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Abstract 14 

  15 

Holobionts are characterized by the relationship between host and their associated 16 

organisms such as the biofilm associated with macroalgae. Considering that light is 17 

essential to macroalgae survival, the aim of this study was to verify the effect of light on 18 

the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum 19 

during its growth cycle. Measurements of heterotrophic activity were done under natural 20 

light levels at different times during a daily cycle and under an artificial extinction of 21 

natural light during the afternoon. We also measured Sargassum primary production 22 

under these light levels in the afternoon. Both measurements were done with and 23 

without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly 24 

represented by bacteria but diatoms, cyanobacteria and other organisms were also 25 

common. When a peak of diatom genera was recorded, the heterotrophic activity of the 26 

biofilm was higher. Heterotrophic activity was usually highest during the afternoon and 27 

the presence of a photosynthesis inhibitor caused an average reduction of 17 % but there 28 

was no relationship with Sargassum primary production. These results indicate that 29 

autotrophic production in the biofilm was reduced by the inhibitor with consequences 30 

on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics 31 

chloramphenicol and penicillin were more effective than streptomycin. We suggest 32 

primary producers in the biofilm are more important to increase bacterial activity than 33 

the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic 34 

activity in biofilm during the afternoon and the effects of autotrophic inhibitors on 35 

heterotrophic activity. 36 

 37 

Keywords: prokaryotic-eukaryotic interaction; sun light; autotrophic-heterotrophic 38 

production; leucine incorporation; specific metabolic inhibitors; Brazilian upwelling 39 
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Introduction 42 

 43 

 Biofilms are ubiquitous features of any immersed surface in aquatic 44 

environments including the surfaces of living organisms [35].  Macroalgae or seaweeds 45 

provide a highly attractive surface for the development of microbial biofilms;  not only 46 

do they provide a solid surface for attachment but they also release large amounts of 47 

organic carbon which can be utilised by microorganisms [1]. Hence macroalgae support 48 

complex and highly dynamic microbial communities. Understanding of the interaction 49 

between these predominantly prokaryotic communities and the seaweeds on which they 50 

grow is relatively poor [13]. This is surprising given that the seaweed/biofilm system 51 

potentially provides an ideal model to explore the interface between eukaryotic and 52 

prokaryotic ecology and specifically to examine the bi-directional relationship between 53 

holobiont partners [32].  54 

The relationship between seaweeds and prokaryotes can operate in a positive and 55 

negative sense for both partners [13]. For example, algal products such as dissolved 56 

organic matter can stimulate prokaryotic activity [15] but algae can also produce 57 

compounds which are toxic to prokaryotes [21]. Products derived from epiphytic 58 

prokaryotes such as CO2, fixed nitrogen and specific growth factors can benefit 59 

macroalgal photo-autotrophy and growth [9; 19]. In this holobiont model, biological, 60 

chemical and physical surface properties of seaweeds, which may be determined by 61 

factors such as environmental conditions and seaweed age, have an important role in 62 

determining the composition and activity of prokaryotic communities [2].  63 

In addressing the nature and direction of the relationship between prokaryote 64 

biofilms and eukaryotic seaweeds, one profitable approach can be through 65 
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measurements of prokaryotic heterotrophic activity by the 3H-leucine incorporation 66 

technique [5]. Using Sargassum as a biological model, the use of specific inhibitors 67 

showed that biofilm heterotrophic activity was mainly bacterial. However, the effect of 68 

different antibiotics were tested only in laboratory conditions. In addition, bacterial 69 

activity was also inhibited by an eukaryotic inhibitor in dark conditions, suggesting a 70 

symbiotic relationship between eukaryotes and prokaryotes in the Sargassum model. 71 

Finally, bacterial activity was higher when incubations were done in field conditions 72 

than in the laboratory, suggesting that natural solar light could be also important to the 73 

heterotrophic prokaryotic production. Thus, it is possible that bacterial activity is 74 

associated with algal autotrophic production that could change during the daily cycle 75 

and by light intensity. 76 

Using Sargassum furcatum as a seaweed holobiont model, the aim of this work 77 

was to determine if: 1) bacterial activity in the biofilm is associated with algal 78 

autotrophic production; 2) varies seasonally; 3) varies over the day-night cycle as well 79 

as 4) under different light intensities in the afternoon; and 5) different antibiotics have 80 

different effects on the bacterial activity. In a series of experiments performed monthly 81 

using different ages of Sargassum, we also evaluated environmental conditions, 82 

observed biofilm by microscopy and compared biofilm bacterial activity with or without 83 

a photosynthesis inhibitor.  84 

 85 

Materials and Methods 86 

 87 

Sargassum Sampling 88 

 89 

Experiments were done in Arraial do Cabo (23°S, 42°W), the main upwelling 90 



4 
 

area on the Brazilian coast located in the Cabo Frio region of Rio de Janeiro state 91 

[details in 7]. Sampling was undertaken monthly in a Sargassum bed at 4-6 m depth at 92 

the Farol beach station, Cabo Frio Island, between November 2007 and April 2008. 93 

Physico-chemical water variables (nutrients, chlorophyll, temperature and salinity) were 94 

available over the period of study through the weekly monitoring of the Brazilian navy 95 

(Instituto de Estudos do Mar Almirante Paulo Moreira – IEAPM) and methods used are 96 

described elsewhere [6]. Solar light radiation was measured every 5 minutes during all 97 

experimental periods using a LICOR LI-1.000 Datalogger/Li-193 SA spherical quantum 98 

sensor. 99 

Specimens of Sargassum furcatum were collected and selected by size over its 100 

growth cycle from November to April [26]. Therefore, individuals up to 5 cm were 101 

sampled in November; between 5 and 15 cm in December; between 10 and 20 cm in 102 

January; between 15 and 25 cm in February; between 15 and 30 cm in March and; up to 103 

10 cm in April, representing the end of its life cycle. Five individuals in the size classes 104 

described above were collected at random within the Sargassum bed and transferred in 105 

polyethylene pots (500 mL) to the laboratory approximately 200 m away. Biofilm 106 

composition was observed by epiflourescence and scanning electron microscopy. 107 

Blades of each Sargassum individual were used for microscopic observations (n=5) as 108 

well as for measurements of bacterial activity (n=5). A pilot study showed no statistical 109 

difference in bacterial activity using 5 or 15 replicates.  110 

   111 

Experimental conditions 112 

 113 

Bacterial activity was measured at all six sampling dates. To understand the 114 

daily pattern of heterotrophic production, measures were made at different times of the 115 
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day during the afternoon (12:00 – 15:00), evening (18:00 – 20:00), night (23:00 – 116 

01:00) and morning (07:00 – 09:00) at each sampling event. Light levels vary over this 117 

24 hour cycle but co-vary with other factors including temperature and internal diel 118 

rhythms. Thus to unambiguously determine the effect of light, measures were made at 119 

the time of peak light levels during the afternoon (12:00 – 15:00) over a light extinction 120 

sequence using an artificial reduction of natural light (100 %, 75 %, 50 %, 25 %, 10 %, 121 

1 % and 0 %) using different levels of a black mesh. 122 

All measures of activity were made in the sea at a depth of approximately 0.5 m, 123 

using a submerged platform supporting an open ended acrylic tube into which algal 124 

material was placed. One blade of approximately 1 cm2 from each plant (n=5) were 125 

incubated in separate 2-mL microcentrifuge tubes (eppendorf) with local 0.22-µm 126 

filtered water held within a 125-ml Winkler bottle. The dry weight in each cm2 of 127 

Sargassum blade was 0.004 ± 0.001 g.  128 

For autotrophic production, five blades were inserted into one 125 mL glass 129 

Winkler bottle with local 0.22-µm filtered water to have an amount of algal biomass 130 

that could be detected by the method used. In November, the measurement was 131 

determined by the mean of three Winkler bottles since there was no experimental 132 

treatment. In the other months, two treatments were tested (with and without specific 133 

inhibitors) and photosynthesis incubation was done in three bottles (n=3). 134 

To directly test the relationship between autotrophic production and bacterial 135 

activity a photosynthesis inhibitor (10 µM diuron) was used at four of the sampling 136 

dates at each of the four times of day (Table 1). Bacterial activity was thus compared 137 

when photosynthesis was naturally occurring and when inhibited. We also tested 138 

different antibiotics in November, January and March (through comparing bacterial 139 

activity with and without the use of antibiotics at the sampling dates): 5 µg.L-1 140 
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streptomycin + 100 units.L-1 penicillin were used in November, 5 µg.L-1 streptomycin 141 

were used in January and 0.2 nM chloramphenicol in March samplings (Table 1).  142 

 143 

Bacterial activity 144 

 145 

Bacterial activity was determined using an adaptation of the 3H-leucine 146 

incorporation technique [5] following a methodology for periphyton associated with 147 

macrophyte roots [23]. Briefly, blades of approximately 1 cm2 were incubated in 2.0 148 

mL eppendorf with 35 nM 3H-leucine in 1.5 mL of 0.22-μm filtered water (n=5). The 149 

incubation time was 1.5 – 3 h and 80 μL of 100 % trichloroacetic acid (TCA) was used 150 

to stop the incubation. In addition all experiments were performed using a killed control 151 

where production was terminated at the start by adding 5 % TCA just before the input 152 

of 3H-leucine. Following incubation, samples were frozen until protein extraction. 153 

Extraction started with a 5-min sonication bath, and then the blade was removed. 154 

Samples were centrifuged at 2,500 g for 15 min, and the supernatant was transferred to 155 

a new microcentrifuge tube before being centrifuged again at 13,000 g for 10 min, after 156 

which time the supernatant was discarded; 1.5 mL of cold TCA (5 %) was added, and 157 

the centrifugation process was repeated. One milliliter of 80 % ethanol was added, and a 158 

new centrifugation was done. Finally, 1 mL of scintillation cocktail (Cytoscint) was 159 

added and, after an overnight period, radioassayed by scintillation counting (TRICARB 160 

PACKARD 1600) for 30 min or after the accumulation of 10,000 counts [as determined 161 

by 6]. Leucine incorporation rate (in moles per squared meter per hour) was calculated 162 

considering net disintegrations per minute (DPM), sample area (1 cm2), leucine 163 

concentration, 3H-leucine specific activity (72 Ci.mmol−1) and time of incubation.  164 

 165 
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Sargassum Autotrophic production 166 

 167 

To measure the Sargassum primary production, five blades (1 cm2) were 168 

incubated in 125 mL glass Winkler bottles with local 0.22-µm filtered water. It is 169 

important to mention that blades were not axenic since they were sampled from the 170 

natural bed. Hence both microautotrophs and heterotrophs were included in both 171 

production and consumption of carbon. Oxygen was fixed to determine its initial 172 

concentration. A dark control was used to determine oxygen consumption, and a glass 173 

with no blade of Sargassum was used to verify phytoplankton production. Then, 174 

primary production was determined using the Winkler method after 2-3 h of incubation 175 

stopped with oxygen fixation [27].  The results were calculated considering the 176 

difference of oxygen between the end and the beginning of the experiment divided by 177 

the total dry weight of the five blades and the time of incubation (ngC.gdw-1.h-1). The 178 

photosynthetic coefficient was between 0.98 – 1.01 [31]. 179 

 180 

Statistical analysis 181 

 182 

Two way ANOVA was done considering all factors as fixed and orthogonal and  183 

a 0.1 significance level. 4 levels were used for the factor time of day (morning, 184 

afternoon, evening and night), 7 levels for the factor light incidence (100, 75, 50, 25, 10, 185 

1, 0 %) and two levels for the factor inhibitor (with or without). When necessary, data 186 

were log transformed and analyses run using WinGmav software (version 5.0). In the 187 

experiments at different times of the day, November was omitted owing to lack of 188 

measurement in the morning time. Multiple comparisons of levels within significant 189 

factors were made using Student Newman Keuls (SNK) tests.  190 
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 191 

Results 192 

 193 

Environmental conditions during the experiments 194 

  195 

 All environmental conditions during sampling can be found in Tables 2 and 3. 196 

Light intensity (at approximately 0.5 m depth) was high during the afternoon and 197 

morning experiments except in December and January when it was approximately one 198 

thousand times lower compared to the other months. During this time, a bloom of 199 

phytoplankton was visually observed and the Sargassum bed was not visible from the 200 

boat (4 m above) during arrival at the experimental area in the morning before the 201 

experiment began. In addition, pheophytin concentrations peaked in December and 202 

January (2.8 and 1.3 mg/m3, respectively) and chlorophyll a in December (1.7 mg/m3). 203 

For nutrients, nitrate was highest in February (3.1 µmol/L) and below the detection limit 204 

in April. Peak of ammonia was observed in November (1.8 µmol/L) and, of phosphate 205 

and of nitrite in December (0.6 and 0.4 µmol/L, respectively). 206 

Surface water temperatures over the duration of the experiments varied by a few 207 

degrees among months (Table 2). Surface water temperatures over 24 hours were 208 

around 20.6 °C during the experiments of November and around 23.3 °C in December 209 

but ranged from 25.3 to 23.0 °C in February, 27.2 to 24 °C in March and 25.5 to 24.4 210 

°C in April. In January, upwelling was more intense during sampling since water 211 

temperature was below 18 °C in the Sargassum bed at 4-6 m depth.  212 

Biofilm composition includes both autotrophic and heterotrophic organisms such  213 

as bacteria, phytoflagellates, diatoms, hydrozoans, cyanobacteria and eukaryotic algae. 214 

Diatom abundance peaked in January and the main taxa were Cocconeis, Navicula, 215 
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Nitzschia, Licmophora and Striatella (Baeta-Neves pers. obs.). SEM images showed 216 

high abundance of bacterial rods and Cocconeis diatoms as well as EPS production 217 

(Supplementary material). 218 

 219 

Daily and seasonal bacterial activity 220 

 221 

 Bacterial activity showed little obvious seasonal variation when measured in the 222 

evening, night-time and morning. When measured in the afternoon it showed a rapid 223 

increase from very low levels in November to a peak of over 300 pgC.cm-2.h-1 in 224 

January followed by a gradual decline over the following months (Fig. 1). Two way 225 

ANOVA revealed a significant interaction between the factors month and time of 226 

experiment (p=0.04) and SNK confirmed that bacterial activity was significantly highest 227 

during the afternoon of January. However, bacterial activity in January was only 228 

significantly higher than April (p=0.014) and independently of season, activity was 229 

significantly highest during the afternoon (p≤0.001). 230 

 231 

Bacterial activity in a simulated light extinction during the afternoon and its 232 

relationship with Sargassum autotrophic production 233 

 234 

 To check if bacterial activity is influenced by light intensity in the afternoon a 235 

series of experiments simulating different degrees of light intensity was done in each 236 

month during the Sargassum growth cycle. Considering each month no obvious pattern 237 

was observed among treatments (Fig. 2). However, ANOVA and SNK tests revealed 238 

that heterotrophic activity was highest under low light conditions in the experiments of 239 

November (p≤0.001) and February (p=0.01). Pooling all data in function of light 240 
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intensity, the highest activity was also observed under low light conditions (Fig. 2). In 241 

addition, there was no evident relationship between Sargassum primary production and 242 

the bacterial activity in the biofilm.     243 

   244 

The effect of specific metabolic inhibitors 245 

 246 

The use of 10 µM diuron in February and April inhibited Sargassum autotrophic 247 

production completely (data not shown) and its effect on bacterial activity was variable 248 

(Table 4). In the experiments conducted at different times of day done in November, 249 

December, February and April, the presence of diuron reduced heterotrophic activity 250 

between 0 to 66 % (in average 17 ± 11 %). ANOVA revealed a significant interaction in 251 

December (p=0.002) when the presence of diuron reduced bacterial activity 252 

significantly during the afternoon and night-time; and in April (p=0.008) when 253 

heterotrophic activity reduced significantly during the night-time and in the morning 254 

(Fig. 4). The effect of diuron on heterotrophic activity in the experiments simulating 255 

light extinction during the afternoon was also variable ranging from 0 to 81 % (in 256 

average 16 ± 13 %) and its effect was only significant (p=0.02) under 50 % of natural 257 

light in November (Table 4).  258 

Antibiotics had different actions on both autotrophic and heterotrophic activities. 259 

While penicillin with streptomycin completely inhibited photosynthesis of Sargassum 260 

and the heterotrophic activity in biofilm (data not shown), the effect of streptomycin 261 

alone was light-dependent since the significant reduction of both measurements were 262 

observed only under 50 % of light in the experiment conducted in January (Fig. 6). 263 

Chloramphenicol inhibited bacterial activity significantly (p≤0.001) and also had a 264 

light-dependent effect on Sargassum photosynthesis; stopping its activity under high 265 
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lights conditions (Fig. 4).   266 

 267 

Discussion 268 

 269 

 Studies on the ecology of seaweed holobionts aim to understand the mechanism 270 

and function of all microbial members and their ecological role in the alga’s life cycle. 271 

However, manipulative experiments in field conditions are challenging [11]. Our 272 

observations of the Sargassum furcatum holobiont model in its natural environment 273 

showed that biofilm composition varied with algal age and with environmental 274 

conditions; such variation potentially plays an important role in determining bacterial 275 

activity. However, we could not separate the effects of specific environmental 276 

conditions from the plant size and age. Observations at different times of the day 277 

showed that bacterial activity consistently peaked in the afternoon, when light levels 278 

were highest suggesting an association of heterotrophic and autotrophic productions. 279 

However, there was no relationship between bacterial activity and light intensity during 280 

the afternoon and no obvious correlation between Sargassum primary production and 281 

the bacterial activity in its biofilm. More studies are need to check if Sargassum also 282 

incorporate leucine. Nevertheless, our results showed some evidence of a negative 283 

effect of a photosynthesis inhibitor on bacterial activity and the highest activity occurred 284 

when diatoms were more abundant suggesting that heterotrophs may be stimulated by 285 

the autotrophic production in biofilm. Such prokaryotic-eukaryotic coupling is expected 286 

in a healthy holobiont system highlighted herein by the effect of antibiotics on both 287 

heterotrophic and autotrophic activities.  288 

 In the studied region, upwelling events are seasonal and Sargassum growth 289 

occurs as a function of its intensity [14]. Thus, upwelling should be considered an 290 
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important factor causing turnover in community composition of the benthic 291 

environment but also of planktonic prokaryotes [4] and eukaryotes [34] which are able 292 

to colonize the surface of macroalgal blades [5]. It is expected that Sargassum also 293 

selects its biofilm composition since Sargassum produces compounds with antioxidant, 294 

antibacterial, antitumoral, antimalarial, antiherbivory and antifouling properties [e.g. 28] 295 

but the concentrations of these compounds may reduce as algae age [10]. We also 296 

observed using SEM images the presence of holes indicating that settled organisms 297 

detached early increasing spatial heterogeneity and forming new habitats and niches [2] 298 

that could enhance productivity [3]. We suggest a higher niche overlap on the youngest 299 

blades when higher competition decreased bacterial activity [12] and the peak of 300 

activity in January could be associated not only with a more stable habitat but also with 301 

the subsequent increase in diatom abundance and diversity. Such increases could 302 

enhance bacterial activity by provision of diatom metabolic products. The reduction in 303 

bacterial activity after the peak in January could be a function of both diatom 304 

detachment and the regressing of Sargassum blades (increasing polymer degradation) 305 

leading to a reduction in autotrophic enhancement.       306 

 Bacterial activity peaked in the afternoon and we suggest its association with 307 

bioactive secondary metabolites as a consequence of photosynthesis [11] as well as with 308 

microalgal-(nutrient)-leakage after a day of photosynthesis [ 22] since it peaked during a 309 

phytoplankton bloom under an upwelling event. It is known that biofilm conditions vary 310 

in the contrasting light circumstances over a day [31] and seasonal variations in the 311 

biofilm conditions are strictly associated with light [18]. In addition, bacterial growth is 312 

usually higher during daylight hours [17] and the effect of antibiotics showed herein 313 

point to Bacteria being the major group incorporating leucine in our measurements, 314 

confirming observation in laboratory assays [5]. Similar observations have been made 315 
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in freshwater epiliphic biofilms, where bacterial biomass and activity was highest in the 316 

presence of light as a consequence of organic substrates produced by algae [29]. Thus, 317 

we suggest that exudation is an important factor for coupling algal primary productivity 318 

and bacterial activity in a seaweed holobiont model. 319 

 We cannot affirm if diatoms increased bacterial activity because of facilitation or 320 

by character displacement, since both enhance productivity over time [12; 20] and we 321 

did not measure important biotic factors such as competition, predation and herbivory 322 

[22; 25; 30]. In contrast, the importance of microalgal exudation is partially supported 323 

by the effect of photosynthesis inhibitor on bacterial activity. The wide variation in the 324 

effect of diuron could be associated with the ability of biofilms to decrease the action of 325 

many compounds [8] but also with the direct relationship between grazing pressure on 326 

bacteria and the concentration of exudates [22]. However, our results support the 327 

hypothesis that on average 17 % of the autotrophic production in the biofilm is used by 328 

bacteria in the Sargassum holobiont model.  329 

Our results, showing different degrees of antibiotic effects, corroborate the work 330 

of Nair et al. [24] that showed marine bacteria to be less sensitive to streptomycin than 331 

to penicillin and chloramphenicol. Additionally, our results showed a light-dependent 332 

effect of streptomycin and chloramphenicol on photosynthesis; such effects may not 333 

only be related to their antibiotic properties. Both are directly associated with 334 

photoinhibition since they inhibit photosystem II photosynthetic efficiency. Hader et al. 335 

[16] showed inhibition of D1 protein biosynthesis in chloroplast of seaweeds, using 336 

almost the same concentrations of both substances as in our study (500 μg/mL and 2 337 

mg/mL, for streptomycin and chloramphenicol respectively). D1 protein controls 338 

electron transport after primary photon absorption and is inhibited by visible and UV 339 

lights.  340 
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In future studies, we recommend the determination of 1) the importance of 341 

periphytic algae to the attached bacterial production and of 2) the specific effect of plant 342 

size and environmental conditions in the experimental design. In the first case, it is 343 

important to measure exudation rates by both seaweed and periphytic algae to estimate 344 

the relationship between bacterial production and primary production of both 345 

macroalgae and periphyton. Our photosynthesis measurements included both 346 

components and its inhibition resulted in a mean reduction of bacterial activity 347 

potentially caused by a reduction in carbon uptake by bacteria from periphyton or 348 

macroalgal exudate [22]. In addition, primary production is also affected by plant age 349 

and environmental conditions. Although there are benefits of measuring bacterial 350 

activity under natural conditions [5], it is important to check the effect of biotic and 351 

abiotic factors in laboratory conditions controlling variables such as secondary 352 

compounds and polymer concentrations of seaweed, periphytic algae and phytoplankton 353 

as well as UV intensity, temperature and substrate concentrations.     354 

In conclusion solar light is likely important to bacterial activity in the biofilm but 355 

not necessarily as a function of the photosynthetic activity of Sargassum furcatum. 356 

Despite bacterial activity being highest during the afternoon it was not correlated to 357 

light intensity. Bacterial activity peaked during the intermediate age of Sargassum when 358 

diatoms were abundant in the biofilm, suggesting the importance of periphytic algae.  359 

 360 
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FIGURE LEGENDS 512 

 513 

Figure 1: Seasonal bacterial activity (mean ± SE) at different times of the day during 514 

Sargassum growth between November/2007 and April/2008 (n=5).  515 

Figure 2: Mean of bacterial activity at different levels of light during Sargassum growth 516 

in the experiments done between November/2007 and April/2008 (top) (n=5); and its 517 

relationship with light intensity pooling all data (bottom) (n=3).  518 

Figure 3: Mean ± SE of bacterial activity (pgC.cm-2.h-1) at different times of the day 519 

under the presence or absence of diuron in the experiments undertaken in 520 

December/2007, February and April/2008 (n=5).  521 

Figure 4: Mean ± SEM of biofilm heterotrophic activity in different times of a day and 522 

under different levels of light during the afternoon (n=5) as well as in Sargassum 523 

autototrophic production under different levels of light during the afternoon (n=3) with 524 

and without the antibiotic streptomycin (left) and  chloramphenicol (right) during the 525 

experiments conducted in January/08. 526 
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Figure 1: Seasonal bacterial activity (mean ± SE) at different times of the day during 

Sargassum growth between November/2007 and April/2008 (n=5).  

    

 

 

 

 

 

 

Figure



Light level (%)

0 20 40 60 80 100

p
g

C
.c

m
-2

.h
-1

0

50

100

150

200

250

300 November

December

January

February

March

April

 

Light Intensity (uS.cm
-1

)

0 500 1000 1500 2000 2500

p
g

C
.c

m
-2

.h
-1

0

50

100

150

200

250

300

 

 

Figure 2: Mean of bacterial activity at different levels of light during Sargassum growth 

in the experiments done between November/2007 and April/2008 (top) (n=5); and its 

relationship with light intensity pooling all data (bottom) (n=3).  



    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Mean ± SE of bacterial activity (pgC.cm-2.h-1) at different times of the day 

under the presence or absence of diuron in the experiments undertaken in 

December/2007, February and April/2008 (n=5).  
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Figure 4: Mean ± SEM of biofilm heterotrophic activity in different times of a day and 

under different levels of light during the afternoon (n=5) as well as in Sargassum 

autototrophic production under different levels of light during the afternoon (n=3) with 

and without the antibiotic streptomycin (left) and chloramphenicol (right) during the 

experiments conducted in March/08. 



Table 1: The use of antibiotics (penicillin, streptomycin and chloramphenicol) and photosynthesis 

inhibitor (diuron) in both autotrophic production and bacterial activity for the experiments realized during 

the Sargassum growth cycle. 

 

  

Table 2: Physical-chemical variables measured in surface and deep waters during the sampling and 

experimental dates. 

a 2 days after experimen; b 1 day after experiment 

 

Table 4: Range in the reduction of bacterial activity (%) under the presence of photosynthesis inhibitor 

(diuron) in experiments in the daily cycle and simulating light extinction during the afternoon. 

 

 

Table 3: Concentration of chlorophylls in surface and deep waters during the sampling 

and experimental dates. 

 

 

 

 

 

 

 

 

 
 

a 2 days after the experiment; b 1 day after the experiment 

 

Month of the 

Experiment 
Chlorophyll-a Chlorophyll-b Chlorophyll-c Pheofitin 

  sup    dp  sup     dp  sup       dp  sup     dp 

November 0.9     0.9   0.2      0.2 0.3        0.1 0.3      0.9 

Dezember
a
 1.8     1.6  0.0      0.0 0.0        0.6 2.8      0.0 

January 0.6     0.5 0.0      0.0 0.0        0.0 1.3      0.3 

February
b
 1.0     0.7 0.1      0.2 0.5        0.3 0.0      0.0 

March 0.3     0.0 0.0      0.0  0.0        0.0  0.0      0.1 

April 0.6     0.3 0.0      0.0 0.0        0.0 0.6      0.0 

Month of the 

Experiment 

Autotrophic production Bacterial Activity 

November No inhibitor Penicillin + Streptomycin 

December Penicillin + Streptomycin Diuron 

January Streptomycin Streptomycin 
February Diuron Diuron 

March Chloramphenicol Chloramphenicol 

April Diuron Diuron 

Month of the 

Experiment 

Temp. 

(°C) 

OD  

(mg/L) 

P-PO4
3- 

(µMol.L-1) 

N-NO2
- 

(µMol.L-1) 

N-NO3
2- 

(µMol.L-1) 

N-NH4
+ 

(µMol.L-1) 
pH 

  sup    dp  sup  dp  sup       dp  sup      dp   sup     dp   sup     dp  sup   dp 

November 21.0  20.0  5.6  5.7 0.2        0.3   0.2     0.2   0.8     0.6   1.3     1.8   8.5  8.5 

Dezembera 23.4  21.5  5.4  5.0 0.1        0.6   0.0     0.4   0.1     1.0   1.1     1.7   8.8  8.7 

January 23.4  17.8  5.4  5.1 0.1        0.1   0.0     0.1    0.5     2.2   1.4     1.2   8.4  8.5 

Februaryb 22.0  21.3  5.2  5.3  0.2        0.3   0.0     0.1   3.1     3.0   0.7     1.1         8.8  8.9 

March 23.5  23.2  4.9  4.9 0.3        0.3   0.1     0.0   2.0     1.7   1.3     1.1   8.2  8.3 

April 24.3  23.8  5.1  5.1 0.1        0.1   0.0     0.0     0.0     0.0    1.1     1.1   8.4  8.4 

Month Daily cycle Afternoon Significant effect 

November 13 - 66 0 - 81 50 % of light 

December 0 - 59 0 - 47 afternoon and night  

February 0 - 40 0 - 44 ns 

April 0 - 39 0 - 25 morning and night 

Table


