or overproduction of uric acid, with suboptimal adherence modelled as either a 

single drug holiday of increasing duration or doses taken at random. 

RESULTS 

Simulation results showed a surge in urinary uric acid occurring when dosing is restarted following 

missed doses. For under-excreters taking a 20 day drug holiday, the addition of 200 mg (or 400 mg) 

lesinurad to 80 mg febuxostat increased the percentage of patients experiencing hyperuricosuria 

form 0% to 1.4% (or 3.1%). In overproducers, restarting ULTs following drug holidays of more than 5 

days leads to over 60% of patients experiencing hyperuricosuria. 

CONCLUSIONS 

Sub-optimal medication adherence may compromise safety and efficacy of mono and dual-ULTs, 

especially in patients with gout resulting from an overproduction of uric acid. Clinicians and 

pharmacists should consider counselling patients with respect to the risks associated with partial 

adherence, and offer interventions to improve adherence or tailor treatments, where appropriate. 
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT 

 Uricosurics, used for the treatment of gout, increase the risk of hyperuricosuria and 

therefore also acute kidney injury.  

 Medication adherence to urate lowering therapies for treating gout is amongst the worst of 

any chronic disease. 

 

WHAT THIS STUDY ADDS 

 Restarting uricosuric treatment following a drug holiday increases the rate of episodic 

hyperuricosuria. 

 Sub-optimal medication adherence may compromise safety and efficacy of mono- and dual-

urate lowering therapies, especially in patient groups such as those with gout resulting from 

an overproduction of uric acid.  

 Clinicians and pharmacists should consider counselling patients with respect to the risks 

associated with partial adherence, and offer interventions to improve adherence or tailor 

treatments, where appropriate. 
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Introduction 

Gout is a painful and disabling chronic disease which has proven difficult to treat and affects a large 

and increasing number of people [1]. Long term treatment with urate lowering therapies (ULTs) aims 

to reduce serum uric acid (sUA) concentrations to below the point of saturation (approximately 6 

mg/dL). When treatment with a xanthine oxidase inhibitor (XOI) alone is unsuccessful, a uricosuric 

can be used in combination [2]. Historically, the use of uricosurics for long-term therapy has been 

limited due to possible hepatotoxicity (benzbromarone) and drug-drug interactions (probenecid). 

However, the uric acid transporter-1 (URAT-1) inhibitor lesinurad has recently gained regulatory 

approved and is intended for long-term therapy in combination with an XOI (such as allopurinol or 

febuxostat) [3]. 

 

As they increase the renal excretion of uric acid, uricosurics such as lesinurad, can cause 

hyperuricosuria (urinary excretion of uric acid ≥800 mg day-1 in men; ≥750 mg day-1 in women) [4]. 

High levels of urinary uric acid (uUA) can cause kidney damage which may be acute, such as stone 

formation (nephrolithiasis) [5] and intrarenal obstruction (acute urate nephropathy), or chronic as in 

chronic (or gouty) nephropathy. Acute kidney injury can occur when uric acid concentrations in renal 

tubules reach supersaturation, which also depends on urine pH [6,7]. Chronic nephropathy is 

thought to result from long-term hyperuricosuria which may be below supersaturation 

concentrations. The existence of chronic nephropathy remains controversial [8], but is supported by 

animal models and some epidemiological studies [9]. The harmful effects of uric acid on the kidney 

are a possible explanation of the association, in recent clinical trials, between lesinurad and an 

increase in the rate of raised serum creatinine and, for higher doses, with serious renal adverse 

events [10]. 

 

Adherence to ULT is known to be amongst the lowest of any chronic disease treatment [11,12], with 

70% of patients having a drug holiday of at least 60 days over 6 years. Poor adherence to allopurinol 

http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2646&familyId=920&familyType=ENZYME
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4357
http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1031&familyId=199&familyType=TRANSPORTER
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=7673
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6795
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=6817
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monotherapy is associated with lower treatment success rates [13]. While dual-therapy increased 

response rates compared with monotherapy in clinical trials [14–16], interruption in dosing (drug 

holiday) could result in high peaks in uUA concentration when treatment is restarted. Sub-optimal 

implementation of the dosing regimen (e.g. late doses, skipping a dose, or drug holidays) [17], may 

therefore increase the risk of renal adverse events caused by uric acid nephropathy. 

 

This study aims to simulate the relation between poor implementation of dosing and efficacy, and to 

quantify the risk of hyperuricosuria in gout patients receiving mono- and dual-ULT.  

 

Methods 

Strategy 

A semi-mechanistic pharmacokinetic-pharmacodynamic (PKPD) model, based on previous research 

on the systems pharmacology of the purine metabolic pathway [18], was developed to capture the 

pharmacology of ULTs (Figure 1). The system was comprised of four compartments utilising a zero 

order production rate (k0) governing the formation of xanthine and first order production rates 

characterising its biotransformation to uric acid (k1) and the elimination of xanthine (k2) and uric acid 

(k3) into the urine. These in turn were parameterised in terms of volumes and clearance terms. 

 

The PD model characterises the time course of sUA, uUA, xanthine and urinary xanthine. Two 

inhibitory indirect response (turnover) models were used to account for the effect of multiple doses 

of febuxostat on k0 and k1 [19]. A stimulatory indirect response [20] equation acting on the k2 rate 

parameter was incorporated to model the increased xanthine renal clearance associated with 

febuxostat [21]. The clearance of uric acid upon multiple doses of lesinurad was modelled using a 

stimulatory indirect response equation acting on the k3 rate parameter.  
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The system and drug PD model parameter estimates were obtained from literature and other 

publicly available sources. As described below some parameters values were taken directly from the 

literature while others were estimated using non-linear mixed effects models and clinical trials data. 

The parameters required to characterise the pharmacodynamic model are given in Table 1. 

 

Pharmacokinetics 

Two-compartment models with first order absorption for febuxostat and lesinurad obtained from 

the literature [22,23] were used to simulate typical and individual subject level drug plasma 

concentration time courses. The PK parameters, covariate effects and associated between subject 

variability are reproduced in Table 2. 

 

Pharmacodynamics 

i) Parameters obtained from literature 

The mean rates of renal clearance of uric acid and xanthine (CLUA and CLX) in healthy volunteers, 

along with the between-subject variability, were obtained using summary data from a phase I dose-

escalation study of 154 healthy volunteers receiving febuxostat [24]. The reported average clearance 

in each group and standard deviations (supplementary material) were used to obtain a weighted 

average estimate of population typical value and the between subject variability. 

 

This trial also found that the rate of xanthine renal clearance in subjects taking febuxostat, even at 

doses as low as 10 mg per day, increased 3- to 5-fold from baseline. This may result from saturation 

of active transport processes responsible for the reabsorption of xanthine from renal tubules [21]. A 

step function was assumed using a stimulatory Emax drug function, eq. 11 in Figure 1, with an EC50,1 of 

0.001 mg dl-1 (a low concentration associated with the 10mg dose) and Emax,1 of 3. 
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A previous PD model of lesinurad used a direct effect Emax model to relate steady-state average 

plasma concentration of lesinurad to the individuals’ sUA concentration [23]. The parameters of the 

indirect model (Emax,2, EC50,2) were derived from those given in the published direct model (𝐸𝑚𝑎𝑥
𝐷  and 

𝐸𝐶50
𝐷 ) using the steady state equations [19] (supplementary material). The published model includes 

a covariate effect of creatinine clearance on the maximum reduction in uric acid, 𝐸𝑚𝑎𝑥
𝐷 . The 

stimulatory model drug function STIM2 is given by eq. 12 in Figure 1, while the equations used to 

derive Emax,2 and EC50,2 are given below. 

𝐸𝑚𝑎𝑥,2 =
𝐸0

𝐸0−(𝐸𝑚𝑎𝑥
𝐷 (

𝐶𝑟𝐶𝑙

87
)

𝑏𝑐𝑟𝑐𝑙
)

− 1  

𝐸𝐶50,2 =
𝐸𝑚𝑎𝑥,2 𝐸𝐶50

𝐷

𝐸0/(𝐸0−(
𝐸𝑚𝑎𝑥

𝐷

2
))−1

− 𝐸𝐶50
𝐷   

CrCl is the individual’s creatinine clearance rate and E0 is the baseline sUA concentration of trial 

participants used to derive the direct Emax model parameters. 

 

ii) Estimated using statistical modelling 

All other parameters were estimated using non-linear mixed effects modelling and febuxostat Phase 

I trial summary data on daily area under the plasma concentration curve (AUC) and 24-hour urinary 

excretion of xanthine and uric acid [24] (supplementary material). This was conditional on the 

clearance estimates and drug PD function parameters obtained directly from the literature in the 

previous section. A NONMEM dataset was created using the AUC and urinary data and the trial 

dosing schedule. Each value was an average across all individuals within a dose group and has, 

therefore, been replicated according to the number of subjects within the group in order to weight 

by sample size. 

 

The PKPD modelling was conducted using NONMEM 7.3 and the ADVAN6 routine for solving 

differential equations. The PD model was coded using the differential equations in Figure 1 where 

equations 3 and 4 correspond directly to published data on 24-hour urinary excretion [24]. However, 
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additional sUA and serum xanthine accumulation compartments were added to compute the area 

under the concentration curve at 24 hour intervals. Parameter estimation used the first order 

algorithm and different initial parameter estimates were tested. No random effects were included 

on system parameters estimated in NONMEM since the data points do not come from individual 

subjects. The inhibitory model drug functions INH1 and INH2 are given by equations 9 and 10 

respectively in Figure 1. 

 

In order to simplify the modelling procedure and make use of all available evidence the statistical 

modelling was performed in two stages. The first stage used a published PKPD model of febuxostat 

that used an indirect inhibitory response model applied to a zero order rate of uric acid production 

[22]. Rewriting uric acid production in the differential equations in our model as zero order the 

literature parameter estimate of 0.0239 mg dl-1 was assumed for IC50,2 and the remaining parameters 

were then estimated. In the second stage, the uric acid production was returned to being first order, 

such that it is a function of changing xanthine levels, and a new parameter estimate was made of 

IC50,2 with all other parameters fixed. 

 

Gout patient simulation model 

We assumed that the febuxostat pharmacodynamic parameters estimated for healthy volunteers 

could be applied to gout patients with hyperuricemia. However, systems parameters have been 

adjusted to be representative of a patient population. A typical patient sUA concentration was 

assumed to be 8.83 mg dl-1 (standard deviation of 1.53) as this was the pre-treatment sUA 

concentration for patients in the CRYSTAL trial which compared febuxostat with lesinurad [25]. We 

considered two phenotypes, overproducers and under-excreters of uric acid [26,27], and modified 

the healthy subject system parameters accordingly. For overproducers, the amount of xanthine was 

scaled up and for under-excreters the clearance of uric acid was scaled down in proportion to the 
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sUA concentration (Table 3). This assumes the same volumes of distribution of xanthine and uric acid 

for patients as for healthy subjects. 

 

The model was used to simulate treatment with 120 days ULT in a hypothetical cohort of 1,000 

patients with baseline characteristics corresponding to the CRYSTAL trial. The cohort was all male 

(95% were male in CRYSTAL) and baseline sUA, weight and age were assumed to be lognormally 

distributed with mean and standard deviations taken from CRYSTAL (study 304) [28]. CrCl, calculated 

using the Cockcroft-Gault equation [29], overestimated the distribution of the trial participants. All 

estimates were reduced by 15 ml min-1 and estimates below 30 ml min-1 were excluded to obtain a 

better representation of the trial population CrCl. Variability of drug effects in INH1 and INH2 could 

not be estimated and the IC50 parameters were assumed to vary according to η3 with a coefficient of 

variation of 20%. Steady state was assumed following 30 days of simulated treatment and only the 

latter 60 days was used to derive results.  

 

The outcomes of interest were the simulated time course of sUA and uUA concentrations, from 

which we estimated the proportion of patients responding (sUA below ≤5 mg dl-1 on day 120) and 

the proportion of patients experiencing hyperuricosuria (uUA ≥800 mg day-1 on any day). The normal 

range of 24-hour volume of urine is 0.5-1 ml kg-1 hr-1, but is likely to be lower in the elderly [30,31]. 

On this basis a representative daily urine output for a 99 kg male of 15 dl has been assumed for the 

purpose of estimating uUA concentrations. The soluble limit for uric acid is highly sensitive to urine 

pH, being much greater in alkaline than in acidic urine. For a given uUA concentration the pH at 

which saturation would occur was estimated by fitting a linear model to literature data [32] to 

obtain: saturation pH = 6.36 – 40.96/[uUA]. 

 

Modelling adherence 

http://nephron.com/cgi-bin/CGSI.cgi
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The impact of poor adherence was studied for four different ULT options, namely febuxostat 80 mg 

monotherapy and lesinurad 400 mg monotherapy, and febuxostat 80mg combined with either 

lesinurad 200 mg or 400 mg. All are once daily regimens and it was assumed that doses are taken at 

the same time each day. Two types of poor adherence were considered, the first being a single drug 

holiday of increasing duration, from 1 to 20 days to assess the impact on uUA burden of restarting 

treatment following increasing lengths of drug holiday. The second assessed the impact of poor 

implementation on response rates and peaks in uUA by simulating doses taken completely at 

random, with a probability ranging from 1 to 0.1. For all dual-ULTs missed doses included both drugs 

being missed simultaneously. A total of 30 simulations were conducted for each adherence scenario, 

which used random samples of the model parameter between subject variability, and the results 

were averaged over the range of simulation results. 

 

Nomenclature of Targets and Ligands 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to 

PHARMACOLOGY [33], and are permanently archived in the Concise Guide to PHARMACOLOGY 

2015/16 [34]. 

 

Results 

The combined set of pharmacodynamics (PD) parameters and corresponding between subject 

variabilities (BSV) which were derived or estimated from the literature are presented in Table 1. 

Goodness of fit plots and visual predictive checks for the nonlinear mixed effects modelling are 

provided as supplementary material. 

 

With perfect adherence, uUA concentrations are maintained at low levels under the combined 

action of febuxostat 80 mg and lesinurad 200 mg (see plots for a typical patient in Figure 2). During a 
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simulated drug holiday of 8 days, urinary concentrations increase as sUA concentrations return 

towards baseline. After dosing is restarted, peaks in uUA concentrations occur, for the typical under-

excreter the peak reached 39 mg dl-1 which exceeds the typical average concentration for a healthy 

person (30 mg dl-1). For the typical overproducer, the peak uUA concentration was 85 mg dl-1 which 

exceeds the threshold for typical average uUA concentration of an individual with hyperuricosuria 

(53 mg dl-1). For the typical under-excreter, uUA concentrations after restarting treatment following 

an 8 day drug holiday could become supersaturated if the urinary pH was towards the acidic end of 

the normal range (pH <5.3; normal range 4.5-8.0). For the typical overproducer, peak uUA 

concentrations after restarting treatment are more likely to reach supersaturation at closer to the 

mid-point of the normal range at approximately 5.9. 

 

Across the population, increasing the length of a drug holiday increases the proportion of patients 

whose daily amount of uric acid excreted exceeds the threshold for hyperuricosuria upon restarting 

treatment (Figure 3). The proportion of patients with hyperuricosuria increases with increasing 

doses of lesinurad and is greatest for lesinurad 400 mg monotherapy. For under-excreters taking a 

20 day drug holiday, the addition of 200 mg (or 400 mg) lesinurad to 80 mg febuxostat increased the 

percentage of patients experiencing hyperuricosuria form 0% to 1.4% (or 3.1%). In overproducers, 

restarting ULTs following drug holidays of more than 5 days leads to over 60% of patients 

experiencing hyperuricosuria. In both patient groups, one- or two-day drug holidays are well 

tolerated compared to longer holidays with only moderate increases in the rates of hyperuricosuria. 

 

With perfect adherence, the proportion of patients treated to target (sUA ≤5 mg dL-1 on day 120) is 

greater than was observed in the CRYSTAL trial (Figure 4). However, success rates fall rapidly as an 

increasing proportion of doses are missed at random. For daily doses of febuxostat 80 mg, 

febuxostat 80mg with lesinurad 200 mg, febuxostat 80 mg with lesinurad 400 mg and lesinurad 400 

mg monotherapy, the success rates at 100% of doses taken in under-excreters are 87.2%, 94.5%, 
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96.0% and 15.4%, respectively. At 50% of doses taken at random, these success rates fall to 27.2%, 

42.6%, 47.3% and 7.4%, respectively. The corresponding plots for overproducers are provided in the 

supplementary material. 

 

Increasing the proportion of doses missed at random results in higher rates of hyperuricosuria due 

to randomly occurring drug holidays, especially in the presence of a uricosuric (Figure 4). The 

baseline daily uUA excreted in under-excreters is below healthy baseline levels and none of the 

simulated cohort showed hyperuricosuria in the absence of ULT. For dual-ULT with a uricosuric, 

however, randomly occurring drug holidays resulted in increasing rates of hyperuricosuria. For 

example at 30% of doses taken, for febuxostat 80 mg with lesinurad 200 mg, febuxostat 80 mg with 

lesinurad 400 mg and lesinurad 400 mg monotherapy the rates of hyperuricosuria are 1.3%, 3.2% 

and 4.9%, respectively. 

 

Discussion 

The use of uricosurics, either as monotherapy or in combination with an XOI, results in transient 

increases in uUA concentrations when dosing is restarted after a drug holiday. As a result, 

supersaturation of uric acid in urine can occur at pH values within the normal expected range and 

therefore precipitation of uric acid in the renal tubules is more likely to occur during routine clinical 

practice. This effect is likely to be greater following a drug holiday from dual-ULTs, than when 

starting treatment for the first time where, as per the regulatory approval of lesinurad, patients 

must already have been taking an XOI. Specifically, our simulations indicate that peak uUA 

concentrations reach the threshold for supersaturation at a urinary pH of 5.3 for under-excreters 

and of 5.9 for overproducers, so that crystal formation may occur for a urinary pH at or below this 

level.  
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Increasing the length of a drug holiday increased the proportion of patients whose daily amount of 

uric acid excreted exceeded the threshold for hyperuricosuria. The increase was more rapid for 

patients with over production, suggesting poorer drug forgiveness in this population. Treatment 

outcomes deteriorated rapidly as an increasing proportion of doses were missed at random. For 

under-excreters taking febuxostat 80 mg with lesinurad 200 mg, treatment to target rates fell by 

more than 50% when adherence reduced from 100% to 50%. 

 

Approximately 90% of gout patients have hyperuricemia caused by the renal under-excretion of uric 

acid [27]. In these cases, unless sUA concentrations are very high, or urinary volume is also lowered, 

uUA concentrations are likely to be lower than healthy subjects. However, in simulations of drug 

holidays, after restarting dual-ULT under-excreters had uUA concentrations raised to above the 

baseline levels for healthy subjects and a small proportion exceeded the threshold for 

hyperuricosuria. For these patients to be at an increased risk of kidney damage would likely require 

either a very low urinary output volume or a low urine pH (though still within the typical pH range). 

Urine pH is itself a primary predictor of nephrolithiasis, since the solubility of uric acid is very 

sensitive to small changes in pH [35].  

 

Genetic disorders or a high-purine diet can be the cause of an overproduction of uric acid in the 

remaining 10% of gout patients [36]. Hyperuricosuria is a defining feature of uric acid 

overproduction [26], putting these patients at an increased risk of kidney injury without treatment. 

Our simulations suggest that in the case of very good medication adherence (≥80% doses taken), 

dual-ULT would result in sustained reductions in sUA concentrations and also, therefore, uUA 

excreted. Regular drug holidays, however, would result in episodes in which uUA output was raised 

above its already high baseline. For this reason uricosurics may not be appropriate for patients with 

hyperuricemia due to uric acid overproduction [37], but no cautions are made in the label for 

lesinurad [38]. 
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To our knowledge this is the first study of the relationship between medication adherence and the 

efficacy and safety of dual-ULT therapy for the treatment of gout. This is especially timely given the 

recent approval of lesinurad for use in combination with an XOI in patients who have not responded 

on an XOI alone [39]. Our analysis benefits from having used a semi-mechanistic PD model which 

provides a level of complexity capable of capturing the non-steady state system dynamics. The 

effects of treatments have been investigated in two distinct patient subgroups; the cause of 

hyperuricemia being either an overproduction or under-excretion of uric acid. When comparing our 

simulation results with the findings from clinical trials, all of our perfect adherence simulations 

produced higher treatment success rates than was reported in trials. Mathematical models such as 

this could be used to anticipate the problems resulting from sub-optimal adherence, and to 

potentially help identify the properties of more forgiving uricosurics. 

 

The main limitation of this study was our reliance on different sources of data from different 

populations. This limited our ability to fully quantify the variability and co-dependencies, 

nonetheless, we consider the model to be representative of existing dual-ULTs. We assumed that 

non-renal clearance of uric acid, which is responsible for around a third of total excretion [40], was 

negligible. Nevertheless, the contribution of non-renal clearance relative to renal clearance will be 

less in scenarios where a uricosuric is taken. Finally, the analysis has focussed on the XOI febuxostat, 

but allopurinol is by far the most commonly prescribed ULT. However, we have no reason to believe 

that these findings do not extend to other XOIs (allopurinol) and uricosurics (probenecid and 

benzbromarone). 

 

With currently available ULTs, a large proportion of patients do not achieve sustained reductions in 

sUA to below saturation concentrations. The potential reasons for treatment failure include poor 

implementation (adherence) to treatment, under-dosing, variation in treatment response and the 
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underlying cause of hyperuricemia [41]. Persistence to ULTs is known to be amongst the lowest of 

any chronic disease treatment [11,12] and studies provide evidence for both long [42] and short [43] 

drug holidays. This study shows that renal safety may also be compromised by sub-optimal 

medication adherence and highlights the need to improve adherence and adapt treatments to 

poorly adherent populations. This could include instructions on drug labelling [44], indicating a 

number of doses which can be missed based on the forgiveness of the drug to missed doses [45]. 

Such measures may improve the safety profile of future uricosurics, which for lesinurad may have 

influenced reimbursement decisions [46].  

 

If gout patients adhere well to dual-ULT then it appears to offer a means of further reducing sUA 

concentrations with a negligible increase in urinary uric acid output. However, regular drug holidays, 

which are commonplace amongst gout patients using ULTs, result in much lower rates of long term 

treatment success and increased rates of hyperuricosuria when treatment is restarted. This has the 

potential to increase the risk of kidney damage in all patients, but especially those with 

hyperuricemia due to overproduction of uric acid.  Further research is needed into the impact of 

adherence patterns on treatment success rates and kidney safety in order to better understand how 

dual-ULT could be optimally used in the treatment of hyperuricemia in patients with gout. However, 

at present counselling patients with respect to the risks associated with poor adherence should be 

advised.  
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Tables 

Model Name* Source Parameter estimates BSV (SD2)# 

System PD 
Parameter 

BX (mg) Estimated θ1 8.94 - NE 

VX (dl) Estimated θ2 333 - NE 

CLX (dl/h) Literature θ3 10.57 - NE 

BUA (mg) Estimated θ4 703 - NE 

VUA (dl) Estimated θ5 154 - NE 

CLUA (dl/h) Literature θ6 4.11 - NE 

Febuxostat PD    
Parameter 

Emax,1 Assumed θ7 3 - NE 

EC50,1 Assumed θ8 0.001 - NE 

Imax,1 Assumed θ9 1 - NE 

IC50,1 Estimated θ10 0.1320 η3 0.2 

Imax,2 Assumed θ11 1 - NE 

IC50,2 Estimated θ12 0.00113 η3 0.2 

Lesinurad PD    
Parametera 

E0 Literature θ13 6.77 - NE 

𝐸𝑚𝑎𝑥
𝐷  Literature θ14 -2.55 η4 0.346 

bcrcl Literature θ15 0.564 - NE 

𝐸𝐶50
𝐷  Literature θ16 0.0974 - NE 

Table 1. PD parameters for febuxostat and lesinurad - literature and statistical estimates combined 

*BX: Baseline amount of xanthine; VX: Volume of xanthine distribution; CLX: Renal clearance of 

xanthine; BUA: Baseline amount of uric acid; VUA: Volume of uric acid distribution; CLUA: Renal 

clearance of uric acid; Emax,1 and EC50,1: parameters of STIM1 acting on k2; Imax,1 and IC50,1: parameters 

of INH1 acting on k0; Imax,2 and IC50,2: parameters of INH2 acting on k1; E0, Emax
D, bcrcl and EC50

D: 

literature values used to derive parameters of STIM2 acting on k3 
#BSV: Between subject variability; SD: Standard deviation; NE: Not estimated; Error model used: θi = 

θuexp(ηi) 
aLesinurad: Parameters of the direct Emax model used to derive the corresponding parameters of 

the indirect response model in Figure 1 
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Parameter 
Febuxostat Lesinurad 

Estimate BSV (CV%) Estimate BSV (CV%) 

CL/F_0 (dl h-1)a 49.3 18.3 69.9 63.4 

b_CRCL 0.142 NA 0.322 NA 

b_WT 0.155 NA - NA 

Vc/F_0 (dl)b 322 NE 241 12.2 

b_WT - NA 0.511 NA 

Vp/F (dl) 222 NE 83 20.5 

Q/F (dl h-1) 55.7 NE 4.48 NE 

Ka (h-1) 13.7 176 0.69 121.7 

Tlag (h) 0.23 NE 0.233 38.9 

Table 2. PK parameters for lesinurad and febuxostat  

aFebuxostat: CL/F = CL/F_0 + b_CRCL*CRCL + b_WT*WT; Lesinurad: CL/F = CL/F_0 * 

(CRCL/87)^b_CRCL 
bLesinurad: VC/F = VC/F_0 * (WT/70)^b_WT 

CL/F: Apparent clearance; Vc/F: Volume of the central compartment; Vp/F: Volume of the peripheral 

compartment; Q/F: Inter-compartmental clearance rate; Ka: First-order absorption; Tlag: Absorption 

time-lag; BSV: between-subject variability; CV%: Percentage coefficient of variation; NE: Not 

estimated; NA: Not applicable  
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Parameter Healthy subject 
Gout patient 

Under-excreter Overproducer 

sUA (mg dl-1) - LN(8.83,1.53) LN(8.83,1.53) 

BX (mg) θ1 θ1 θ1*(BUA/θ4) 

VX (dl) θ2 θ2 θ2 

CLX (dl h-1) θ3 θ3 θ3 

BUA (mg) θ4 θ5*sUA θ5*sUA 

VUA (dl) θ5 θ5 θ5 

CLUA (dl h-1) θ6 θ6*(θ4/BUA) θ6 

Table 3. Individual system parameters for healthy subject and gout patients 
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Figure 1. Diagrammatic and mathematical representations of the pharmacodynamics of dual-urate 

lowering therapies. k0, k1, k2 and k3 are the rate parameters for the production of xanthine, xanthine 

to uric acid conversion, removal of xanthine to urine and removal of uric acid to urine, respectively. 

INH1, INH2, STIM1 and STIM2 are the pharmacodynamic model drug functions. AX and AUA are the 
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total time-varying amounts of xanthine and uric acid in serum, respectively. CF(t) and CL(t) are the 

plasma concentrations of febuxostat of lesinurad, respectively. BX: Baseline amount of xanthine; VX: 

Volume of xanthine distribution; CLX: Renal clearance of xanthine; BUA: Baseline amount of uric 

acid; VUA: Volume of uric acid distribution; CLUA: Renal clearance of uric acid. 
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Figure 2. Simulated urinary uric acid (uUA) concentration and estimated pH for uric acid 

supersaturation assuming a daily volume of urine of 15 dl. The simulated uUA concentration over 

time (left-hand panel) and the estimated pH at which this concentration would become 

supersaturated (right-hand panel). Imperfect adherence is modelled as an 8-day drug holiday 

(beginning on day 33). The shaded area represents the normal range for urine pH. The upper plots 

are the central estimates from the PKPD model for a gout patient with hyperuricemia from a 

reduced rate of uric acid clearance, and the lower plots for hyperuricemia due to overproduction 

xanthine. ULTs used in these simulations were febuxostat 80 mg and lesinurad 200 mg, both once 

daily. 
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Figure 3. Proportion of simulated patients with one-day hyperuricosuria following a single drug 

holiday taking place after one month of perfect adherence. 
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Figure 4. Treatment success rates (top row) and the proportion of patients experiencing one-day 

hyperuricosuria during two months of urate lowering therapy (ULT) (bottom row). Horizontal lines 

provide the reference response rates for this treatment arm from the CRYSTAL trial comparing 

febuxostat and lesinurad and study 303 for lesinurad 400 mg monotherapy. Results are for under-

excreters of uric acid only, for overproducers see the supplementary material. FBX: Febuxostat; LES: 

Lesinurad. 

 

 

 


