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Abstract 
 

Studies of language production in bilinguals have seldom considered the fact 
that language selection likely involves proactive control. Here, we show that 

Chinese-English bilinguals actively inhibit the language not-to-be used before 

the onset of a picture to be named. Depending on the nature of a directive cue, 

participants named a subsequent picture in their native language, in their 

second language, or remained silent. The cue elicited a contingent negative 
variation of event-related brain potentials, greater in amplitude when the cue 

announced a naming trial as compared to when it announced a silent trial. In 
addition, the negativity was greater in amplitude when the picture was to be 
named in English than in Chinese, suggesting that preparation for speech in 

the second language requires more inhibition than preparation for speech in 
the native language. This result is the first direct neurophysiological evidence 

consistent with proactive inhibitory control in bilingual production. 
 
Keywords: Bilingualism; speech production; event-related potentials; proactive 
inhibition; executive control. 
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1. Introduction 
Even when bilinguals function in one language, lexical representations of the other 
language are simultaneously active (Miwa et al., 2014; Morford et al., 2011; Thierry 
& Wu, 2007; Wu & Thierry, 2010). However, the cognitive mechanism that enables 
bilinguals to keep their languages functionally separate and operate in a seemingly 
monolingual fashion has not yet been elucidated. One hypothesis, the Inhibitory 
Control Model, poses that, in order to prevent cross-language interference, a control 
mechanism in the bilingual brain inhibits activation of non-target language 
representations allowing representations of the target language to reach the critical 
levels of activation required for speech production (Green, 1998). Evidence for such 
cross-language competition comes from picture-word interference studies in which 
bilinguals are generally asked to name a picture superimposed with a printed word. 
Indeed, when the word is semantically related to the picture but presented in a 
different language from that of the production language, naming latency is delayed 
(Costa & Caramazza, 1999; Hermans et al., 1998). Also, when bilinguals switch 
between their two languages during a naming task, it takes longer to switch into their 
more dominant than into their less dominant language (Meuter & Allport, 1999). Both 
sources of evidence suggest that lexical representations of the non-target language 
are actively inhibited to resolve competition between the two languages (as is the 
case in picture-word interference) or to deliver monolingual production in the target 
language (as is the case in language-switching).  

Consistent with this hypothesis, functional neuroimaging studies of bilingual 
language production have repeatedly highlighted increased activation in left 
dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC), caudate 
nucleus, and bilateral supramarginal gyri (Abutalebi et al., 2008; Abutalebi & Green, 
2007; Crinion et al., 2006), that is, in brain regions critically involved in domain-
general executive function such as response selection and inhibition (Aron, 2008; 
Grahn et al., 2008) and conflict monitoring (Botvinick et al., 2004). 

In the same vein, event-related brain potential (ERP) studies have provided evidence 
in support of parallel lexical access during bilingual language production (Hoshino & 
Thierry, 2011; Rodriguez-Fornells et al., 2005; Spalek et al., 2014; Wu & Thierry, 
2011) and inhibitory control (Kroll et al., 2008; Rodriguez-Fornells et al., 2006). 
Rodriguez-Fornells et al. (2005), for example, reported a negative-going ERP 
variation in fluent bilinguals performing a tacit naming task (i.e., judging whether a 
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picture name begins with a vowel or a consonant), which the author interpreted as a 
correlate of the interference caused by the activation of the non-target language. The 
temporal characteristics and topography of this effect were comparable to that of the 
N200, a peak of ERPs classically modulated by executive control demands (Heil et 
al., 2000; Kopp et al., 1996) and associated with activation of the anterior cingulate 
cortex in relation to response suppression (Huster et al., 2010; Nieuwenhuis et al., 
2003). These results are overall consistent with the hypothesis that language 
production in bilinguals involves the inhibition of unintended language 
representations via a cognitive control mechanism probably shared with generic 
executive control systems.  

However, unlike reading and listening, speaking is primarily intentional and likely 
involves greater top-down control driven by conceptualization (i.e., the state of the 
semantic system) and proactive language selection (e.g., Strijkers et al., 2011; 
Strijkers & Costa, 2016). In real life circumstances, bilinguals arguably select the 
language to speak on the basis of non-linguistic, contextual variables (e.g., the 
interlocutor’s preferred language) and implement speech production in a goal-
oriented rather than a bottom-up fashion. Nevertheless, previous studies 
investigating the cognitive mechanisms underlying language production in bilinguals 
have mostly focused on linguistic or meta-linguistic tasks such as picture naming, 
language-switching, and translation (Runnqvist et al., 2011; Strijkers et al., 2013; 
Morales et al., 2015). Some of these studies have measured brain and / or 
behavioural responses after a stimulus is presented (e.g., Branzi et al., 2016; 
Hervais-Adelman et al., 2015), giving surprisingly little attention to the fact that the 
human brain not only functions reactively but also proactively and is indeed prone to 
prediction and anticipation (Federmeier & Kutas, 1999; Martin et al., 2013; Strijkers, 
2016).  

In 2012, Luk et al. put forward the hypothesis that early activation in response to a 
cue may be sufficient to trigger proactive control in bilinguals. More recently, a few 
studies have reported evidence in support of multiple processing components being 
engaged, but the corresponding stage of processing and the mechanisms by which 
inhibition is applied to the non-target language remain to be defined (Branzi et al., 
2014; Guo et al., 2011; Hanulová et al., 2011; Kroll et al., 2014; Misra et al., 2012; 
Mosca & Clahsen, 2016; Van Assche et al., 2013; Strijkers et al., 2013; Strijkers and 
Costa, 2016). Nevertheless, such evidence has already been obtained in bilingual 
comprehension (Martin et al., 2016). 
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It thus remains mostly unknown how bilingual speakers prepare for language 
production. In order to investigate this issue, here we examined pre-stimulus 
electrophysiological activity leading to real-time, overt speech production in bilinguals 
asked to name pictures. A group of late Chinese-English bilinguals named pictures in 
Chinese, English, or remain silent depending on the nature of a cue presented one 
second before the onset of each picture. ERP analysis was focused on the period of 
time between the onset of the visual cue and that of the stimulus picture. Following 
the presentation of the cue, we anticipated to observe a progressive negative shift of 
brain potentials indexing mental anticipation, the so-called contingent negative 
variation (CNV; (Jacobson & Gans, 1981; Walter et al., 1964). If language production 
involves an inhibitory control mechanism that is generic and thus stimulus-
independent, we should expect the CNV to index the relative intensity of the 
inhibition required to control the activation levels of the native and the second 
language, respectively. This is because, due to differences in proficiency and 
familiarity between the two languages, inhibiting native language representations 
likely requires greater processing resources (i.e., executive control) than inhibiting 
second language ones.  

 

2. Materials and methods 
2.1 Participants  

Twenty (10 female) Chinese students from Bangor University, UK, aged between 18 
and 23 years gave written consent to take part in the experiment that was approved 
by the ethics committee of Bangor University. They received financial compensation 
for their time. All participants were right-handed, had normal or corrected-to-normal 
vision, and reported no neurological problems or language impairments. All 
participants spoke Mandarin Chinese as their native language and knew no other 
language apart from English (i.e., they were late Chinese-English bilinguals). They 
started to learn English at the age of 12 (in secondary school) in a classroom context. 
Before coming to the UK, they had never stayed in an English-speaking country for 
any significant period of time. At the time of testing, they had lived in the UK for an 
average of 25 (± 4.5) months and they were using English daily in both their private 
and academic lives. Their English proficiency, measured by the International English 
Language Testing System (IELTS) 
(www.ielts.org/test_takers_information/what_is_ielts.aspx), was 6.5, which is the entrance 
requirement for most UK institutions as a non-native English student. The IELTS 
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covers four fundamental language skills (i.e., reading, listening, writing, and speaking) 
and scores can vary between 0 and 9. 

2.2 Stimuli  

One hundred pictures of common and highly imaginable objects were selected from 
the stimuli used in Wu and Thierry (2010). None of these pictures were semantically 
related or rhymed with another picture, either in Chinese or in English. They were 
controlled for basic visual characteristics such as size, contrast and resolution, and 
all pictures were presented on a white background. However, they were highly 
variable in terms of viewpoint, shape, and colour to minimise risk of a systematic 
bias due to inter-stimulus variance (Thierry et al., 2007). No cultural stereotype was 
featured to avoid a differential bias between Chinese and English naming (see 
examples in Fig. 1). No picture was repeated in the experiment. 

 

 

Figure 1. Experimental design and examples of stimuli. 

2.3 Procedure  

At the beginning of the experiment, verbal instruction was given to participants who 
sat on a chair about 100 cm away from a 19” CRT monitor in a sound-attenuated 
room with dimmed lighting. Each trial began with a cue presented in the centre of the 
screen for 500 ms followed by a blank screen for another 500 ms. The visual cues 
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were nonverbal symbols (‘+’, ‘o’, and ‘ ’) that have no specific ties to either of the 
languages of the participants. The cross and the circle each cued a particular 
language (English or Chinese), whilst the combined cue ‘ ’ indicated that no naming 
preparation was required (i.e., pictures were supressed to eliminate potential 
anticipation or planning of naming in one or the other language). The cue-language 
correspondence was counterbalanced between participants. Trial order was 
pseudorandomized and different from one participant to the next. In the naming trials, 
a picture was presented in the centre of the screen after the cue until the participant 
had named it. Participants were instructed to respond to the picture by naming it out 
loud in English or Chinese into a microphone connected with a voice key, which 
recorded voice reaction time (RT). An experimenter in the monitoring room manually 
recorded accuracy. The inter-trial interval was jittered between, 600, 700, and 800 
ms. There were 100 naming trials, half in English and half in Chinese, and 550 non-
naming trials. Any two naming trials were separated by a sequence of 4, 5, 6, or 7 
non-naming trials. The number of non-naming trials was pseudorandomly 
determined and the sequences were evenly distributed across the experiment. The 
purpose of this design was to trigger language selection by having bilingual 
participants name pictures in a dual-language context, while avoiding language 
switching by means of intervening non-naming trial series.  

2.4 ERP recording  

Electrophysiological data were recorded in reference to Cz at a rate of 1 kHz from 64 
Ag/AgCl electrodes placed according to the extended 10–20 convention. 
Impedances were kept <5 kΩ. Electroencephalogram activity was filtered on-line 
band pass between 0.1 and 200 Hz and refiltered off-line with a 25-Hz, low-pass, 
using a zero-phase shift digital filter. Eye blinks were mathematically corrected, and 
remaining artefacts were manually dismissed. There was a minimum of 30 valid 
epochs per condition in every subject. Four subjects were discarded from analysis 
due to insufficient ERP data quality. Epochs ranged from −100 to 1000 ms after the 
onset of the language cue, and from -100 to only 550 ms after the onset of the 
picture to avoid speech contamination. Baseline correction was performed in 
reference to pre-stimulus activity, and individual averages were digitally re-
referenced to the global average reference. ERP data were collected simultaneously 
to behavioural data. 
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2.5 ERP Data Analysis  

Due to the explorative nature of pre-stimulus ERP analysis, a temporal window for 
peak analysis was not determined at priori. The ERP data was first inspected by 
means of pairwise millisecond-by-millisecond comparisons between each of the 
English and Chinese conditions and the non-naming condition. We considered a 
difference as significant when differences were above threshold (t > 1.729, P < 0.05) 
for a continuous period of > 30 ms (Guthrie & Buchwald, 1991; Otten et al., 2006). 
The ERP waveforms elicited by the Chinese and the English naming cues showed a 
similar pattern against the non-naming cue: In both conditions, more negative-going 
amplitude was built up gradually following a naming cue as compared to a non-
naming cue, and the difference peaked at around 500 ms post cue onset. To 
quantify this difference, mean amplitudes were measured between 500–620 ms after 
cue onset over central scalp sites (linear derivation of FC1, Fz, FC2, C1, Cz, C2, 
CP1, CP2, and CPz) where mean amplitude differences were significant for both 
naming conditions vs. non-naming, and consistent with characteristics of the CNV 
(Hultin et al., 1996; Zappoli, 2003). After stimulus presentation, differences between 
language conditions were found in the classic N400 range (i.e., 350-500 ms) known 
to index naming difficulty (Schendan & Kutas, 2007; Schendan & Maher, 2009). 
Mean ERP amplitudes were subjected to a repeated measures analysis of variance 
(ANOVA) with cue type (English / Chinese / no naming) as the independent variable 
using a Greenhouse-Geisser correction where applicable. We also conducted a 
correlational analysis (Pearson correlation test) comparing the difference in mean 
CNV mean amplitude, N400 mean amplitudes, voice RT, and accuracy between 
English and Chinese naming conditions.  

 

3. Results 

3.1 Behavioural results  
Picture naming accuracy was high both in Chinese, M = 97.7%, SD = 2.2, and in 
English, M = 95.1%, SD = 3.0 (Fig. 2A) and did not differ significantly between the 
two languages, t (15) = 1.77, P = 0.97. Voice RT latencies were however different 
between language conditions, t (15) = 3.94, P = 0.001, such that pictures were 
named significantly faster in Chinese, M = 914 ms, SD = 262 ms, than in English, M 
= 981 ms, SD = 293 ms.  
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Figure 2. Behavioural and ERP results. (A) Naming reaction times (bars) and naming accuracy (dots) 

in Chinese and English; (B) Event-related potentials elicited by the language determination cue (left) 

and the subsequent picture stimulus (right). (C) Topographies of the CNV and N400 effects.  

3.2 ERP results  

A repeated measures ANOVA revealed a significant mean effect of cue type on the 
mean amplitude of the pre-stimulus CNV, F (2,30) = 15.17, P = 0.001 (Fig. 2B). Post 
hoc paired-samples t-test contrasts revealed that both the Chinese and the English 
cues elicited significantly more negative amplitudes than the non-naming cues, 
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Chinese: t (15) = 2.259, P = 0.039, English: t (15) = 7.895, P < 0.001, two-tailed. 
Critically, mean CNV amplitude was also significantly more negative in the English 
than the Chinese cueing condition, t (15) = 2.649, P = 0.018, two-tailed. Pictures 
elicited a classic P1-N1-P2 complex followed by a negative deflection between 350–
500 ms post stimulus onset. This N400 peak was significantly modulated between 
language cueing conditions, showing more negative amplitudes in the English than 
the Chinese condition, t (15) = 3.131, P = .007, two-tailed (Fig. 2B&C). 

The correlational analysis (Pearson two-tailed) conducted on between-language 
differences (English-Chinese) of mean cue-elicited CNV amplitudes, mean picture-
elicited N400 amplitude, and reaction times revealed a significant correlation 
between pre-stimulus CNV amplitude and voice RT, r = -.516, n = 16, P = 0.041, and 
between pre-stimuli CNV amplitude and picture-elicited N400 amplitude, r = 0.525, n 
= 16, P = 0.037, but not between picture-elicited N400 amplitude and voice RT, r = -
.260, n = 16, P > 0.1 (Fig. 3).  
 

 
Figure 3. Results of between-language difference (Chinese – English) correlation analyses. (A) 

Difference in voice RT as a function of the pre-stimulus CNV mean amplitude difference; (B) 

Difference in picture-elicited N400 mean amplitude as a function of pre-stimulus CNV mean amplitude 

difference; (C) Difference in voice RT as a function of picture-elicited N400 mean amplitude difference. 

 

4. Discussion 
Previous research on bilingual control has provided limited insights into language 
inhibition mechanisms during production because it has mostly conflated correlates 
of language preparation with stimulus-specific activity. By examining brain potentials 
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elicited by a preparation cue which was a simple shape counterbalanced between 
conditions, and before the presentation of a specific picture stimulus to be named, 
we were able to investigate how bilinguals prepare speech production in one of their 
languages. Behavioural results showed that Chinese-English bilinguals are faster 
naming pictures in their native language Chinese than their second language English, 
consistent with the difference in proficiency levels between languages. Furthermore, 
we found a significant ERP amplitude difference in pre-stimulus activity between the 
English and Chinese naming conditions: ERPs elicited by the Chinese and English 
naming cues both started to diverge significantly from baseline (no naming) at 
around 500 ms after cue onset, suggesting that cue processing had a comparable 
time-course between the two active naming conditions. The negative drift observed 
was consistent with the profile of the contingent negative variation (Tecce, 1972). 
From 500 ms to 620 ms, a larger CNV was observed when naming was required in 
English as compared to when it was anticipated in Chinese, suggesting that 
preparation for speaking in the second language elicits a greater CNV drift than 
preparation for speaking in the native language. Interestingly, correlational analyses 
indicated that differences in mean ERP amplitude and differences in naming 
latencies between first and second language naming were correlated, suggesting a 
functional relationship between pre-stimuli neural activities and speech production.  

Previous studies have shown anticipatory neural mechanisms associated with 
learning (Galli et al., 2012), memory retrieval (Gruber & Otten, 2010; Otten et al., 
2006), and selective visual attention (Mazaheri et al., 2011), showing that brain 
activities preceding a cognitive event can influence, if not determine, the execution 
and outcome of the event. Speech production is a continuing process and, in 
bilingual speakers, language preparation is likely required in advance of the act of 
production itself. For example, the inhibitory control model posits ‘language nodes’ or 
‘language tags’ as part of the conceptual system that facilitates language selection 
through top-down influences (Green, 1998). However, empirical evidence for the role 
that language nodes play in bilingual speech production has remained scarce 
because the majority of previous studies that have investigated language control 
have co-manipulated other variables (e.g., lexical-semantics, morphosyntax, 
phonology (Li, 1998). To our knowledge, the current study is the first to demonstrate 
that pre-stimulus brain potentials can predict language selection in bilingual speech 
production. Since between-language differences in ERPs were observed in the 
absence of stimuli associated to specific linguistic representations, the most 
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parsimonious explanation of our results is that of a relationship between pre-stimulus 
ERP amplitude and inhibitory control.  

The finding of a correlation between CNV amplitude difference and speech onset 
latencies (Fig. 3A) suggests that proactive control, as indexed by pre-stimulus neural 
activities, might be the mechanism by which individual differences (e.g., second 
language proficiency) affect behavioural performance in bilinguals: Inhibitory control 
may have an impact not only throughout the chain of events leading to articulation 
but also semantic integration. Indeed, we found a correlation also between CNV 
amplitude difference and difference in N400 amplitude in the ERP elicited by the 
subsequent picture (Fig. 3B). In other words, the inhibitory impact of language 
selection appears to affect several –and possibly all– stages of language production 
and reveals subtle levels of interaction between language inhibitory control and 
semantic integration. As for the lack of a correlation between N400 amplitude 
difference and speech onset latencies (Fig. 3C), this was to be expected given the 
known remarkable disconnection between N400 amplitude and behavioural 
measurements of processing speed in language processing, especially when 
semantic evaluation is not critical for the task at hand (Heinze et al., 1998). The 
N400 is mostly an index of spreading of activation through the semantic system 
(Kiefer, 2002) and although it has a strong relationship with Cloze probability 
(DeLong et al., 2012) and semantic relatedness (Kutas & Federmeier, 2011), it has 
little or no predictive value regarding the ensuing decision process or reaction times. 

Based on a qualitative review of neuroimaging evidence, Abutalebi and Green 
(Abutalebi & Green, 2008) proposed a neurocognitive model of bilingual language 
control, highlighting a network of brain regions considered critical in the 
implementation of three cognitive processes: (1) facilitating the selection of the 
appropriate language; (2) suppressing the irrelevant language; and (3) monitoring 
language use. However, the relatively low temporal resolution of neuroimaging 
methods (e.g., fMRI) prevents the recording of the fast neural dynamics underlying 
language processing. In a recent study, Reverberi et al., (2015) used a similar task-
cuing paradigm to ours in order to separate neural mechanisms associated with 
proactive and reactive stages of naming. During the cuing stage, bilingual 
participants had to maintain the target language for as long as 8 seconds before 
generating a response, so as to accommodate the slow rate of evolution of the 
haemodynamic response recorded by fMRI. Such a delay between language 
preparation and execution likely induces task-irrelevant, superfluous activations. 
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Indeed, their results failed to dissociate pre-stimuli activations in critical brain regions 
(e.g., ACC, left caudate, prefrontal cortex and inferior parietal lobule) that are 
involved in language control between the native and second language processing 
conditions. However, Blanco-Elorrieta & Pylkkanen (2016) examined cue-directed 
language switches with magnetoencephalography (MEG), a neuroimaging technique 
that offers high temporal resolution (i.e., in terms of milliseconds), and showed 
recruitment of the dorsolateral prefrontal cortex (DLPC) beginning 400 ms after the 
presentation of a cue leading to an anticipated switch in production, but this was not 
observed in comprehension. In contrast with the results obtained by Reverberi et al. 
(2015), these findings suggest that bilinguals engage the DLPC when applying 
proactive control during language production by inhibiting the non-target language 
and raising the activation level of the target language at the same time. 

The nature of neural preparatory processes in bilingual language control needs to be 
specified in the broader context of language activation and selection in general. As 
we have pointed out earlier, most studies on bilingual language production (and 
comprehension) have found that bilinguals activate both languages even when they 
operate in only one language (i.e., parallel language activation). These findings 
suggest that proactive control, as an instance of goal-directed behaviour, does not 
entirely filter out the irrelevant language by reducing its activation level prior to 
stimulus presentation. Thus, following the presentation of a stimulus, reactive 
language inhibition is also likely to be involved in order to implement speech 
planning. One account of this process is found in Strijkers et al. (2011; and 2015 for 
similar reasoning in comprehension): While a stimulus can proactively facilitate 
access to task/goal-relevant knowledge in general, proactive language control does 
not necessarily shut down automatic spreading activation between strongly 
connected lexical representations, because such mechanism is critically for cognitive 
processes such as categorisation. In the case of bilinguals, spreading activation 
would be language non-selective, thus preventing the irrelevant language from being 
completely “switched off”. An alternative account is that proactive mechanisms 
enhance processing towards the relevant representations (in this case, the target-
language) through a facilitatory rather than an inhibitory process. As shown by some 
neuroscience evidence, proactive top-down processing can enhance target-relevant 
activation, which biases competition against the processes that are not in focus (e.g., 
Singer & Gray, 1995; Engel et al., 2001; Egner & Hirsch, 2005; Bar, 2007). The pre-
stimulus activities we observed here may thus index neural responses reflecting an 
increase in the activation level of the target language, instead of reducing that of the 
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non-target language. As a result, the non-target language would still be activated 
despite proactive control and the activation pattern would remain “traceable” when 
bilinguals perform a monolingual task. All things considered, it remains that, a 
proactive facilitatory account needs to be examined, for example, by recording 
variations of language activation levels before and after a bilingual speaker 
processes a cue.   

In summary, the current study shows that brain potentials immediately preceding the 
presentation of a picture can dissociate naming in the first and the second language 
before a bilingual speaker knows what she has to say. Greater negative drifts of 
brain activity were found when participants prepared production in their second as 
compared to their first language, consistent with the Inhibitory Control Model (Green, 
1998; Kroll et al., 2008), according to which ‘language tags’ participate in top-down 
control during bilingual language production. This being said other theoretical 
accounts involving, for example but not exclusively, facilitation via lowering of 
activation thresholds, provide equally plausible interpretational frameworks 
for the mechanisms underlying bilingual control (e.g., Strijkers and Costa, 
2013; Strijkers, 2016). The correlation observed here between pre-stimulus neural 
activity and indices of language selection in bilinguals opens a novel perspective. For 
example, in the present study we only considered a mixed language context, that is 
when both languages are globally required and potentially called upon (Wu and 
Thierry, 2010). In order to mitigate for this, non-naming control trials were repeated 
so as to reduce immediate code-switching effects. Nevertheless, the context 
remained a mixed-language one. Furthermore, the pre-stimulus cues were 
presented with a fixed contingency and the picture stimuli were rather homogenous 
as regards the linguistic properties of their corresponding names (e.g., lexical 
frequency). Future studies will manipulate these factors to examine the role of 
language preparatory process in various contexts and shed light on the mechanisms 
of proactive control beyond the scope of the Inhibitory Control Model (e.g., the 
frequency lag hypothesis, Emmorey et al., 2013; Gollan et al., 2008).   
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