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ABSTRACT 1 

 2 

This study investigates the effects of stereo disparity on the perception of three-3 

dimensional (3D) object shape. We tested the hypothesis that stereo input modulates 4 

the brain activity related to perceptual analyses of 3D shape configuration during 5 

image classification. High-density (256-channel) EEG was used to record the 6 

temporal dynamics of visual shape processing under conditions of two-dimensional 7 

(2D) and three-dimensional (3D) visual presentation. On each trial, observers made 8 

image classification judgements (‘Same’/’Different’) to two briefly presented, multi-9 

part, novel objects. On different-object trials, stimuli could either share volumetric 10 

parts but not the global 3D shape configuration, have different parts but the same 11 

global 3D shape configuration, or differ on both aspects. Analyses using mass 12 

univariate contrasts showed that the earliest sensitivity to 2D versus 3D viewing 13 

appeared as a negative deflection over posterior locations on the N1 component 14 

between 160ms-220ms post stimulus onset. Subsequently, ERP modulations during 15 

the N2 time window between 240ms-370ms were linked to image classification. N2 16 

activity reflected two distinct components – an early N2 (240ms-290ms) and a late N2 17 

(290ms-370ms) that showed different patterns of responses to 2D and 3D input, and 18 

differential sensitivity to 3D object structure. The results revealed that stereo input 19 

modulates the neural correlates of 3D object shape. We suggest that this reflects 20 

differential perceptual processing of object shape under conditions of stereo or mono 21 

input. These findings challenge current theories that attribute no functional role for 22 

stereo input during 3D shape perception. 23 

 24 

25 
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 1 

INTRODUCTION 2 

The human visual system is able to perceive, and rapidly classify, the shapes 3 

of complex three-dimensional (3D) objects with remarkable speed and accuracy (e.g., 4 

(Arguin & Leek, 2003; Harris, Dux, Benito, & Leek, 2008; Hummel, 2013; Leek, 5 

1998a, 1998b; Leek, Atherton, & Thierry, 2007; Leek & Johnston, 2006; Pizlo, 6 

Sawada, Li, Kropatsch, & Steinman, 2010; Tarr & Bulthoff, 1999). One important 7 

theoretical issue is whether the perceptual processes that support the classification of 8 

3D object shape are modulated by stereo visual input. Neurophysiological studies 9 

have shown that binocular disparity is resolved relatively early in visual cortex (e.g., 10 

DeAngelis & Newsome, 1999; Livingstone & Hubel, 1988), and that object 11 

processing areas in infero-temporal cortex can respond to shape defined solely by 12 

stereo cues (e.g., Gilaie-Dotan, Ullman, Kushnir & Malach, 2001; Tanaka, Uka, 13 

Yoshiyama, Kato & Fujita, 2001). However, it remains less clear whether stereo 14 

information modulates high-level perceptual processing of 3D object shape.  15 

In principle, stereo disparity might facilitate perceptual analyses of 3D object 16 

shape - at least under some circumstances - by providing cues to properties such as 17 

local surface slant, global depth orientation and 3D shape configuration. But while 18 

stereo input has been shown to play an important role in our interactions with objects 19 

for tasks such as prehensile movement (e.g., Watt & Bradshaw, 2003), several current 20 

theories of object recognition attribute no particular functional significance to stereo 21 

information in the perceptual analysis of 3D shape (e.g., Biederman, 1987; Cadieu, 22 

Kouh, Pasupathy, Connor, Riesenhuber & Poggio, 2007; Pizlo et al., 2010; 23 

Riesenhuber & Poggio, 1999; Serre, Oliva & Poggio, 2007).  24 

Current empirical evidence on this issue is inconclusive and largely confined 25 

to studies investigating the perception of shape equivalence across changes in 26 
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viewpoint  (Bennett & Vuong, 2006; Burke, Taubert, & Higman, 2007; Chan, 1 

Stevenson, Li, & Pizlo, 2006; Cristino, Davitt, Hayward, & Leek, 2015; Edelman & 2 

Bulthoff, 1992; Humphrey & Khan, 1992; Lee & Saunders, 2011; Liu, Ward, & 3 

Young, 2006; Pasqualotto & Hayward, 2009; Rock & DiVita, 1987).  Some studies - 4 

typically involving deformed ‘paperclips’ or ‘amoeba’ stimuli, have found stereo 5 

viewing advantages for image interpolation across viewpoint changes (e.g., Bennett & 6 

Vuong, 2006; Edelman & Bulthoff, 1992; Lee & Saunders, 2011), although stereo 7 

viewing costs have also been reported under some conditions (e.g., Pasqualotto & 8 

Hayward, 2009). A limitation of these studies is their use of stimulus types that are 9 

different from most common solid 3D objects and are not readily decomposable into a 10 

structural description of volumetric parts. Cristino et al. (2015) have recently shown - 11 

in one of the few studies to use complex, multi-part, 3D objects - that stereo 12 

presentation yields advantages in recognition when observers are required to make 13 

difficult target-distracter discriminations. One interpretation of this finding is that 14 

stereo cues may be used to constrain perceptual analyses of 3D object shape when 15 

image classification requires the computation of 3D shape configuration. That is, 16 

while stereo cues to 3D shape are computed (where available) from visual sensory 17 

input, they may only be used when object discrimination is dependent on perceptual 18 

analyses of 3D shape structure. 19 

The aim of this study was to test this hypothesis using an image classification 20 

task contrasting 2D and 3D visual presentation of stimuli, using shapes that varied 21 

systematically along dimensions that are relevant to the analysis of 3D object shape
1
. 22 

We used complex multi-part 3D objects that (a) varied according to their global 23 

                                                           
1In this study, we used the term ‘2D’ to describe non-stereo visual input (that is, where there is no 

disparity between visual inputs to the left and right eye), and ‘3D’ to refer to visual input with stereo 

disparity. 
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configuration (their constituent parts being otherwise identical), or (b) varied across 1 

their local volumetric parts (their global configuration being otherwise equal) or (c) 2 

varied on both aspects (see Fig. 1A for an illustration). A further goal was to address a 3 

methodological limitation of previous studies based solely on recordings of standard 4 

behavioural responses (i.e., RTs, accuracy) which do not provide an online measure of 5 

perceptual sensitivity to stereo disparity during image classification. To address this 6 

we used event-related potentials (ERPs) in order to provide a high temporal resolution 7 

measure of cortical activation to stereo input. The task involved observers making 8 

same/different shape judgements to pairs of these sequentially presented, surface-9 

rendered, 3D objects. Stimuli were viewed in 2D and 3D display modes in different 10 

blocks of trials by the same observers. 3D object shape similarity was factorially 11 

manipulated in terms of shared or different 3D object parts, and shared or different 3D 12 

shape configuration. These factors have previously been shown to play an important 13 

role in the perception of 3D object shape – and they are fundamental components of 14 

structure description models of recognition (e.g., Arguin & Saumier, 2004; 15 

Behrmann, Peterson, Moscovitch & Satoru, 2006; Behrmann & Kimchi, 2003; 16 

Biederman, 1987; Hummel, 2013; Hummel & Stankiewicz, 1996). This design 17 

allowed us to provide a strong test of whether stereo-defined shape information 18 

modulates the neural correlates of shape perception. We predicted that ERP responses 19 

to stimuli sharing local but not global aspects would reveal processing of local shape 20 

properties, while ERPs for stimuli sharing global but not local features would indicate 21 

global shape processing, and that moreover, stereo presentation would differentially 22 

modulate the responses associated with the discrimination of 3D objects when image 23 

classification (on “different” object trials) was dependent on specification of 3D shape 24 

configuration.  25 

26 

Page 5 of 38

URL: http:/mc.manuscriptcentral.com/pqje

Quarterly Journal of Experimental Psychology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ERP STUDY OF STEREO AND 3D OBJECT CLASSIFICATION          6 
 

 1 

EXPERIMENTAL STUDY 2 

Methods 3 

Participants  4 

Fourteen university students (7 females; mean age = 26.1; SD = 3.5) took part 5 

in the experiment and were paid for their participation. Handedness was assessed 6 

using the Edinburgh-Oldfield handedness inventory (Oldfield, 1971) and revealed that 7 

participants were all right-handed (mean laterality index: 85.7 ±22.4). None had any 8 

previous history of neurological or psychiatric disorder.  All had normal or corrected-9 

to-normal visual acuity and stereo vision. The study was approved by the local Ethics 10 

Committee. Participants signed a written informed consent form before beginning the 11 

experiment. 12 

Stimuli 13 

 The stimulus set comprised 40 novel objects (see Figure 1A for an example), 14 

each containing a unique spatial configuration of four volumetric parts defined by 15 

variation among non-accidental properties (NAPs): Edges (Straight vs. Curved), 16 

symmetry of the cross section, tapering (co-linearity) and aspect ratio (Biederman, 17 

1987). 18 

The models were designed in Strata 3D CX software (Strata Inc. USA) and rendered 19 

with a smooth surface and no texture cues in a yellow mustard colour (RGB:  227, 20 

190, 43) using a stereoscopic camera with an Inter-Pupillary Distance (IPD) of 62mm. 21 

Each rendered image pair were converted to a red-cyan anaglyph. Stimuli were scaled 22 

to have the same maximum dimensions of 7.5˚ by 7.5˚ from a viewing distance of 23 

120cm and extended over a 12’ crossed to 6’ uncrossed disparity. Stimuli were 24 
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displayed on a white background. The stimuli could be viewed in stereo with red-cyan 1 

glasses or in mono with red-red or cyan-cyan glasses (see Design and Procedure).  2 

 The set contained 10 ‘target’ objects (referred to as ‘SS’ for ‘Same Part/Same 3 

Configuration – see left hand model in Figure 1A). For each of the 10 ‘SS’ targets 4 

three distracters were created with different levels of similarity (here, similarity was 5 

defined in terms of shared local 3D parts and/or global shape configuration 6 

(Biederman, 1987): the ‘DS’ (Different Parts/Same Configuration) distracters shared 7 

spatial configuration but had different parts; the ‘SD’ (Same Parts/Different 8 

Configuration) distracters shared parts but had a different global shape configuration 9 

to the target; finally, ‘DD’ (Different Parts/Different Configuration) served as a 10 

baseline contrast in which distracters shared neither parts, nor global shape 11 

configuration with the corresponding ‘SS’ target. In order to allow us to present 12 

sequential image pairs on each trial while preventing a matching strategy based solely 13 

on pixel-to-pixel similarity, or 2D global shape outline, stimuli were presented at 14 

different viewpoints. Each stimulus was rendered at five orientations (0°, 60°, 120°, 15 

240° and 300°) around a vertical axis relative to the stereo camera position from an 16 

arbitrary baseline viewpoint (0°). In addition to the novel object set, we also created 17 

four masks each composed of fragments from all 10 SS stimuli arranged in a random 18 

configuration. Stereo versions of the masks were made in the way as for the novel 19 

objects. The experiment was programmed using E-prime (v.1.1; 20 

www.pstnet.com/eprime).  21 

 22 

Design and Procedure.  23 

 The experiment involved a 2 (Viewing condition: 2D, 3D) x 4 (Stimulus type: 24 

SS, SD, DS, SS) repeated measures design. The factor “Stimulus type” refers to the 25 
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kind of stimulus pairs shown on each trial. These could either be a repetition of the 1 

same shape (SS-SS – ‘Same’ response) or three types of ‘Different’ object trials 2 

SS/SD, SS/DS or SS/DD). There were four blocks of 160 trials each (N total = 640), 3 

comprising two blocks of 2D and two blocks of 3D object trials. Half of the 4 

participants viewed the blocks in the order 3D-2D-2D-3D while the others viewed the 5 

blocks in the order 2D-3D-3D-2D. For each viewing condition (2D/3D) there were 6 

320 trials across blocks, comprising 80 trials for each type of stimulus pairing (SS/SS; 7 

SS/DS; SS/DS; SS/DD). In the 3D blocks, participants wore red/cyan lenses which 8 

allowed the anaglyphs to be perceived in 3D, while in the 2D blocks, participants 9 

wore glasses with two cyan lenses in one block, and two red lenses in the other, 10 

causing the stimuli to be seen without stereo disparity. 11 

 Each trial involved the sequential presentation of a comparison stimulus (S1), 12 

mask, and a target (S2). The S1 and S2 stimulus pairs could be either the same shape 13 

(SS – 25% trials) or one of three different types of distracters (SD; DS; DD – 75% of 14 

trials). On all trials, S1 and S2 were presented at different viewpoints to ensure that 15 

shape equivalence judgements could not be made using an image-based low-level 16 

(e.g., pixel matching) strategy. S2 was always presented at a fixed arbitrary 0° 17 

viewpoint (so that ERPs to S2 would not be affected by S2 viewpoint). S1 was 18 

presented with equal frequency (40 trials per block) at 60°, 120°, 240° or 300°. 19 

Stimulus orientation was not predictive of trial type. Trials began with a fixation cross 20 

presented at a crossed disparity of 3’ that lasted 750ms. This was followed by S1 that 21 

appeared for 750ms and was followed by a mask for another 750ms. Finally, the S2 22 

stimulus was presented for 750ms, followed by a blank screen until the participant 23 

gave a response. Feedback was then provided indicating a “correct” or “incorrect” 24 

response for 1000ms). There was a blank inter-trial interval of 1000ms. Fig. 1B 25 
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illustrates a typical experimental trial. Observers were asked to respond by pressing a 1 

key with the left or right index to indicate if they thought the S2 target was the same 2 

as S1. Half of the subjects used the right index to respond “same” and the left index to 3 

respond “different”. This was reversed in the other half of the group. Participants 4 

were seated comfortably in an electrically shielded, sound attenuated, room. A chin 5 

rest was used to maintain the distance from the screen. Prior to the main task, 6 

observers completed four practice trials using two additional novel objects that were 7 

not included in the main experiment. In order to ensure correct binocular fusion of 8 

stereo images by the participants, a stereo image (a hand appearing to emerge from 9 

the screen) was viewed with anaglyphic glasses and they were asked to report whether 10 

or not they perceived it clearly in 3D. All participants confirmed that perceived the 11 

stimulus in depth. 12 

 13 

 14 

INSERT FIGURE 1 ABOUT HERE 15 

 16 

 17 

EEG-ERP recording. Continuous EEG was acquired at 1000 Hz using a Hydrocel 18 

Geodesic Sensor Net from 256 equally-spaced AgCl carbon-fibre coated scalp 19 

electrodes referenced to the vertex. The EEG was band-pass filtered between 0.01-20 

100Hz and impedances were kept below 30kΏ. Epochs for correct trials, beginning 21 

100ms before onset of S2 target stimulus and ending 800 ms afterwards were used to 22 

compute the ERPs. The 100 ms pre-stimulus period was used to establish baseline. 23 

The EEG was then visually inspected for eye movements or other sources of noise 24 

and rejected if artefacts were present. Channels that displayed frequent or continuous 25 
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noise in the individual’s ERP were removed and replaced using a 3D spherical spline 1 

interpolation procedure (Perrin, Pernier, Bertrand, Giard, & Echallier, 1987). 2 

Electrodes located on the cheeks were systematically excluded such that 204 3 

electrodes were finally retained for statistical analyses. Epochs were then filtered from 4 

1 to 30 Hz and re-computed against the average reference. 5 

The epochs were used to calculate the mean ERPs of the 8 conditions (2 6 

Viewing Condition: 2D/3D) X 4 (Stimulus type: SS, SD, DS, DD) in every 7 

participant and across subjects (grand average ERPs). Analyses of the ERP data were 8 

carried out using the Cartool software (Murray, Brunet & Michel, 2008).  9 

 10 

Event-related potentials analysis 11 

Mass univariate analyses (e.g., Groppe, Urbach & Kutas, 2011; Guthrie & 12 

Buchwald, 1991) were used to elucidate the time course of brain activation to 2D 13 

versus 3D viewing, and the sensitivity of perceptual classification of 3D object shape 14 

to stereo viewing across conditions of shape similarity. This involved using pair wise, 15 

time-frame by time-frame, permutation tests based on repeated measures t-tests across 16 

all 204 electrodes from 0-800ms. An a priori criterion for significance testing was 17 

adopted in which a threshold of p<.01 (two-tailed) must be attained for at least 10 18 

consecutive time frames in at least 5 neighbouring electrodes (Guthrie & Buchwald, 19 

1991; Murray et al., 2008).  20 

Component analysis. As 2D and 3D visual presentation may interact and 21 

modulate object recognition differentially, the components sensitive to viewing 22 

condition and to image classification (N1, P2, N2) were further analysed using 23 

repeated-measures analyses of variance (ANOVAs). These included Viewing 24 

condition (2D/3D), Stimulus type (SS, DS, SD, DD) and Laterality (right versus left 25 
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hemisphere electrodes) as repeated measures. The N1 was defined as the maximum 1 

negative amplitude in the 160-220ms time window, in the left and right groups of 2 

posterior electrodes (the regions of interest, or ROIs are shown in the insets in figures 3 

1 and 2). Amplitudes and latencies for this component were established in all 4 

participants for subsequent statistical analysis. The P2, determined as the positive 5 

peak following the N1, was visible in the grand averages and peaked around 235ms. 6 

However, a maximum could not be clearly observed in the individual ERPs, thus the 7 

computations were computed using the mean amplitudes over a 30ms time window 8 

centred on the P2 (i.e., 220-250ms) in the 2 posterior ROIs of each participant. 9 

Finally, for the second negative deflection (N2), mean amplitudes were computed 10 

separately on an early N2 (240-290ms) and late N2 (290-370ms) part of the 11 

component in the same 2 posterior ROIs.  12 

 Greenhouse-Geisser corrections were applied to the analyses when 13 

appropriate. Post-hoc comparisons were applied using Tukey’s Honest Significant 14 

Difference (HSD) test to compare effects when interactions were significant. For all 15 

analyses, exact two-tailed alpha values are reported (p = x) except where p < .0001. 16 

 17 

18 
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RESULTS 1 

Behavioural data 2 

Due to technical difficulties, the behavioural results of two participants were lost and 3 

statistics were consequently computed on 12 subjects.  4 

Mean correct responses (+/-standard deviation) for SS, DS, SD, DD respectively were 5 

for 2D: 63(8.5), 65(7.9), 77(2.4), 78(1.9) and for 3D: 62.7(9.5), 68.0(7.1), 77.6(2.3), 6 

78.4(1.6) out of a maximum of 80. Response accuracy was entered into a 2 (Viewing 7 

condition: 2D, 3D) X 4 (Stimulus type: SS, DS, SD, DD) repeated measures ANOVA. 8 

There was no effect of Viewing condition, F (1, 11) = 1.24, p=.29; but Stimulus type 9 

was significant, F (3, 33) = 21.26, p<.0001. This was due to a significantly smaller 10 

number of correct responses for the SS and DS conditions compared to both SD and 11 

DD (Tukey HSD post-hoc: ps<. 001). There was no difference between SD and DD 12 

(p=.969) nor between SS and DS (p=.38), and no interaction, F (3, 33) = .93, p=.44.  13 

 14 

Event-related potentials 15 

Figure 2 and 3 show the grand average ERP traces for 2 electrodes (P9 and 16 

P10) that were part of the two ROIs used for statistical computation. These regions 17 

showed the greatest differences across conditions on visual inspection.  18 

 19 

INSERT FIGURE 2 and 3 ABOUT HERE 20 

 21 

 22 

1. Analysis of ERP sensitivity to stereo presentation 23 

In the first analysis we wanted to determine the effect of stereo and non-stereo 24 

visual input on the time course of electrical activity (see figure 3 for the ERPs of 25 

stereo and non-stereo presentations). To do so, mass univariate analyses were used to 26 
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identify a temporal marker defining the earliest time point of differential ERP 1 

sensitivity to 2D versus 3D viewing. A point-wise mass univariate analysis performed 2 

on the 2D versus 3D viewing conditions showed that the earliest differences began 3 

during the N1 (figure 4). The difference affected a large group of posterior, temporo-4 

occipital and anterior leads beginning at about 160 ms until around 220ms, 5 

encompassing the N1 component. This confirms early sensitivity to 2D and 3D visual 6 

input used in the study.  7 

 8 

INSERT FIGURE 4 ABOUT HERE 9 

 10 

N1 11 

To examine this further, we conducted additional analyses on the ERP data 12 

from the N1 component. Mean N1 latencies for SS, DS, SD and DD were respectively 13 

of 174ms (±10.4), 173ms (±11.1), 175ms (±10.4) and 176ms (±11.3) for 2D targets, 14 

and 178ms (±6.7), 176ms (±10), 179ms (±8.7) and 177ms (±11.3) for 3D targets. A 2 15 

(Viewing condition: 2D, 3D) x 4 (Stimulus type: SS, SD, DS, DD) repeated measures 16 

ANOVA showed no significant main effects or interaction.  17 

The amplitudes values of the N1 were also entered into a 2 (Viewing 18 

condition: 2D, 3D) x 4 (Stimulus type: SS, SD, DS, DD) x 2 (Laterality) repeated 19 

measures ANOVA and revealed a significant main effect of Viewing condition, F (1, 20 

13) = 6.9, p<.05; with 3D stimuli producing more negative N1 peaks. There were no 21 

other main effects or interactions. Thus, once again, stereo viewing affected cortical 22 

activation early in the stream of visual processing. Furthermore, sensitivity to stereo 23 

disparity was equivalent for both left and right hemisphere electrodes and was not 24 

modulated by stimulus type.  25 
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 1 

2. Temporal marker for 3D image classification 2 

 3 

The aims of these analyses were to (1) identify a temporal marker defining the 4 

earliest time point at which differential responses to the stimulus types are 5 

distinguishable in the ERP – and, by hypothesis, reflect differentiation of 3D object 6 

shape during perceptual classification; and (2) to determine whether the time course 7 

of 3D object discrimination is modulated by shape similarity. We used a mass 8 

univariate approach to identify the earliest statistically significant time points for each 9 

stimulus contrast in 2D and 3D (SS-SD; SS-DS; SS-DD). The temporal distributions 10 

of these difference contrasts across all 204 electrodes for 2D and 3D viewing are 11 

shown in Figure 5A and B.  12 

 13 

INSERT FIGURE 5A and B ABOUT HERE 14 

 15 

This showed that, for both 2D and 3D viewing, differences were statistically 16 

significant at the .01 level from approximately 230-240ms, starting during the latter 17 

part of the P2 and extending across the N2 until around 370ms post-stimulus onset. 18 

While the onsets of these distributions are highly similar across conditions they 19 

appear to vary in amplitude (that is, frequency of significant difference contrasts). To 20 

explore this further we computed difference contrasts for 2D versus 3D viewing for 21 

SS-SD; SS-DS and SS-DD. Figure 6 shows a time series plot of the frequency 22 

distribution of significant 2D/3D difference contrasts sub-sampled into 10ms bins.  23 

 24 

INSERT FIGURE 6 ABOUT HERE 25 

 26 
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This plot shows that during the N2 (240-380ms) the distributions of significant 1 

differences between 2D and 3D viewing varies as a function of stimulus contrast. The 2 

distribution for the SS/DS contrast is clearly bimodal with an early peak at 260ms and 3 

a later peak at 360ms. The SS/SD contrast peaks at 270ms and then rapidly declines. 4 

The SS/DD distribution is also somewhat bimodal with an early peak around 250ms 5 

and a latter peak at 320ms. These data were analysed as a non-parametric time series 6 

using the Friedman test which showed that the frequency distributions were 7 

significantly different, χ
2 N=19; d.f. = 2) = 8.84, p = .01. This provides statistical 8 

evidence that the N2 comprises potentially distinct early and late components.  9 

Detailed analyses were consequently performed on the P2, as well as early and 10 

late N2 components. 11 

 12 

P2 13 

The mean amplitudes of the P2, obtained from the posterior left and right 14 

ROIs for 2D and 3D values and for SS, DS, SD, and DD, were entered into a 2 15 

(Viewing condition: 2D, 3D)  x 4 (Stimulus type: SS, DS, SD, DD)  x 2 (Laterality) 16 

repeated measures ANOVA. There was a significant main effect of Viewing 17 

condition, F (1, 13) = 18.98, p=.001; Mean amplitude: 2D = 0.77µV (± 2.9); 3D = -18 

0.19 µV (±2.2). There were no other significant main effects or interactions.  19 

 20 

 21 

 22 

 23 

 24 

 25 
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N2 1 

 2 

Early N2 (240-290ms) 3 

Figure 7A shows the mean amplitudes for the early N2 component as a 4 

function of viewing condition, stimulus type and laterality. This shows, similar to the 5 

N1, more negative amplitudes for 3D than 2D viewing.   6 

 7 

INSERT FIGURE 7 ABOUT HERE 8 

 9 

The mean early N2 amplitudes were analysed using a 2 (Viewing condition: 10 

2D, 3D) x 4 (Stimulus type: SS, SD, DS, DD) x 2 (Laterality) repeated measures 11 

ANOVA. There were significant main effects of Viewing condition, F (1, 13) = 12 

15.07, p = .002; and Stimulus type, F (3, 39) = 19.50, p < .0001; and a significant 13 

three-way interaction, F (3, 39) = 3.21, p = .03. To explore this further we conducted 14 

two separate 2 (Viewing condition: 2D, 3D) x 4 (Stimulus type: SS, SD, DS, DD) 15 

ANOVAs for the left and right ROIs. For the left hemisphere ROI there was a 16 

significant main effect of Viewing condition, F (1, 13) = 6.55, p = .02; and Stimulus 17 

type, F (3, 39) = 18.02, p < .0001, but no interaction. For the right hemisphere there 18 

were significant main effects of Viewing condition, F (1, 13) = 22.66, p < .0001, and 19 

Stimulus type, F (3, 39) = 9.29, p < .0001, but no interaction.  20 

 21 

Late N2 (290-370ms) 22 

Figure 7b shows the mean amplitudes for the late N2 component as a function 23 

of viewing condition, stimulus type and laterality. In contrast to the N1 and early N2, 24 

Page 16 of 38

URL: http:/mc.manuscriptcentral.com/pqje

Quarterly Journal of Experimental Psychology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ERP STUDY OF STEREO AND 3D OBJECT CLASSIFICATION          17 
 

this shows more negative amplitudes for 2D than 3D viewing (that is, a reversal of 1 

2D/3D amplitude negativity).  2 

The mean late N2 amplitudes were analysed using a 2 (Viewing condition: 3 

2D, 3D) x 4 (Stimulus type (Stimulus type: SS, SD, DS, DD) x 2 (Laterality) repeated 4 

measures ANOVA. There were significant main effects of Viewing condition, F (1, 5 

13) = 8.87, p = .01; and Stimulus type, F (3, 39) = 18.31, p < .0001; and a significant 6 

three-way interaction, F (3, 39) = 2.84, p = .03. To explore this further we conducted 7 

two separate 2 (Viewing condition: 2D, 3D) x 4 (Stimulus type: SS, SD, DS, DD) 8 

ANOVAs for the left and right ROIs. For the left hemisphere ROI there was a 9 

significant main effect of Stimulus type, F (3, 39) = 15.40, p < .0001, but no effect of 10 

Viewing condition, and no interaction. In contrast, for the right hemisphere there were 11 

significant main effects of Viewing condition, F (1, 13) = 12.01, p = .004, and 12 

Stimulus type, F (3, 39) = 5.62, p = .003, and a significant interaction, F (3, 39) = 13 

3.22, p = .03. Post-hoc analyses using Tukey HSD confirmed the source of the 14 

interaction arising from a significant difference in mean amplitude for the 2D versus 15 

3D contrast between the DS conditions (p < .0001), but no significant differences for 16 

the other pair wise contrasts.  17 

Table 1 below summarises the significant results of our study.  18 

 19 

 20 

INSERT TABLE 1 HERE 21 

 22 

23 
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 1 

DISCUSSION 2 

The main findings of the study can be summarised as follows; (1) the 3 

behavioural data showed that observers performed equally well with both 2D and 3D 4 

visual presentation, but they made more errors in the SS and DS conditions; (2) 5 

analyses of the ERP data showed an early sensitivity to 2D versus 3D viewing 6 

occurring during the N1 component (160ms-220ms) and (3) the neural correlates of 7 

object shape discrimination were evidenced between approximately 240ms-370ms 8 

during the N2 component with the later part showing a differential sensitivity between 9 

2D and 3D viewing. 10 

These findings provide new evidence about the time course underlying the 11 

perceptual analysis of 3D object shape and are consistent with our prediction that 12 

ERPs should be modulated by stereoscopic viewing when depth is required for object 13 

classification. It thus provides some of the first electrophysiological evidence 14 

underscoring the effect of stereo information on 3D shape perception.  15 

Two main points should be highlighted. First, the evidence indicating an early 16 

sensitivity to 2D versus 3D presentation on the N1 component, which was 17 

characterised as an amplitude modulation with more negative deflections for 3D 18 

relative to 2D viewing, regardless of stimulus condition.While this result is not 19 

surprising given other neurophysiological evidence of sensitivity to binocular 20 

disparity in early visual cortex (e.g., DeAngelis & Newsome, 1999; Livingstone & 21 

Hubel, 1988), it is relevant to the interpretation of the current data because it shows 22 

that our manipulation of stereo viewing was sufficient to elicit an early perceptual 23 

response. Second, the differential ERP modulation for mono and stereo observed on 24 

the early and late N2. This was revealed by variations in the distributions of 25 

significant mass univariate difference contrasts for 2D versus 3D viewing across 26 
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conditions, and by modulations in the N2 amplitudes. In fact, two potentially distinct 1 

components were observed within the N2. The early component between 240ms-2 

290ms showed a similar pattern of sensitivity as the N1 for 2D versus 3D viewing– 3 

that is, greater negativity for the latter relative to the former. In contrast, the later N2 4 

component from 290ms-370ms showed a reversal of this pattern with higher negative 5 

deflections for 2D relative to the 3D viewing. Moreover, during the late N2 6 

component this difference interacted with both laterality and stimulus condition. 7 

Notably, there was a greater amplitude difference between 2D and 3D viewing for the 8 

DS condition over right compared to the left hemisphere electrodes.  9 

The effect of 3D processing on the N1 does not come altogether as a surprise. 10 

Indeed the role of 3D cues in visual processing has been addressed by several studies. 11 

For example, Kasai and Morotomi (2001) used dynamic random-dot stereograms in a 12 

visual attention paradigm in which participants had to selectively attend either to the 13 

shape of a stimulus (a rectangle placed vertically or horizontally) or its depth, based 14 

on visual disparity. Attention to stereo-defined depth produced a greater negative 15 

deflection over the lateral occipito-temporal regions starting from around 175 ms, 16 

whilst attention to shape produced a slightly later ERP effect that arose after about 17 

200ms, indicating that depth was processed earlier in time. This led the authors to 18 

conclude that the two processes operated independently and prior to perceptual 19 

integration. In a subsequent study, Kasai, Morotomi, Katayama, & Kumada (2003) 20 

studied the P1 and N1 ERP responses in a 3D attentional task using stereoscopic 21 

viewing. They found that the N1 was enhanced in response to stimuli that were 22 

attended in specific spatial positions, defined both in the plane and in depth. This 23 

suggested that the N1 component is at least partly connected to spatial representation 24 

in 3D. In another ERP study using random dot stereograms (but only one occipital 25 
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electrode: Oz, referenced to Fpz), depth perception was found to be associated with a 1 

posterior negative deflection occurring at around 210ms (Akay & Celebi, 2009). This 2 

negative deflection being the first one observed after stimulus presentation, most 3 

likely reflected the N1. Its later appearance could probably be explained the more 4 

medial electrode location on which it was measured. 5 

The N1 sensitivity to stereo-defined depth has also received some support 6 

from work carried out with 3D stimuli determined not by binocular disparity, but by 7 

perspective or depth cues. Severac-Cauquil, Trotter & Taylor (Severac Cauquil, 8 

Trotter, & Taylor, 2006) measured the ERP while subjects viewed stimuli that were 9 

flat (2D drawings and textures) or denoted a perspective implying depth (3D). In line 10 

with our results, the authors found that the N1 component was increased for 3D 11 

views, whether they were specifically attending depth or not. The study further 12 

included a LORETA source localisation analysis performed on the scalp topography 13 

at the N1 latency, which pointed to an increased activation in the right parietal lobe 14 

for 3D views. This activity was hypothesised to be due to early processing of depth 15 

cues through the dorsal parietal route which likely activated temporal and temporo-16 

occipital areas through recurrent feedback loops (Severac Cauquil et al., 2006). More 17 

recently, Gao et al. (2015) investigated the ERP response to line drawings of 3D 18 

objects, as well as 2D renderings of textures or perspectives. The authors found that 19 

the N1 was greater for 3D objects than for textures or perspectives again suggesting 20 

that the N1 is a marker of 3D viewing. However, in this study, no 2D objects were 21 

included and comparisons were performed between objects in depth and 2D texture-22 

like perspectives. Thus, in this case, one cannot determine with certainty whether the 23 

N1 was responsive to 3D objects or to objects more generally. 24 
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Nevertheless, the evidence available so far appears to support our findings of 1 

an early response to 3D information occurring prior to shape discrimination, which 2 

could therefore subsequently contribute to complex, multi-part object processing if 3 

available and necessary.  4 

The differential sensitivity of the N2 for mono versus stereo viewing during 5 

3D shape classification upholds this assumption of stereo viewing modulating high-6 

level perceptual processes involved in the classification of 3D object shape. In our 7 

study, the effects of viewing condition were found in the amplitude data and was most 8 

pronounced in the DS condition, when observers had to make shape classification 9 

judgments between objects that shared 3D configurations. By hypothesis, these could 10 

only be differentiated by their local part structure suggesting that the differential ERP 11 

response reflected the incorporation of stereo cues to 3D global shape configuration in 12 

line with our hypothesis.  13 

Interestingly, the N2 effect may be related to early perceptual processes 14 

supporting figure-ground segmentation (e.g., Mendola, Dale, Fischl, Liu, & Tootell, 15 

1999; Murray, Imber, Javitt, & Foxe, 2006; Pegna, Khateb, Murray, Landis, & 16 

Michel, 2002). For example, Doniger et al. (Doniger et al., 2000; Doniger et al., 2001) 17 

investigated object recognition using fragmented line drawing of familiar objects that 18 

were either identifiable, or too degraded for recognition to occur. The ERPs for 19 

identifiable stimuli produced a greater N2 component than unidentifiable ones over 20 

lateral posterior electrodes between 230ms and roughly 400ms, following a similar 21 

pattern to our N2. Furthermore, the negativity appeared to build up when the stimuli 22 

were presented with progressively less fragmentation, culminating when the stimuli 23 

were recognised (Doniger et al., 2001). The authors suggested that this negativity 24 

reflected the neural responses linked to the processing of increasing amounts of 25 
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object-relevant information that ultimately leads to perceptual closure and 1 

recognition. This is consistent with our interpretation of the N2 data in the current 2 

study of multi-part 3D objects. 3 

To conclude, this investigation reveals that stereo disparity initially modulates 4 

the neural correlates of perceptual analyses of three-dimensional (3D) object shape 5 

during the N1 component. Subsequent ERP modulations occur in the N2 time window 6 

that are linked to image classification and are composed of two distinct components – 7 

an early and a late N2, which show different patterns of responses to 2D and 3D input, 8 

as well as a differential sensitivity to 3D object structure. It therefore supports the 9 

view that stereo input modulates cortical activity during 3D object shape processing. 10 

More broadly, the current observations present a challenge to models of object 11 

recognition that do not posit a functional role for stereo information during the 12 

perceptual analysis of 3D object shape (e.g., Biederman, 1987; Cadieu et al., 2007; 13 

Pizlo et al., 2010; Riesenhuber & Poggio, 1999; Serre et al., 2007).  14 

 15 
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 1 

FIGURE LEGENDS 2 

Table 1: Summary of statistically significant effects obtained in the ANOVAs. Effects 3 

of stereoscopic vs non-stereoscopic viewing and of stimulus shape on performance 4 

(number of errors made by the participants) and ERPs (N1, P2, early N2, late N2) are 5 

reported. For the N2, left and right regions of interest (ROIs) are reported separately 6 

as an interaction (Stereo X shape X ROI) was noted. For the late N2, the analysis of 7 

the right ROI further revealed a stereo X shape interaction, reason for which this 8 

effect is decomposed (ns: non-significant). 9 

 10 

Figure 1: (A) 4 sample stimuli of the set used in the current study. SS: Same 11 

parts/Same spatial configuration; SD: Same parts/Different spatial configuration; DS: 12 

Different parts/Same spatial configuration; DD: Different parts/Different spatial 13 

configuration.  14 

(B): Experimental procedure. The figure shows the timeline for a single trial (ISI: 15 

interstimulus interval). Here S1 is followed by a “different” S2. In this case S2 16 

possesses different parts, but the same configuration and is therefore classified as 17 

“DS”.  18 

 19 

 20 

Figure 2: Grand average ERP traces for 2D (above) and 3D (below) conditions for 21 

each stimulus type - SS: Same parts/Same configuration; SD: Same parts/Different 22 

configuration; DS: Different parts/Same configuration; DD: Different parts/Different 23 

configuration. The inset at the centre shows the electrode placement (scalp viewed 24 

from above with the nose on top and the left ear on the left). Two representative 25 
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electrodes are shown: Electrodes P9 and P10, highlighted in blue in the inset. 1 

Electrodes highlighted in purple show the left and right posterior group of electrodes 2 

(regions of interest – ROI) that were used for the statistical computation of the N1, P2 3 

and N2.   4 

 5 

Figure 3: Grand average ERP traces for SS (above) and DD (below) stimuli under 2D 6 

(black) and 3D (red) viewing conditions. The inset at the centre shows the electrode 7 

placement (scalp viewed from above with the nose on top and the left ear on the left). 8 

Two representative electrodes are shown: Electrodes P9 and P10, highlighted in blue 9 

in the inset. Electrodes highlighted in purple show the left and right posterior group of 10 

electrodes (regions of interest – ROI) used for statistical computation.   11 

 12 

Figure 4: 2D versus 3D point-wise mass univariate contrast comparing 2D and 3D 13 

presentations over time (x axis) and electrodes (y axis). All 204 electrodes are shown 14 

with right frontal leads on top, followed by the left frontal, left posterior and finally 15 

the right posterior leads. The time scale is shown below with 0 indicating the onset of 16 

stimulus presentation. Dark areas in the panel above indicate periods and electrodes 17 

significant at p<.01. The two arrows indicate the spatial position of the significant 18 

electrodes on the scalp at the given time instant. On the representation below, the red 19 

circles highlight the electrodes significant at p<.01 at the time indicated by the arrow.  20 

 21 

Figure 5: Mass univariate contrasts showing time (x axis) and electrodes (y axis) for 22 

2D and 3D visual presentation for each stimulus type. A: (a) 2D: SS/DS (b) 2D: 23 

SS/SD B: (c) 2D: SS/DD (d) 3D: SS/DS (e) 3D: SS/SD (f) 3D: SS/DD.  24 

Page 24 of 38

URL: http:/mc.manuscriptcentral.com/pqje

Quarterly Journal of Experimental Psychology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



ERP STUDY OF STEREO AND 3D OBJECT CLASSIFICATION          25 
 

All 204 electrodes are shown from top right to bottom right with right frontal leads on 1 

top, followed by the left frontal, left posterior and finally the right posterior leads. The 2 

time scale is shown below with 0 indicating the onset of (S2) stimulus presentation. 3 

Dark areas in the panel above indicate periods and electrodes significant at p<.01. For 4 

each, the electrode montage shows the electrodes significant at p<.01 at 300ms post-5 

stimulus onset.  6 

 7 

Figure 6: Time series distribution showing the frequency of significant difference 8 

contrasts from the mass univariate analysis between 210ms-390ms. The contrasts 9 

shown are between 2D and 3D viewing for SS/DD (blue), SS/SD (red) and SS/DS 10 

(green).  11 

 12 

Figure 7: Mean amplitudes (in microVolts) of (A) the early N1: 220ms-290ms and 13 

(B) the late N1: 290ms-370ms for 2D (blue) and 3D (red) presentations as a function 14 

laterality (left, right panels) and stimulus type - SS: Same parts/Same configuration; 15 

SD: Same parts/Different configuration; DS: Different parts/Same configuration; DD: 16 

Different parts/Different configuration. Bars show 95% confidence intervals.  17 

18 
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Figure 1: (A) 4 sample stimuli of the set used in the current study. SS: Same parts/Same spatial 
configuration; SD: Same parts/Different spatial configuration; DS: Different parts/Same spatial 

configuration; DD: Different parts/Different spatial configuration.  

(B): Experimental procedure. The figure shows the timeline for a single trial (ISI: interstimulus interval). 
Here S1 is followed by a “different” S2. In this case S2 possesses different parts, but the same configuration 

and is therefore classified as “DS”.  
 

INSERT FIGURE 1 ABOUT HERE  
190x275mm (96 x 96 DPI)  
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Grand average ERP traces for 2D (above) and 3D (below) conditions for each stimulus type - SS: Same 
parts/Same configuration; SD: Same parts/Different configuration; DS: Different parts/Same configuration; 
DD: Different parts/Different configuration. The inset at the centre shows the electrode placement (scalp 

viewed from above with the nose on top and the left ear on the left). Two representative electrodes are 
shown: Electrodes P9 and P10, highlighted in blue in the inset. Electrodes highlighted in purple show the left 

and right posterior group of electrodes (regions of interest – ROI) that were used for the statistical 
computation of the N1, P2 and N2.  

INSERT FIGURE 2  
190x275mm (96 x 96 DPI)  
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Figure 3: Grand average ERP traces for SS (above) and DD (below) stimuli under 2D (black) and 3D (red) 
viewing conditions. The inset at the centre shows the electrode placement (scalp viewed from above with 
the nose on top and the left ear on the left). Two representative electrodes are shown: Electrodes P9 and 

P10, highlighted in blue in the inset. Electrodes highlighted in purple show the left and right posterior group 
of electrodes (regions of interest – ROI) used for statistical computation.    

and 3 ABOUT HERE  
190x275mm (96 x 96 DPI)  
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Figure 4: 2D versus 3D point-wise mass univariate contrast comparing 2D and 3D presentations over time 
(x axis) and electrodes (y axis). All 204 electrodes are shown with right frontal leads on top, followed by the 

left frontal, left posterior and finally the right posterior leads. The time scale is shown below with 0 

indicating the onset of stimulus presentation. Dark areas in the panel above indicate periods and electrodes 
significant at p<.01. The two arrows indicate the spatial position of the significant electrodes on the scalp at 
the given time instant. On the representation below, the red circles highlight the electrodes significant at 

p<.01 at the time indicated by the arrow.  
INSERT FIGURE 4 ABOUT HERE  
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Figure 5: Mass univariate contrasts showing time (x axis) and electrodes (y axis) for 2D and 3D visual 
presentation for each stimulus type. A: (a) 2D: SS/DS (b) 2D: SS/SD  
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�Figure 5B: (c) 2D: SS/DD (d) 3D: SS/DS (e) 3D: SS/SD (f) 3D: SS/DD. All 204 electrodes are shown from 
top right to bottom right with right frontal leads on top, followed by the left frontal, left posterior and finally 

the right posterior leads. The time scale is shown below with 0 indicating the onset of (S2) stimulus 

presentation. Dark areas in the panel above indicate periods and electrodes significant at p<.01. For each, 
the electrode montage shows the electrodes significant at p<.01 at 300ms post-stimulus onset.  

and B ABOUT HERE  
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Figure 6: Time series distribution showing the frequency of significant difference contrasts from the mass 
univariate analysis between 210ms-390ms. The contrasts shown are between 2D and 3D viewing for SS/DD 

(blue), SS/SD (red) and SS/DS (green).  
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Figure 7: Mean amplitudes (in microVolts) of (A) the early N1: 220ms-290ms and (B) the late N1: 290ms-
370ms for 2D (blue) and 3D (red) presentations as a function laterality (left, right panels) and stimulus type 
- SS: Same parts/Same configuration; SD: Same parts/Different configuration; DS: Different parts/Same 

configuration; DD: Different parts/Different configuration. Bars show 95% confidence intervals.  
INSERT FIGURE 7 ABOUT HERE  
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