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Abstract 1 

Application of machine learning models to study land cover change is typically restricted to the 2 

change detection of categorical, i.e., classified, land cover data.  In this study, our aim is to 3 

extend the utility of such models to predict the spectral band information of satellite images.  A 4 

Random Forests (RF) based machine learning model is trained using topographic and historical 5 

climatic variables as inputs to predict the spectral band values of high-resolution satellite 6 

imagery across two large sites in the western United States, New Mexico (10,570 km2) and 7 

Washington (9,400 km2).  The model output is used to obtain a true colour photorealistic image 8 

and an image showing the Normalized Difference Vegetation Index (NDVI) values.  We then 9 

use the trained model to explore what the land cover might look like for a climate change 10 

scenario during the 2061-2080 period.  The RF model achieves high validation accuracy for both 11 

sites during the training phase, with the coefficient of determination (R2) = 0.79 for New Mexico 12 

site and R2 = 0.73 for Washington site.  For the climate change scenario, prominent land cover 13 

changes are characterized by an increase in the vegetation cover at the New Mexico site and a 14 

decrease in the perennial snow cover at the Washington site.  Our results suggest that direct 15 

prediction of spectral band information is highly beneficial due to the ability it provides for 16 

deriving ecologically relevant products, which can be used to analyse land cover change 17 

scenarios from multiple perspectives. 18 

 19 

Keywords: Land cover change; climate change; machine learning; Random forest; Landsat.  20 
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1 Introduction 21 

Recent warming of the climate has led to large-scale changes in earth’s land cover.  Large 22 

scale warming has resulted in a shift in the dominant vegetation species to higher latitudes and 23 

higher elevations, which has been reported in many parts of the world [Walther et al., 2002; Root 24 

et al., 2003; Kelly and Goulden, 2008; Lenoir et al., 2008; VanDerWal et al., 2013].  Throughout 25 

the southwest US, woody species have been encroaching on grasslands [Barger et al., 2011].  In 26 

southwestern Wyoming, where precipitation has been trending down for the last thirty years, 27 

sagebrush vegetation have been giving way to bare ground [Homer et al., 2015].  In many 28 

western states of the US, where seasonal snowmelt accounts for a large fraction of the annual 29 

water supply, winter snow accumulation and perennial snow cover has been decreasing.  Mote 30 

[2003] has shown that from the mid to latter half of the twentieth century, winter snow 31 

accumulation at several locations along the Cascades Mountain Range fell by more than 40%.  32 

Hall et al. [2015] have reported that in north-western Wyoming the winter snowmelt is 16 ± 10 33 

days earlier in 2000s compared to the period 1972 - 1999.  At higher latitudes, where warming 34 

has been significantly greater than the planetary average, there has been simultaneous shortening 35 

of the snow season [Groisman et al., 1994; Stow et al., 2004] and lengthening of the vegetation 36 

growing season [Foster, 1989; Foster et al., 1992; Stone et al., 2002].  These are just some of the 37 

land cover changes that studies have documented within the last 100 years.  However, while this 38 

evidence of change provides a view to the future change, it nevertheless remains highly uncertain 39 

what changes will occur in the global land cover over the next 100 years. 40 

Despite high uncertainty, numerous studies have attempted to model the potential impact 41 

of climate change on future land cover [Pearson and Dawson, 2003; Sitch et al., 2003, 2008; 42 

Krinner et al., 2005; Rogan et al., 2008].  We can broadly classify these modelling efforts into 43 
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those using physically based and statistically based models.  Physically based models provide a 44 

mechanistic framework in which mathematical representation of individual processes, such as 45 

vegetation growth and decline, snow dynamics, and land-atmosphere exchanges of water and 46 

carbon, can be coupled to simulate an integrated landscape response to climate forcing.  For 47 

instance, Sitch et al. [2003] developed the Lund-Potsdam-Jena (LPJ) Dynamic Global 48 

Vegetation Model (DGVM) to simulate the response of terrestrial vegetation to climate forcing 49 

and demonstrated its application globally at 0.5° × 0.5° spatial resolution.  Campbell et al. [2010] 50 

used the Simultaneous Heat and Water (SHAW) model to simulate future changes in snowpack 51 

and soil frost at the Hubbard Brook Experimental Forest in New Hampshire, USA with climate 52 

forcing from three different General Circulation Models (GCMs).  Physically based models have 53 

the benefit that they can be used to infer the cause and effect of land cover change at the level of 54 

individual physical processes [Parker et al., 2003; Pauleit et al., 2005; Pitman et al., 2009].  55 

However, these models suffer from the large number of simulations necessary to adequately 56 

constrain parameter values, and therefore can be both time consuming and, in many instances, 57 

beyond the available computing power for many researchers.  As a result, physically based 58 

simulations tend to make a compromise in their spatial resolution [Brovkin et al., 2006; Verburg 59 

et al., 2011] or their areal extent [Tague et al., 2009; Abdelnour et al., 2011, 2013]. 60 

Statistically based land cover change models, on the other hand, operate on the premise 61 

that a strong relationship exists between the geographical distribution of land cover and the 62 

environmental and climate conditions and that these relationships can be empirically extracted 63 

using statistical machine learning methods [DeFries and Chan, 2000; Guisan and Zimmermann, 64 

2000; McIver and Friedl, 2002; Brown de Colstoun et al., 2003; Guisan et al., 2006; Klein et al., 65 

2012].  Machine learning refers to a broad set of computational techniques used for identifying 66 
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patterns in data and are usually applied where standard techniques such as regression analysis are 67 

not applicable.  Machine learning algorithms statistically learn patterns and rules based on 68 

present correlations defined by a training set of data and provides a learned mapping between 69 

predictor variables (or attributes) and a target variable [Witten et al., 1993; Bishop, 2006].  Once 70 

a model is developed through training, it can be used to predict the target variable in situations 71 

where the predictor variables are known but the target variable is not [Mitchell, 1997].  Some of 72 

the widely used machine learning techniques include Neural Networks (NN), Support Vector 73 

Machines (SVM), Classification Trees (CT), Regression Trees (RT), Random Forests (RF), 74 

Boosted Regression Trees (BRT), and Multivariate Adaptive Regression Splines [Vapnik, 1999; 75 

Domingos, 2012; Alpaydin, 2014]. 76 

Machine learning models have been widely used to predict the changes in land cover for 77 

a given site or region.  Rogan et al. [2008] compared three different machine learning models 78 

(CT, Maximum Likelihood Classification, and NN) to detect changes in land cover classes 79 

across two sites in California, USA between the years 1990 and 1996.  Similar model 80 

comparison was done by Schneider [2012] for land cover change detection in China across five 81 

time periods between 1988 and 2009.  Pearson et al. [2013] used a RF model to identify 82 

relationships between 19 bioclimatic variables from the WorldClim database and eight tundra 83 

vegetation types in the Arctic, and then used the trained model to predict future vegetation cover 84 

classes for the climate change scenarios in the 2050s.  Statistical machine learning models have 85 

an advantage over the physically based models due to their significantly faster computational 86 

speed and better predictive capacity [Im and Jensen, 2005; Rogan et al., 2008].  Thus, they can 87 

operate at both high spatial resolutions and over very large areas with much lower computational 88 

overhead.  However, one limitation of the machine learning models is that their application has 89 
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so far been restricted to the change detection/prediction of categorical (i.e., classified) land cover 90 

information. 91 

In this paper, our goal is to extend the utility of machine learning models to predict the 92 

spectral band information of high-resolution satellite based land cover images (which is 93 

continuous scale numerical data) for a future climate change scenario.  The rationale for doing so 94 

is two-fold.  First, there is a body of evidence that strongly relates remote sensing proxies, such 95 

as the Normalized Difference Vegetation Index (NDVI), to ecologically important processes 96 

[Roughgarden et al., 1991; Kerr and Ostrovsky, 2003; Pettorelli et al., 2005], and their 97 

prediction into the future will offer a quantitative understanding of ecological change.  98 

Availability of spectral band information for a future scenario would be critical to derive such 99 

proxy data.  Second, as will be demonstrated, our methodology can be used to provide a 100 

photorealistic view of land cover change, which from a conceptual vantage point, provides new 101 

and intuitive insights to understand the implications of change.   To conduct this research, we 102 

have used the topographic and historical climate data (1950-2000) from two large sites in the 103 

United States, one in the state of New Mexico and the other in the state of Washington, to train a 104 

RF machine learning model.  The model is trained to predict the spectral values from bands 1 105 

(Blue), 2 (Green), 3 (Red), and 4 (Near Infrared) of a Landsat 7 image.  Then, with the GCM 106 

climate forecast data from the 2061-2080 period as input, we use the trained model to predict the 107 

future band information and its derivative RGB and NDVI images.  The data used include 108 

Landsat 7 reflectance imagery, mean annual temperature and annual precipitation for the 1950-109 

2000 period, Digital Elevation Model data, and the future climate projections generated using the 110 

Goddard Institute for Space Studies (GISS) GCM version E2 that are downscaled and bias 111 

corrected to the current climate. 112 
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 113 

2 Study Area and Data 114 

2.1 Study sites 115 

Our New Mexico site (Figure 1) is located in the north-central region of New Mexico 116 

state in the western US and includes the N-S flowing Rio Grande River, the Jimenez Mountains 117 

on the west, and the Santa Fe National Forest on the east.  Elevation ranges from 1573 to 3972 118 

m.  The annual mean temperature ranges from -1.3°C at higher altitudes to 12.7°C in the valleys.  119 

Annual precipitation ranges from 250 mm in the valleys to 1000 mm in the uplands.  Dominant 120 

vegetation types include grasses near the river channel, shrubs in the lowlands and along the 121 

mountain slopes, and evergreen vegetation in the uplands.  Uplands also include grasses and a 122 

small fraction of mixed forest.  The soil type in this region consists mainly of Entisols, 123 

Inceptisols and Alisols.  Exposed rock formations are also present in areas surrounding the 124 

mountain peaks [Wolock, 1997].  The total area covered is 10,570 km2. 125 

[Insert Figure 1 here] 126 

Our Washington site (Figure 1) is located in the northwest part of Washington state and 127 

includes the North Cascades National Park and part of the Mount Baker-Snoqualmie National 128 

Forest.  Elevation ranges from 70 m in the southwest to 3300 m in the northeast.  The North 129 

Cascade Range is oriented in a NW-SE direction and divides the region into distinct regimes; 130 

cool and wet to the west of the range during winter and cold and dry to the east.  Summers are 131 

typically dry throughout the region.  The predominant vegetation is evergreen forest, which 132 

covers more than 60% of the site area.  Major tree species include Western Hemlock, Pacific 133 

Silver Fir, Subalpine Mountain Hemlock, Alpine, Subalpine Fir, and Douglas Fir [Crawford et 134 

al., 2009].  Other significant vegetation are shrubs, covering 14% of the territory, grasslands are 135 
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8% of the area, and deciduous forests are 1% of the area.  The most distinctive feature of this 136 

landscape is the arc of perennial snow that covers about 1.5% of the land area.  Soils are 137 

predominantly Andisols, Inceptisols, and exposed rock formation (rock outcrops) at higher 138 

altitudes of the mountain range [Wolock, 1997].  Rock outcrops account for almost 8% of the 139 

area.  Annual mean temperature ranges from -4.9°C at higher altitudes to 10.5°C at lower 140 

altitudes.  Annual precipitation varies between 460 mm, east of the Cascade Mountains, to 2087 141 

mm on the western side of the mountains [Hijmans et al., 2005].  The total area covered is 9,400 142 

km2. 143 

2.2 Data 144 

Table 1 summarizes the spatial data used as model inputs at each of the two study sites.  145 

We use the 32 day raw composite satellite images from Landsat 7, specifically seeking 146 

information on the values of spectral bands 1, 2, 3, and 4, which correspond to the blue, green, 147 

red, and near infrared colour channels, respectively.  Both historical and future climate datasets 148 

(items 4 and 5 in Table 1) are obtained from the WorldClim dataset [Hijmans et al., 2005].  The 149 

historical observed climate data by Hijmans et al. [2005] has used observed meteorological 150 

station data (47544 stations for precipitation and 24542 stations for air temperature) from a 151 

variety of sources, such as Global Historical Climatology Network (GHCN v2), World 152 

Meteorological Organization’s Climate Normals (WMO CLINO), and Food and Agricultural 153 

Organization’s Agroclimatic Database (FAOCLIM 2.0).  These observed point data have been 154 

interpolated over a 1 km global grid using the thin-plate smoothing spline algorithm.  As shown 155 

in Figure 1 of Hijmans et al. [2005], the meteorological station density is amongst the highest in 156 

the continental United States. The downscaled 2061-2080 climate data from the GISS E2 model 157 

output are for the Representative Concentration Pathway (RCP) 8.5 scenario [IPCC, 2013].  To 158 
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ensure fast computation as well as uniformity amongst the different datasets, we resample all the 159 

above-mentioned data onto a common 150 m resolution grid. 160 

[Insert Table 1 here] 161 

 162 

3 Methods 163 

3.1 Machine learning model 164 

We use the RF model [Breiman, 2001], which is an ensemble-based machine learning 165 

method, to predict the spectral band information of Landsat images.  The spatial data used as 166 

model inputs, i.e., the predictor variables, are elevation, aspect, slope, mean annual precipitation 167 

and temperature.  The model outputs, i.e., the target variables, are the spectral values from bands 168 

1, 2, 3, and 4 of the Landsat image. 169 

Each ensemble member in the RF model is a Decision Trees (DT) model, which is 170 

essentially an inverted binary tree structure where splitting rules govern the flow of decisions.  171 

The DT algorithm begins at the top node and proceeds down through internal nodes and 172 

branches.  There are two main types of DT models: (1) CT, which are used when the data type of 173 

target variables is categorical, and (2) RT, which are used when the data type of target variables 174 

is numerical.  Since our target variables are the spectral band values in every pixel of the Landsat 175 

data, we use RT as the base ensemble constituent of our RF model.  Each node of RT is a binary 176 

split that is conditional based on the value of a predictor variable.  The particular form of RT that 177 

we use here is Classification and Regression Tree (CART).  CART builds a RT in a top-down 178 

manner, first creating a root node and progressively splitting the data into two sub-trees.  The 179 

final output of RF model is the mean of the output from all individual RT models in the 180 

ensemble. 181 
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A drawback of the DT models is their tendency to overfit the training dataset by building 182 

very deep trees [Bramer, 2007].  This can lead to poor model performance when making 183 

predictions outside the training dataset.  RF models reduce the risk of overfitting in two main 184 

ways.  Firstly, given that the RF model structure is an ensemble of a large number of DT models, 185 

its output is not overly dependent on that of any single DT model.  Secondly, when creating the 186 

training dataset for its ensemble member models, the RF model uses the bootstrap aggregating 187 

method (also referred to as bagging) [Breiman, 1996].  In this method, the original training 188 

dataset is sampled with replacement, thereby creating a sub-sampled dataset that has the same 189 

length as the original training dataset.  The use of bagging method ensures that: (1) each 190 

individual DT model in the ensemble is trained with a slightly different dataset, and (2) part of 191 

the original training dataset that is left out due to bagging can be used as the test dataset to 192 

determine model performance (also known as the out-of-bag (OOB) score).  Here, we use the 193 

coefficient of determination (R2) to measure the RF model’s OOB score. 194 

One of the main controlling factors in RF model’s performance is the number of its 195 

ensemble members (i.e., individual RT).  Typically, having too few ensemble members leads to a 196 

poor OOB score, and increasing the number of ensemble members can improve the OOB score.  197 

However, the improvement in model performance becomes marginal once a certain threshold of 198 

ensemble members is crossed, and having too many ensemble members simply adds to the 199 

computational cost without any performance gain.  During preliminary tests of the RF model 200 

with our datasets, we found that having more than 100 RT model ensembles provides virtually 201 

no improvement in the OOB score.  Therefore, for all the results presented in this paper, our RF 202 

model consists of an ensemble of 100 RT models. 203 

During the training phase of RF model, we use the historical climate data (see Table 1) 204 
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and topographic variables (elevation, slope, and aspect) as model inputs.  The spectral band 205 

information from Landsat 7 images is used for comparison with model outputs to calibrate the 206 

RF model.  In the prediction phase, the RF model uses the future climate data and the 207 

topographic variables as model inputs.  We use the RF model in the scikit-learn machine learning 208 

package that is implemented in Python® programming language [Pedregosa et al., 2011]. 209 

3.2 Post-processing of the model outputs 210 

The output of RF model is the spectral band information of the Blue, Green, Red, and 211 

Near Infrared bands of the Landsat image.  We use this output information to create two derived 212 

products: (1) a true colour photorealistic image consisting of the Red, Green and Blue (RGB) 213 

colour bands, and (2) an image showing the NDVI values of the study sites.  NDVI value for 214 

each pixel is calculated using the following formula. 215 

  NDVI =  
𝐵4 − 𝐵3

𝐵4 + 𝐵3
      (1) 216 

where, B4 is the Near Infrared colour band and B3 is the Red colour band of a Landsat 7 satellite 217 

image. 218 

 In addition to the OOB score obtained during the RF model’s training phase (see Section 219 

3.1), we calculate two more error metrics to assess the model performance for the final trained 220 

images.  For the photorealistic image, the error at each pixel is calculated as follows. 221 

𝐸RGB =  √(𝐵1,obs −  𝐵1,pred)
2

+  (𝐵2,obs − 𝐵2,pred)
2

+  (𝐵3,obs − 𝐵3,pred)
2
   (2) 222 

where, B1 is the Blue colour band, B2 is the Green colour band, and obs and pred denote the 223 

observed and model predicted spectral band values, respectively.  For the NDVI image, the error 224 

at each pixel is calculated as follows. 225 

   𝐸NDVI =  NDVIobs − NDVIpred     (3) 226 

 227 
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4 Results and Discussion 228 

We first present the results from the RF model’s training phase, which uses the 229 

topographic and historical climate data to train the model for predicting the four spectral band 230 

values (Blue, Green, Red, and Near Infrared) of the Landsat image.  For the New Mexico site, 231 

the OOB R2 value for the prediction of four spectral band values is 0.79.  For the Washington 232 

site, the OOB R2 value is 0.73.  Figure 2 compares the original Landsat and the trained true 233 

colour photorealistic images for both study sites.  Images produced using the RF model are able 234 

to capture almost all the major land cover features at both sites, and there is good visual 235 

agreement with the original Landsat images. 236 

[Insert Figure 2 here] 237 

Figure 3 compares the NDVI values between the original and trained images at both 238 

study sites.  For the New Mexico site, the R2 value between observed and simulated NDVI 239 

values is 0.97.  For the Washington site, R2 = 0.96 between the observed and simulated NDVI 240 

values.  It is worth noting here that the R2 values are much higher for NDVI because at each site 241 

we compare all the pixels between the observed and simulated data, whereas for the raw spectral 242 

band values, we only compare the pixels that were left out from training due to bagging. 243 

[Insert Figure 3 here] 244 

Figure 4 shows the RGB error between the original Landsat and the model generated 245 

photorealistic images calculated at each pixel using Equation 2.  The error across RGB band 246 

values is lower at the New Mexico site, where there is no prominent geographical pattern for 247 

high error values.  Conversely, the Washington site has higher error across the RGB band values, 248 

and the high error pixels are predominantly located in areas adjacent to the perennial snow cover.  249 

Figure 5 shows the error between the original and model generated NDVI images calculated at 250 
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each pixel using Equation 3.  Consistent with the RGB error shown in Figure 4, the NDVI error 251 

values are lower at the New Mexico site compared to the Washington site. 252 

[Insert Figure 4 here] 253 

[Insert Figure 5 here] 254 

Next, we focus on the prediction phase of the RF model, which uses the topographic and 255 

future climate data (see Table 1) to predict the spectral band values for the RCP 8.5 climate 256 

change scenario.  Figure 6 compares the historical (trained) and the future (predicted) true colour 257 

photorealistic images for both study sites.  For the New Mexico site, the most prominent change 258 

is the increase in vegetation cover within the forested areas on either side of the Rio Grande 259 

river.  For the Washington site, there is a substantial decrease in the perennial snow cover in the 260 

vicinity of Mount Baker (top left of the image) as well as across other mountainous areas along 261 

the Cascades Mountain Range.  Many areas that appear as snow covered in the trained historical 262 

image are replaced by bare ground in the future scenario image.  Figure 7 shows the NDVI 263 

images at both study sites for the historical (trained) and the future (predicted) scenarios.  The 264 

overall increase in vegetation cover at the New Mexico site is discernible from the NDVI 265 

comparison.  Interestingly, the reduction in perennial snow cover for the Washington site can be 266 

perceived through the increase in NDVI values in the mountainous areas. 267 

[Insert Figure 6 here] 268 

[Insert Figure 7 here] 269 

We have attempted to demonstrate that a machine learning model that is trained to predict 270 

the spectral band information of satellite images can be highly useful for scenario-based 271 

assessment of future land cover.  Moreover, given the richness of information available from 272 

spectral band values, it is possible to create several derived products to analyse (and visualize) 273 
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land cover response to climate change from multiple perspectives.  In our view, this is a non-274 

trivial improvement from previous land cover change studies which had limited the application 275 

of machine learning models to categorical land cover classification data [Rogan et al., 2008; 276 

Schneider, 2012; Pearson et al., 2013].  It is worth mentioning here that the categorical land 277 

cover classification data itself is a product that is derived from satellite image data, similar to the 278 

photorealistic images and NDVI data shown in our study.  Several methods, many of them based 279 

on machine learning, exist to convert the satellite’s spectral band information into land cover 280 

classes [Friedl and Brodley, 1997; DeFries and Chan, 2000; Hansen et al., 2000; Qian et al., 281 

2015].  We would also like to note that our focus on predicting only the first four spectral bands 282 

of the Landsat 7 images was governed by our choice of derivative products, the NDVI and RGB 283 

images (which require the use of first four bands only).  Nonetheless, the techniques presented in 284 

this study are applicable to predicting the information from any desired number of satellite 285 

spectral bands, depending on the final product sought by the end user. 286 

Our preference for choosing a RF machine learning model in this study was partly due to 287 

the fact that its ensemble constituents are comprised of DT models, which offers a number of 288 

attractive features over other statistical learning techniques.  DT models are non-parametric and 289 

therefore make no assumptions regarding the distribution of the data.  They are structurally 290 

explicit models and provide for a clear interpretation of the connections between the predictor 291 

and target variables.  Normalization of attribute distances is unnecessary in these models, and 292 

their internal structure (essentially a cascading set of data splitting decisions) makes them much 293 

more tolerant to redundancies in the information content among the input variables [Song and 294 

Lu, 2015].  In addition, they tend to be computationally faster than other machine learning 295 

techniques [Witten and Frank, 2005; Kotsiantis et al., 2007; Rogan et al., 2008; Schneider, 2012] 296 
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such as NN or BRT, and certainly faster than the physically based mechanistic models for a 297 

similar resolution data and areal extent.  Lastly, as we had mentioned in Section 3.1, the 298 

ensemble averaging process in a RF model mitigates the drawbacks caused by the direct use of a 299 

standalone DT model.  Nonetheless, there are a few assumptions and limitations built into our 300 

methodology.  Firstly, our model requires long term climatic averages of precipitation and air 301 

temperature as inputs.  These were chosen because the development of natural vegetation cover 302 

is a gradual process and would be a function of past climate over a long time period (in the order 303 

of decades) [Dale, 1997; Kangur et al., 2005; Soudzilovskaia et al., 2013], especially for forested 304 

areas which are abundant in both our study sites.  Unfortunately, this makes the model unsuitable 305 

for change detection at short time scales, and a time gap of several decades would be needed 306 

between the training and prediction dataset to obtain meaningful change detection.  Secondly, 307 

our input data was resampled to a common grid resolution of 150 m prior to running the model, 308 

which was done to limit the computational expenditure in the desktop runtime setting.  Grid 309 

resampling does bring another source of uncertainty to the model, but is unavoidable due to 310 

different resolutions of our input datasets.  Nonetheless, it would be possible to run our model at 311 

finer spatial resolutions if additional computational resources are available to the user. 312 

As we look forward, the method presented in our study offer both challenges and 313 

opportunities.  Firstly, our model presumes that the land cover change for the 2061-2080 period 314 

is simply the application of learned rules from the historical period to the climate changed 315 

environment.  Many sites within our two study regions have experienced disturbance due to, for 316 

example, grazing pressure and fires [Everett et al., 2000; Floyd et al., 2003; Allen, 2007].  317 

However, to a large extent, this is mitigated by the fact that our land cover training is conducted 318 

over regions that are much larger than the scale of a typical disturbance.  Secondly, the predicted 319 
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land cover for 2061-2080 period does not indicate the velocity of land cover change in response 320 

to changes in precipitation and air temperature [Loarie et al., 2009].  Thus, our model does not 321 

provide any mechanistic understanding of how the final predicted state of land cover will be 322 

reached. 323 

Within the limits of these challenges, the method presented here does provide a few 324 

opportunities.  Monthly Landsat images are available at the 16 and 32 day time frames going 325 

back to 2002, and can provide ample raw data to explore how the seasonality of vegetation will 326 

be altered in a future scenario.  Ongoing improvements in the satellite sensor technology, such as 327 

those in the recently launched Landsat 8 satellite [Knight and Kvaran, 2014; Roy et al., 2014], 328 

also have the potential to provide increasingly better quality input data to land cover change 329 

models.  The fast computational speed of the machine learning models permit the rendering of 330 

future land cover over much larger areas than our study regions, possibly even covering the 331 

entire continental USA.  The five predictor variables we used were obtained from three primary 332 

data sources: rainfall, air temperature, and elevation (slope and aspect are derivative products of 333 

elevation), and were chosen based on what we judged to be important factors for predicting land 334 

cover.  Nonetheless, we cannot rule out the possibility that, at least in some regions, inclusion of 335 

different types of predictor variables could improve the machine learning model’s capability to 336 

predict land cover.  Therefore, there is opportunity to experiment with the predictor variables by 337 

adding to or modifying the data sources. 338 

 339 

5 Conclusions 340 

In this paper, our goal was to extend the utility of machine learning based land cover 341 

change models to predict the spectral band information of satellite based land cover images.  We 342 
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used the topographic and historical climate data from two large sites in the United States to train 343 

a RF machine learning model to predict the spectral values from bands 1 (Blue), 2 (Green), 3 344 

(Red), and 4 (Near Infrared) of Landsat 7 image.  We then used the trained model to explore 345 

what the land cover might look like for a climate change scenario during the 2061-2080 period 346 

through the two derived products.  Our results showed that the RF model can accurately 347 

reproduce the land cover properties for historical data and is able to provide realistic rendering of 348 

future land cover for a climate change scenario.  The two derived land cover products 349 

(photorealistic RGB image and NDVI image) shown in our results demonstrate that the direct 350 

prediction of spectral band information is helpful for deriving ecologically relevant products.  351 

We consider this a major strength of our proposed approach because it enables the analysis of 352 

land cover change from multiple perspectives. 353 

What land cover change will occur over the next 100 years is highly uncertain.  However, 354 

presuming little is done to reduce the rate of CO2 emissions, the global air temperatures for the 355 

2081–2100 period are projected to be to 1.5 - 4.8 °C higher than for the 1986–2005 period 356 

[IPCC, 2013].  This will almost certainly impact regional and global land cover [Krinner et al., 357 

2005; Beer et al., 2007; Sitch et al., 2008; Anav et al., 2010; Hickler et al., 2012].  We hope that 358 

the method presented here makes a useful contribution towards understanding and predicting 359 

these changes. 360 
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Tables 

Table 1: Summary information of all the input data used for training the machine learning model 

Attribute Source Resolution 

Elevation USGS National Elevation Dataset 30 m 

Aspect Calculated from Elevation data 30 m 

Slope Calculated from Elevation data 30 m 

Historical mean 

annual 

temperature and 

precipitation 

Worldclim – Normal 1950-2000 period [Hijmans et al., 

2005] 

1000 m 

Future mean 

annual 

temperature and 

precipitation 

Worldclim – Downscaled GISS E2 2061-2080 period 

[Hijmans et al., 2005] 

1000 m 

Landsat 7 

reflectance 

imagery 

For New Mexico: 16 October 1999 – 17 November 1999 

For Washington: 12 July 2001 – 13 August 2001 

30 m 
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Figures 

 

Figure 1: Location map of the two study sites. 
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Figure 2: Comparison of the original Landsat 7 images and the RF model trained true colour 

photorealistic images for the two study sites. 
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Figure 3: Comparison of the NDVI values between the original historical images (derived from 

Landsdat 7 using Equation 1) and the RF model trained images for the two study sites. 
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Figure 4: Spatial distribution of the error in RGB band values calculated for each pixel at (a) New 

Mexico site, and (b) Washington site.  Also shown are the error histograms using the data from all 

the pixels at (c) New Mexico site, and (d) Washington site. 
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Figure 5: Spatial distribution of the error in NDVI values calculated for each pixel at (a) New 

Mexico site, and (b) Washington site.  Also shown are the error histograms using the data from all 

the pixels at (c) New Mexico site, and (d) Washington site. 
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Figure 6: Comparison of the historical (RF model trained) and future (RF model predicted for RCP 

8.5 scenario) true colour photorealistic images for the two study sites. 
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Figure 7: Comparison of the NDVI values between the historical (RF model trained) and future 

(RF model predicted for RCP 8.5 scenario) images for the two study sites. 


