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Abstract 9 

It is well known that windbreaks can provide favourable conditions for livestock. 10 

Determining the benefit of any given windbreak system first requires that the impact of the 11 

windbreak on the wind microclimate is characterised, but in practice, modelling wind flow 12 

around obstacles is complex and computationally intensive. We report a simple 13 

parameterised model to estimate the wind speed reduction around a windbreak. Analytically, 14 

model parameters showed close links to the real-world attributes that characterise windbreaks. 15 

The model was validated with field measurements on a farmland in the UK; a Monte Carlo 16 

simulation was used to measure model parameter uncertainties. Results showed that the 17 

model produced an excellent fit to the relative wind speed (i.e. normalized by ambient wind 18 

speed) with root-mean-square error of 4%±0.5%. The model was further applied to literature 19 

data to characterise the dependence of the relative wind speed on windbreak porosity. A 20 

field-scale simulation of a sheep grazing system, including an explicit description of wind-21 

chill effects, was conducted to estimate the net gain associated with including a windbreak in 22 

sheep productivity. The maximum productivity gain (27%) was found at a porosity of 0.5 and 23 

a wind speed of 12 m/s. Wind-chill effects were further simulated for lowland and upland 24 

environments, and related to ovine-specific thermal tolerance limits. Results showed a 25 

distinct response to reduced wind speeds between sites, indicating different levels of thermal 26 

risk to livestock and different, microclimate-specific, windbreak benefits for each location. 27 

The simplified models proposed in this study provides a generic framework for an efficient 28 

and precise quantification of windbreak effects and optimising the design of windbreak 29 

systems. 30 

Keywords: windbreaks, wind speed reduction, livestock thermal benefits, wind-chill effects  31 
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1 Introduction  32 

Windbreaks or shelterbelts have been used in the agricultural landscape for centuries. In cold 33 

and windy environments, where potential negative aspects such as drought and stagnant air 34 

are insignificant, they are considered to have a generally positive effect on livestock 35 

productivity (Brandle et al., 2004; Grace, 1988). Windbreaks afford direct physical protection 36 

from a thermally stressful environment (Cleugh, 1998) as generated by high wind, sun and 37 

precipitation. Crucially for livestock production, the immediate microclimatic conditions 38 

determine energy balance and extent of energetic flux to the environment.  39 

Energy generated by metabolism over and above requirements for vital processes, is, in 40 

agricultural systems ideally apportioned to production (i.e. weight gain), but in cold 41 

conditions is utilized in meeting the increased demands of thermoregulation (Bianca, 1976). 42 

When exposed to a cold and windy environment, the insulating boundary layer formed by fur, 43 

hair or fleece is diminished and convective heat loss from the body of the animal to the 44 

surrounding environment is thus increased (McArthur and Monteith, 1980a; Mount and 45 

Brown, 1982). The resulting decrease in temperature perceived by the organism as a result of 46 

this additional heat loss is commonly known as the wind-chill effect, meaning that under 47 

wind conditions, animals experience a colder condition than in still-air, and lower than the 48 

ambient temperature. Low-wind microclimates provided by windbreaks reduce heat loss and 49 

increase overall productivity (Ames and Insley, 1975; McArthur and Monteith, 1980b) as 50 

well as lowering lamb mortality (Pollard, 2006). 51 

As endothermic homeotherms, ovines defend internal homeostasis, with a mean core thermal 52 

set-point of 39°C (with a typical range of 37.9-39.8°C (Bligh et al., 1965)). Within a narrow 53 

range of environmental temperature (thermo-comfort zone: TCZ, A-A’ on Fig. 1), metabolic 54 

heat production is sufficient to balance the still-air energetic flux between animal and 55 

microclimate without requiring the initiation of additional thermoregulatory strategies.  As 56 

the thermal gradient between core body temperature and the environment increases, first 57 

behavioural, and then physiological, responses must be initiated to maintain core temperature, 58 

incurring an increased energetic cost. Animals experiencing temperatures outside the TCZ, 59 

but within thermo-neutral zone (TNZ, B-B’; Fig. 1) cease feeding and seek shelter or shade. 60 

Beyond the limits of TNZ, physiological changes to the animal’s insulation properties and 61 

intensification of metabolic heat production, catabolism of tissue and shivering 62 

thermogenesis (cold temperature) or increase in evaporative heat loss through sweating or 63 



Modelling windbreak effects 

 4 

panting (high temperature) occur to meet the energetic cost of thermal stress. Once outside 64 

lower or upper critical temperature limits (LCT, UCT), probability of death by hypo- or 65 

hyperthermia is a direct product of accumulated time and temperature. The thermal limits for 66 

an adult sheep are detailed in Fig. 1. 67 

 68 
Figure 1 Zones of thermal comfort (TCZ), neutrality (TNZ) and critical thermal limits illustrated graphically with equivalent 69 
temperatures for a temperate acclimatised adult ewe on maintenance diet with 50mm of fleece shown below. Graph adapted 70 
from: (Bianca, 1968); Temperature source: (Bianca, 1971, 1968; Blaxter, 1962; CAgM report, 1989). 71 

It is intuitive, therefore, that farm planning should be conducted with consideration of the 72 

influence of microclimate on energetic balance and production, and providing outdoor raised 73 

livestock with shelter, such as windbreaks. However, the positioning of sheltering ‘green 74 

infrastructure’ such as hedgerows, shelterbelts etc. in the UK is often done either on an ‘ad 75 

hoc’ basis, based on farmer experience, intuition or convenience, or by re-establishing 76 
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historical field boundaries. There is therefore a concern for scientific evidence-based advice 77 

in optimising ‘weather-wise’ farm planning.  78 

Prior to studying the thermal benefits to livestock created by windbreaks, it is fundamental to 79 

have a quantitative evaluation of the windbreak impacts on microclimate such as wind field, 80 

temperature and humidity. The impacts have been found to be significant in various 81 

environmental conditions (McDonald et al., 2007; Nord, 1991; Středa et al., 2011), however,  82 

this is generally a highly non-linear process that varies with inter-correlated environmental 83 

drivers such as windbreak types, air flow, solar radiation and rainfall. The aerodynamic 84 

properties of a windbreak determine its effectiveness in altering leeward microclimate, but 85 

due consideration must also be given of the characteristics of the object to be projected 86 

(Zhang et al., 1995). The aerodynamic properties of a living windbreak may also be affected 87 

by seasonal variation in structure (e.g. deciduousness) (Koh et al., 2014). 88 

In the scientific literature, there have been many attempts to grapple with numerical 89 

simulations of the equations that govern windbreak aerodynamics (e.g. Bitog et al., 2012; 90 

Speckart and Pardyjak, 2014; Torita and Satou, 2007; Wang and Takle, 1995; Yusaiyin and 91 

Tanaka, 2009; Zhou et al., 2007, 2005). In addition to the technical problems of solving these 92 

partial differential equations (e.g. how to discretize the equations and choose an appropriate 93 

grid size), a fundamental obstacle to using these models in the field is that they are typically 94 

derived from wind tunnel experiments that are necessarily simplified and unrealistic given 95 

the complexity of a real windbreak (i.e. one made up of flexible and irregularly-shaped trees 96 

and leaves). Moreover, the procedure of implementing such simulations is computational 97 

intensive and is cumbersome to apply to any real-world scenario. In short, there is a need for 98 

a simple parameterized model, based on real-world observations, that can provide not only a 99 

computationally-efficient estimation of the wind speed reduction around a real windbreak, 100 

but also the follow-up quantification of the effects of that windbreak on livestock 101 

productivity. Several previous researchers have tried to build and/or apply a parameterized 102 

model to estimating the wind speed reduction around a windbreak. Vigiak et al. (2003) used a 103 

function with five parameters (analogous to the sum of two normal distributions) and 104 

Stredova et al. (2012) suggested a quadratic polynomial with six parameters, to describe the 105 

wind speed reduction against distance and optical porosity. In both of these cases, however, 106 

crucial information is missing in terms of how, or whether, these parameters have any 107 

physical meaning or any relation to attributes of windbreaks that might be measured in the 108 

field.  109 
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Critically, only three parameters are required to characterize relative wind speed reduction 110 

around a windbreak (Heisler and Dewalle, 1988; Wang and Takle, 1997; Yusaiyin and 111 

Tanaka, 2009). These are illustrated in Fig. 2; L20, xmin and ymin, where L20 is the distance 112 

between which the wind speed reduction is 20% (i.e. wind speed is 80% of ambient wind 113 

speed), xmin is the distance downwind of the windbreak at which wind speed is at its lowest, 114 

and ymin is the minimum wind speed (i.e. the wind speed at xmin). Consequently, a simple 115 

parameterisation of the wind speed around a windbreak is achievable in principle because 1) 116 

just three parameters should be sufficient to uniquely determine the trend of wind speed 117 

around a windbreak; 2) further downwind of the windbreak, the wind speed asymptotically 118 

approaches the ambient wind speed (i.e. zero reduction). 119 

 120 
Figure 2 Characteristic trend of wind speed reduction around a windbreak and parameters required to define this. 121 

In this study we use a simple parameterized model based on the form of the probability 122 

density function of a single logarithmic normal distribution with three parameters, the 123 

physical meanings of which can be explicitly expressed in terms of L20, xmin and ymin. The 124 

estimation error and parameter uncertainty are analysed thoroughly using field measurements 125 

and we further extended this model to literature datasets so that the dependence of windbreak 126 

effect on windbreak porosity can be estimated and analysed. The wind-chill temperature 127 

(WCT) is modelled by using a sigmoid function fitted to a published dataset relating to adult 128 

sheep (3-6cm fleece depth). Last but by no means least, we simulate the response of the 129 

thermal benefits of wind speed reduction by using historical climate datasets measured at a 130 

lowland and an upland site. 131 
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2 Data and Method 132 

2.1 Site description and measurements of wind speed 133 

Field measurements were made at the Bangor University Research farm at Henfaes 134 

(53°14'13.2"N 4°00'58.3"W) in Llanfairfechan, Wales, UK. Five sonic anemometers (four 135 

Gill WindSonic 2D and one Campbell CSAT3 3D) were positioned along a transect running 136 

perpendicular to a linear tree barrier forming a windbreak. The anemometers were placed at 137 

about 1.5m above the underlying ground surface, slightly above sheep height. The windbreak 138 

was of mixed deciduous species composition in two rows, including sycamore, alder, hazel 139 

and oak. Physically, the windbreak had an average height (H) of 10m and ran in a southeast – 140 

northwest orientation, such that the prevailing wind (from the southwest) meant that the 141 

anemometers were situated in the downwind region for most of time. Fig. 3 shows the 142 

distance (in H) of each anemometer downwind of the windbreak, namely 1H, 2.5H, 5H, 7.5H 143 

and 15H. 144 

 145 
Figure 3 Site map at Henfaes and downwind locations (in barrier height H) of the five sonic anemometers. Photo taken by Y. 146 
He on 2 Aug. 2016, reproduced by Y. Xuan. Map credit: Google Earth. 147 
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The 2D and 3D anemometers sampled at 1Hz and 10Hz respectively. The 10-min averages 148 

were then calculated from the valid high frequency samples (i.e. non-nans samples). In total, 149 

fourteen days of 10-min averages were collected between 8-22 August 2016. Only data when 150 

wind direction was from the southwest sector (180°-270°) were included in the simulation. 151 

Because southwest is the dominant wind direction for this region, 1353 samples out of 2031 152 

(67%) were included. 153 

We assumed that the wind speed measured by the furthest anemometer at 15H was the 154 

reference wind speed and the relative wind speed at each position downwind was normalized 155 

by expressing it as a proportion of the wind speed at 15H. Calculating the proportion at each 156 

data point exacerbated noise resulting from stochastic events, because the fraction can be 157 

significantly impacted by a small change in the numerator and/or denominator, especially 158 

when their values are small. For example, an error of 0.1 in the numerator contributes much 159 

more to a fraction of 0.5/1 (i.e. 50% attenuation) than 5/10 (again 50% attenuation). 160 

Therefore, to minimize such errors/uncertainties, the proportion was estimated by taking the 161 

slope of the linear regression between wind speed measured by paired anemometers. 162 

2.2 Model development and error estimation 163 

Previous attempts to approximate the wind speed reduction around a windbreak have used a 164 

single, or the sum of two, normal distributions (Hipsey, 2003; Schwartz et al., 1995; Vigiak 165 

et al., 2003). In this study, we modified the density function of a single normal distribution by 166 

taking the logarithm of the downwind distance. The relative wind speed (𝑢/𝑢#) at any 167 

distance from a windbreak (i.e. from −10ℎ windward and up to 40ℎ leeward) can thus be 168 

calculated as: 169 

𝑦 = +
+,
= 1 − 𝑎 ∗ 𝑒01∗ 23 4567# 08 9     (1) 170 

where 𝑥;  is the distance from the barrier normalized by the barrier’s height. 𝑢 is the wind 171 

speed at 𝑥; and 𝑢# is the incoming ambient wind speed. Fig. 2 shows a typical picture of the 172 

relative wind speed around a windbreak. The general characteristics of this curve can be 173 

expressed by the following, 1) It is asymptotic towards 1 at both ends; 2) It has a single 174 

minimum point; 3) The shelter distance (L20) is defined as the distance between which the 175 

wind speed reduction is at least 20%. Coefficients 𝑎, 𝑏, 𝑐 in Eq. (1) are closely related to the 176 

minimum point and L20, 177 

𝑥?@A = 𝑒8 − 10 (2) 178 
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𝑦?@A = 1 − 𝑎   (3) 179 

𝐿C# = 𝑒8 ∗ (𝑒
EF G

,.9
I − 𝑒

0
EF G

,.9
I ) = 2 ∗ 𝑒8 ∗ sinh	(

23 G
,.9
1
)   (4) 180 

where xmin represents the downwind location where the minimum wind speed (ymin) is reached.  181 

This formulation clearly points out the potential physical meanings of the coefficients in Eq. 182 

(1). a is related to the maximum wind speed reduction, b is related to the initial deceleration 183 

and acceleration of airflow and c is related to the downwind position of xmin. They are all 184 

dimensionless quantities. In the discussion below, we speculate on how these parameters are 185 

related to the physical characteristics of the windbreak.  186 

2.3 Model error estimation 187 

In order to determine the robustness of the model, we quantified parameter errors by splitting 188 

our dataset randomly into two parts; a training set (70%) and a validation set (30%). The 189 

training set was used to estimate the parameters in Eq. (1) and the validation set was used to 190 

calculate model error that was evaluated by the root mean square error (RMSE). This process 191 

was repeated 500 times using a Monte Carlo method to generate independent training and 192 

validation sets so that all variation (uncertainty) in the estimations of the coefficients was 193 

captured. Note that here we do not require a cross-validation set and test set as used to test an 194 

artificial neural network (ANN) procedure. ANNs optimise parameters by iteration and 195 

require evaluations on independent cross-validation sets to update coefficient estimates in 196 

real time. Our goal, however, is simply to measure the model prediction error through Monte 197 

Carlo sampling. In fact, statistically the confidence interval (CI) estimated by this method is 198 

more reliable than that associated with an ANN because even poor parameter estimations will 199 

be included in the CI estimates. 200 

2.4 Literature data and windbreak porosity 201 

Neglecting atmospheric stability, the three parameters (i.e. xmin, ymin and L20) uniquely define 202 

airflow modified by any given windbreak. Despite the fact that a windbreak has a plethora of 203 

characteristics (e.g. tree species, leaf shape, density and distribution), optical porosity alone 204 

has often been used to describe windbreak aerodynamics and distinguish between windbreak 205 

type (e.g. Stredova et al., 2012; Vigiak et al., 2003; Wang and Takle, 1997). In order to build 206 

a function of porosity against the parameters in Eq. (1), we applied the model to two 207 

published data sets as shown in Fig. 4. For the sake of simplicity, we call the dataset 208 



Modelling windbreak effects 

 10 

extracted from Heisler and Dewalle (1988) dataset 1 and that extracted from Wang and Takle 209 

(1997) dataset 2. Dataset 1 was obtained from field observations of five types of windbreak 210 

(Fig. 4a) and dataset 2 was the result from numerical simulations of a boundary-layer 211 

turbulence model (Fig. 4b). By fitting Eq. (1) to each data set, we estimated the parameters 212 

which could then be correlated to reported values of porosity. It should be noted, however, 213 

that dataset 1 did not represent porosity numerically, so for the sake of this simulation we 214 

assigned values of 0.2, 0.36, 0.5, 0.62 and 0.73 to the data reported for very dense, dense, 215 

medium, loose and very loose respectively. 216 

 217 
Figure 4 Digitized data extracted from (a) Fig. 2a in (Heisler and Dewalle, 1988); (b) Fig. 2 in (Wang and Takle, 1997). 218 

2.5 Wind-chill effects and heat loss from sheep 219 

Barnes (1974) measured the wind-chill temperature (WCT) for sheep with three types of 220 

fleece: shorn, medium (3-6 cm) and full (>6 cm). In the experimental setting, wind speed 221 

varied from 0 m/s up to 18 m/s, and temperature varied from -15 °C to 20 °C. The equation 222 

developed by Osczevski and Bluestein (2005) for wind chill effect in humans, 𝑊𝐶𝑇	 =223 

	35.74	 + 	0.6215 ∗ 𝑇	– 	35.75 ∗ 𝑉#.7[ 	+ 	0.4275 ∗ 𝑇𝑉#.7[, is unsuitable for the purposes of 224 

this study physiologically: the insulation properties and physical proportions of ovines are 225 

somewhat different to those of humans. Instead, we used a sigmoid function to fit the data of 226 

medium fleece sheep as follows, 227 

𝑊𝐶𝑇 = −39 + 𝑇 + ]^
76_,.9`∗(abc9.c9)

   (5) 228 

where WCT is the wind-chill temperature. T and V signify ambient temperature and ambient 229 

wind speed respectively. The goodness of fit was great with 𝑅C = 0.98	 𝑝 < 0.01  and 230 

RMSE=2.44. The value 39 represents sheep core body temperature and the other two values 231 

were obtained by curve fitting: 0.28 shows the heat conductance rate and 12.12 is the wind 232 
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speed above which the wind-chill effect starts to slow down asymptotically. Heat loss (in 233 

W/m2) was determined from the WCT (see below). 234 

When ambient temperature is below the lower limits of TNZ, metabolic heat production 235 

increases linearly with decreasing ambient temperature (Alexander, 1974) (until outside 236 

critical limits and suffering hypothermia), i.e. ∆𝑄 = 𝑘 ∗ ∆𝑇. Thus, the reduction of heat loss 237 

(PQ) due to reduced wind-chill effects was calculated as, 238 

𝑃l = 1 − m∗ n0opn
m∗ n0opn,

= 1 − n0opn
n0opn,

   (6) 239 

where T is ambient temperature. WCT and WCT0 are the wind-chill temperature with and 240 

without windbreak effects. PQ is always positive as 𝑊𝐶𝑇 ≤ 𝑇. 241 

2.6 Historical climate data 242 

In order to simulate real-world environments, we used historical datasets from two 243 

meteorological stations in North Wales, namely the Llanberis station (53.1180° N, 4.1275° W) 244 

and the Clogwyn station (53.0642° N, 4.0864° W). The former site is located in a lowland 245 

area with an elevation of about 130m and the latter in an upland area with an elevation of 246 

about 700m. Therefore, the climatic condition at Clogwyn is generally more extreme (i.e. 247 

higher wind speed and wider temperature range) than Llanberis. Hourly wind speed and 248 

temperature datasets were directly retrieved from data archives: 249 

(http://www.fhc.co.uk/weather/archive/main.asp). Data availability from both sites covered 250 

more than 10 years, i.e. from July 1998 to April 2011 for Clogwyn and from July 1999 to 251 

September 2015 for Llanberis.  252 

Hourly data were plotted on a graph of wind speed and ambient temperature and a boundary, 253 

shown by a polygon, was then drawn to include all data points (excluding obvious data 254 

errors). This represents the environmental envelope experienced by livestock at these sites. 255 

Please see results, Fig. 9 for graphical details. 256 

2.7 The metric for the total benefit 257 

Because our goal is to measure the impact of windbreaks on the heat loss from sheep (PQ), a 258 

single metric representing the total benefit spatially is helpful. We propose the following 259 

equation to estimate the total benefit (B), which is simply the average of the integration of PQ 260 

over the leeward distance, 261 

𝐵 = 7
4c04,

𝑃l𝑑𝑥
4c
4,

       (7) 262 



Modelling windbreak effects 

 12 

where 𝑥7 and 𝑥# are the start and end points for the integration.  263 

3 Results 264 

3.1 Model uncertainty of wind speed reduction 265 

The time series of our measurements showed clear and consistent separations among, but 266 

good correlation between, the five anemometers (Fig. 5a). As expected, wind speed increased 267 

further away from the windbreak. Fig. 5b shows the model fit against the observations 268 

located at five downwind positions (i.e. 1H, 2.5H, 5H, 7.5H and 15H). It is clear that the log-269 

normal function (Eq. 1) captured the trend of wind speed at downwind locations, with only 270 

small discrepancies (RMSE = 0.06). The model uncertainty including parameter variation and 271 

validation error was further estimated by the 500-repetition Monte Carlo simulation (Fig. 6). 272 

The variations in the three parameters of Eq. (1) were almost negligible with standard 273 

deviations less than 1% of the respective mean values for all three parameters (Fig. 6a, 274 

6b&6c). Similarly, the validation error (RMSE) was between 3.5% and 4.5%, that is to say, 275 

the estimation by the model of the relative wind speed (u/u0) had an average error of 4%. In 276 

summary, despite its simple form, the proposed model was capable of capturing most 277 

variation in wind speed downwind of the windbreak.  278 

 279 
Figure 5 (a) Time series of wind speed observed by five anemometers downwind and (b) modelled wind speed reduction 280 
against the observations. 281 
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 282 
Figure 6 Distributions of the estimation of the coefficients and the model error (RMSE) estimated on the 500 validation 283 
datasets generated by the Monte Carlo method. 284 

3.2 Modelling literature data and porosity dependence 285 

By applying a similar method to the two literature datasets, a sensitivity analysis was 286 

conducted to determine how windbreak porosity affected model parameters and RMSE 287 

(Table 1). Model performance was consistently good with R2 values over 0.92 for all cases, 288 

once again illustrating the robustness of this simple model. RMSE values ranged from 0.01 to 289 

0.08, meaning that the average estimation error of u/u0 was between 1% and 8%. There was a 290 

simple dependence of RMSE on porosity: as porosity increased, RMSE decreased, suggesting 291 

that the model resulted in smaller uncertainties for sparser windbreaks. This result can also be 292 

observed in the dependence of the estimation of coefficients a and b on porosity where the 293 

error bars tended to decrease in size as porosity increased. Uncertainties of the coefficient c, 294 

however, were constantly small for all cases, with a standard deviation of 0.02.  295 

The relationships between porosity and the coefficients themselves was built empirically by 296 

fitting the quadratic function (𝑦 = 𝑚𝑥C + 𝑛𝑥 + 𝑙, where x is porosity and y is a coefficient) 297 

as shown in Fig. 7. The fit performance was generally good with R2 over 0.85 for all cases 298 

(Fig. 7a & 7b). Relative wind speed was estimated for windbreaks of different porosity as 299 

shown in Fig. 7c & 7d. As porosity increased, the wind attenuation effects of the windbreak 300 

diminished and the point of minimum wind speed tended to move downwind. Although the 301 

wind speed curves agreed well between the two literature datasets at a medium porosity of 302 
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0.5, the two estimations of wind speed differed significantly for other porosities, especially so 303 

for the lowest porosity. The windbreak used in our field experiments was clearly very dense 304 

(see photos in Fig. 3). Fig. 7e showed that the wind speed curve estimated from our 305 

measurements was close to the 0.1 and 0.2 porosity curves from dataset 2, suggesting that the 306 

porosity of the experimental windbreak observed was between 0.1 and 0.2 as defined in 307 

dataset 2.  308 

Table 1 Model fit to two literature datasets. The codes for dataset 1, XD, D, M, L and XL, represent very dense, dense, 309 
medium, loose and very loose respectively. The last column with porosity 1 represents an open area without windbreak, 310 
simply used as a boundary condition for parameter a (i.e. a=0 when porosity=1). In the absence of a windbreak parameters 311 
b and c are undefined (ND). 312 

Porosity	 XD/0.10	 D/0.36	 M/0.5	 L/0.62	 XL/0.73	 O/1	

Dataset 1	

RMSE	 0.080	 0.047	 0.018	 0.025	 0.014	 ND	

a	 0.76±0.05	 0.69±0.05	 0.63±0.01	 0.57±0.02	 0.35±0.01	 0	
b	 8.19±1.53	 4.85±0.56	 3.89±0.16	 5.00±0.38	 3.95±0.26	 ND	
c	 2.48±0.02	 2.57±0.02	 2.65±0.01	 2.59±0.01	 2.64±0.01	 ND	

R2	 0.92	 0.96	 0.99	 0.99	 0.99	 ND	

Dataset 2	

RMSE	 0.084	 0.046	 0.030	 0.022	 0.018	 ND	
a	 1.00±0.05	 0.82±0.04	 0.63±0.03	 0.45±0.01	 0.29±0.01	 0	
b	 6.81±1.04	 5.07±0.54	 3.84±0.35	 3.27±0.28	 2.92±0.28	 ND	
c	 2.50±0.02	 2.62±0.02	 2.67±0.02	 2.71±0.02	 2.75±0.02	 ND	

R2	 0.94	 0.97	 0.98	 0.98	 0.97	 ND	
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 313 
Figure 7 Fitted model parameters and porosity and the curve of relative wind speed for porosity values ranging from 0.1-0.9. 314 
(a, c) From dataset 1; (b, d) Dataset 2. (e) Field measurements compared with curves for porosity of 0.1 and 0.2 from 315 
dataset 2. 316 

3.3 Estimated benefits in reducing heat loss from sheep 317 

Building upon the above results and combining equations (5-7), it was possible to apply the 318 

wind speed model to estimate potential climatic benefits due to reduced heat loss from sheep. 319 

Fig. 8a shows heat loss reduction under a fixed ambient wind speed of 10 m/s, an ambient 320 

temperature of 5 °C and a windbreak porosity of 0.2. Heat loss decreased significantly at the 321 

locations near the windbreak because of decreased wind speed and lower wind-chill. In fact, 322 

for a given ambient temperature (e.g. 5 °C here), the reduction in heat loss is highly 323 

correlated with the wind speed reduction through Eq. (6).  324 

Combining the benefits on heat loss reduction using Eq. (7), we implemented a sensitivity 325 

analysis of the total productivity gain against a range of porosities from 0.1-0.9 and ambient 326 

wind speed from 1-30 m/s. This relationship is shown as a 2-D contour plot in Fig. 8b. When 327 

the air is nearly still (i.e. wind speed close to zero), the total gain is nearly null because of the 328 

absence of wind chill. As wind becomes stronger, reduced heat loss gradually increases, 329 

adding to the total productivity benefit, suggesting that greater advantages are conferred in 330 

windier conditions. The total benefit increased as the ambient wind speed increased for all 331 

porosities, but dependence on porosity was not monotonic. The total benefit starts to increase 332 
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as porosity increases above zero, reaches a peak benefit of +27% at a porosity of 0.5 and a 333 

wind speed of 12 m/s, and then starts to fall as porosity approaches 1. As wind speed 334 

increases above 12 m/s, the total benefit to productivity conferred by the windbreak 335 

asymptotically approached a constant because of diminishing wind-chill effects determined 336 

by Eq. (5). In physical terms, this can be understood as the gradual erosion of the surface 337 

boundary layer as the fleece is penetrated by high winds, leading ultimately to a point where 338 

conduction of heat through the endodermis, rather than through the surface boundary layer, 339 

limits heat loss. 340 

 341 
Figure 8 (a)Effects of windbreak on wind speed (dashed line) and percentage of heat loss (solid line). The shaded area 342 
represents the total reduced heat loss from the animal. (b) The integrated total benefit against a range of porosity (0.1-0.9) 343 
and ambient wind speed (1-30 m/s). 344 

3.4 Wind-chill effects on a habitable thermal condition 345 

Based on historical climate data for two sites representative of upland and lowland 346 

environments inhabited by sheep, we related simulated wind-chill to sheep-specific limits of 347 

thermal comfort, neutrality and critical tolerance to determine the impact of a chilling wind 348 

on the physiology of livestock, and importantly, the influence of reduced wind speed to the 349 

physiological response of livestock to the warmer temperature experienced.  350 

Eq. (5) summarises the wind-chill temperature (WCT) as a function of ambient temperature 351 

and wind speed. We split the value range of WCT into seven sectors denoted by six 352 

physiologically significant temperature points for sheep (-10°C, -3°C, 8°C, 18°C, 24°C, 32°C) 353 

in terms of temperature experienced, rather than ambient temperature (see details in Fig. 1) 354 

Each sector was assigned to a colour (indicated in Fig. 1) and the relation between critical 355 
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temperature limits and ambient temperature and wind speed are illustrated by filled contour 356 

plots (Fig. 9a&9b), hereafter simply denoted by the term wind-chill thermal tolerance (WTT) 357 

plot. The ambient temperature scale from -40°C to 50°C and wind speed from 0 to 50 m/s 358 

represents a generic environment inclusive of most natural microclimates. Any individual 359 

location will experience only a sub-area of the WTT plot, corresponding to the environmental 360 

conditions experienced over any given time period. 361 

The areas enclosed by the dotted white lines in Fig. 9a and Fig. 9b represented the 362 

environmental envelope at Llanberis and Clogwyn stations respectively. As expected, the 363 

WTT plot suggested a more physiologically-stressful thermal environment at the upland in 364 

Clogwyn, with a large black area indicating the range of WCT temperatures in which a 365 

sheep’s environmental temperature falls below LCT and the sheep would eventually suffer 366 

fatal hypothermia. 367 

Without wind, the boundaries of each monochromatic area on the WTT plot would be 368 

mutually parallel (i.e. no dependence on wind speed), but because of the presence of wind-369 

chill effects, these boundaries bend towards higher temperatures at greater wind speed, 370 

creating a larger cold zone and a smaller warm zone. Consequently, the areas representing 371 

optimum conditions for livestock health and productivity denoted by the green ‘thermo-372 

comfort’ zone (8-18°C, green area on Fig. 9a&9b) and the wider, sub-optimal but ‘thermo-373 

neutral’ zones (indicated by light blue and yellow areas) become a smaller part of the total 374 

micro-climatic environment represented on the graph. As the animal’s insulating boundary 375 

layer and fleece become compromised, further increases in wind lead to smaller and smaller 376 

increases in wind chill, until a point is reached at a wind speed of about 20m/s where the 377 

boundaries become parallel and vertical. 378 

The introduction of a windbreak, and the reduction in winds speed and chilling can be 379 

visualized on the WTT plot. Here, the probability of experiencing a given thermal 380 

environment can be estimated by the proportion of the area it represents (e.g. the proportion 381 

of green area at a given wind speed shows the probability of having a thermo-comfortable 382 

temperature). Therefore, reducing ambient wind speed by a certain amount (e.g. moving the 383 

dashed horizontal lines in Fig. 9a&9b downwards), reduces the relative area of 384 

hypo/hyperthermy (black) and increases the relative areas of thermocomfort and 385 

thermoneutrality (green, yellow, light blue). 386 
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We used the historical climate data to constrain our simulation to a real-world scenario (i.e. 387 

only the area within the polygon representing the actual climatic envelope was considered in 388 

the computation). The four coloured lines in Fig. 9c&9d represent the changed probability of 389 

experiencing thermocomfort (green), thermoneutral (light blue) and thermostress (red) 390 

conditions when wind speeds were reduced by 5 to 95% for the Llanberis and Clogwyn sites 391 

respectively. As expected, the impact of reduced wind speeds differed significantly between 392 

sites. At Llanberis (Fig. 9c), the relative proportion of different thermal conditions remained 393 

nearly constant, suggesting that there is little benefit obtained by reducing wind speed. This is 394 

unsurprising because conditions at Llanberis are naturally above critical limits (i.e. little 395 

black area was initially included). At Clogwyn (Fig. 9d), however, the probabilities of 396 

experiencing thermo-comfortable (green line) or thermo-neutral (blue line) conditions both 397 

increased significantly as the wind speed decreased. The probability of a thermally stressful 398 

condition (i.e. conditions requiring increased thermogenic compensation for heat loss) (red 399 

line) also increased but with a slighter gradient. Consequently, the probability of 400 

experiencing fatal (black line) conditions decreased greatly as wind speed decreased. Given a 401 

wind speed reduction of 60%, for instance, we can reduce the chance of experiencing fatal 402 

thermal conditions by 27%, whilst increasing the probability by 8% and 14% respectively of 403 

experiencing a thermo-comfortable (optimum for production) or thermo-neutral condition. 404 

 405 
Figure 9 (a, b) Contour plots of wind-chill thermal tolerance (WTT plot) for sheep. Wind-chill temperature (WCT) was 406 
grouped according to the thermal categories shown in Fig. 1. (c, d) The probability of experiencing a given thermal 407 



Modelling windbreak effects 

 19 

condition against wind speed reduction. Line colour meaning:  Green: thermo-comfort; Blue: thermo-neutral; Red: thermo-408 
stress; Black: fatal.  409 

4 Discussions  410 

Eq. (1) was found to provide a good approximation to the two literature reports of wind speed 411 

reduction around windbreaks, and characterization was achieved using three model 412 

parameters with explicit relations to real-world parameters: downwind location of minimum 413 

wind speed (xmin, coefficient c), maximal percentage of wind speed reduction (ymin, 414 

coefficient a), and the distance over which 20% wind speed reduction is achieved (L20, see 415 

further discussion below), as given by Eqs. (2-4) respectively.  Although coefficient b was 416 

found to relate to L20 through Eq. (4), the form of this equation was not clear enough to 417 

suggest an obvious physical meaning of b. In fact, the right-hand side of the formula also 418 

incorporates coefficients a and c, making the interpretation of this parameter even more 419 

difficult. The hyperbolic function shown in Eq. (4), however, may suggest some deep 420 

relationship between the coefficient b or L20 with some fundamental aerodynamic process 421 

(e.g. an analytical solution of the Navier-Stokes equation under certain conditions). It is well 422 

known that the solutions to some equations that describe ocean waves can be represented by 423 

hyperbolic functions (Majda, 2003). Further analytical exploration of Eq. (4) and its links to 424 

fluid dynamics may be a fertile area to follow-up. This simple yet accurate three parameter 425 

characterization of wind reduction has been similarly achieved by other authors (Heisler and 426 

Dewalle, 1988; Wang and Takle, 1997; Yusaiyin and Tanaka, 2009), and the economy of the 427 

model will be pivotal in the generation of a computationally efficient tool for application to 428 

geospatial contexts in real-world farm planning.  429 

In our ambition to develop a simple and transferrable model, we have endeavoured to 430 

correlate the parameters with a single driving variable. The concept of windbreak porosity 431 

has been frequently used in the literature as an intuitive structural feature to characterise a 432 

windbreak (Heisler and Dewalle, 1988; Torita and Satou, 2007; Wang and Takle, 1995; Zhou 433 

et al., 2005). However, empirical data is always required to determine the model parameters 434 

for any specific windbreak, and the differences depicted by the two literature datasets suggest 435 

that porosity alone is not able to unify these two datasets. Furthermore, as an index to 436 

describe how much wind resistance different windbreaks introduce, porosity or aerodynamic 437 

porosity has not, to our knowledge, been properly mathematically defined and is thus not a 438 

very useful term to apply computationally. Optical porosity may be well defined and can be 439 

calculated conveniently, however it may only be justifiable for 2-D windbreaks and may not 440 
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work for 3-D situations (Torita and Satou, 2007; Zhou et al., 2005). Physically, porosity may 441 

represent a combination of several characteristics that reflect the complexity of a windbreak, 442 

such as tree and branch flexibility, leaf size, tortuosity, arrangements, etc. In aerodynamics, 443 

drag force is often used to describe a windbreak (Guan et al., 2003; Wang and Takle, 1997), 444 

but similarly to porosity, this quantity is neither conveniently calculated nor measured. Future 445 

development of the model described herein will seek to determine a parsimonious and 446 

ecologically sound variable which may be used to more explicitly characterise the 3-447 

dimensional structure of a windbreak. 448 

The wind reduction data collected to parameterise our model apply to a deciduous windbreak 449 

in full foliage. It is important to note here, the considerable variability in shelter belt 450 

properties which are associated with species composition and seasonality of deciduous 451 

vegetation (Koh et al., 2014). These factors give further weight to the need for a unifying 452 

property that can be used to comprehensively define the 3D structure of windbreaks of 453 

varying phenology and species, and model potential wind speed reduction. 454 

The effects of wind-chill on thermal tolerance limits of sheep, as demonstrated in Fig. 9, 455 

concur with observations elsewhere in the literature: Alexander (1974) observed the effect of 456 

wind upon critical temperature limits, noting that the critical temperature limits appeared to 457 

increase as wind speed increased. Whilst the animal’s thermal tolerance does not alter (so 458 

long as insulation and physical properties remain constant), change in heat loss is 459 

proportional to both ambient temperature and wind speed (i.e. wind chill) (Mount and Brown, 460 

1983) and thus with increasing wind speed, thermal limits are reached at effectively higher 461 

ambient temperatures. Calculations for convective heat loss in sheep reported in the literature 462 

vary according to means of measurement (deduced from oxygen consumption, radiative 463 

surface temperature, or power required to maintain internal heat of an electrical replica) and 464 

microclimatic factors affecting the experimental space (e.g. turbulence)(McArthur and 465 

Monteith, 1980a). However, the shape of the curve denoting each thermal boundary 466 

according to ambient temperature and wind speed presented in Fig. 9 reflects the step-wise 467 

breakdown of first boundary layer and then fleece structure, as observed by (Ames and Insley, 468 

1975). It should be noted that the specific wind-chill model described here apply solely to the 469 

insulation and proportions of an adult medium-fleeced sheep. For example, the lower surface 470 

area: volume ratio and thinner fleece of a lamb would create more thermally stressful 471 

condition in a given thermal environment than experienced by an adult sheep, and thus the 472 

gains offered by sheltering windbreaks will be greater (Alexander et al., 1980; Pollard, 2006). 473 
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The wind-chill effect estimated in this study represented the heat loss from sheep through 474 

convection only, and a fuller description of the energetics of the endotherm body requires that 475 

consideration is also given to energy gained from the environment by radiation (most 476 

significantly direct solar) and the influence of precipitation (Brown and Mount, 1987; 477 

Clapperton et al., 1965; Matzarakis et al., 2010; McArthur, 1991). Here incoming and 478 

outgoing radiation should be considered in the model given the fact that windbreaks can 479 

normally provide shade from sunlight. This shading effect may be positive during hot 480 

conditions or negative when solar gain may exceed wind-chill in still, cold conditions. The 481 

data utilised to construct the wind-chill model presented in this paper were conducted in a 482 

laboratory with fixed radiative heating (Barnes, 1974), thus the validity of this model in 483 

assessing wind-chill effects remains. However, in addition to the spatial integration shown in 484 

this study, a temporal integration of positive heat flux (net benefit), over the full range of 485 

conditions experienced, should be made to obtain the total benefit over time. A companion 486 

paper focusing on the measurement and modelling of tree shading effects on animal heat loss 487 

is expected soon. 488 

The WTT plot (Fig. 9) provides an intuitive visualisation for analysis of the wind-chill effects 489 

on the thermal stress or comfort experienced by a given organism in a given micro-climate. 490 

Generally, the climate conditions actually experienced at a particular location for a given 491 

time period are a sub area of the WTT plot. Results above indicate the greater gain in thermal 492 

stress reduction for livestock resulting from inclusion of shelter in the colder and windier 493 

Clogwyn thermal condition compared to that at Llanberis. The information to be extracted 494 

from this result is inspired: despite the benefits of windbreak practise in general, its 495 

effectiveness is dependent on micro-climate. Micro-climatic conditions which invoke a 496 

greater thermal stress as a result of being frequently beyond thermo-neutral and critical 497 

physiological limits (e.g. uplands) will gain greater benefit from incorporation of windbreaks. 498 

For illustrative purposes here, we are comparing regions, however similar comparisons could 499 

be made at farm scale to evaluate shelter options for different fields (of different elevation, 500 

aspect etc.) according to prevailing microclimate. Geospatial modelling of energetics, 501 

vegetation and meteorological has been used to predict range and survivorship of wild 502 

animals at landscape scale (Natori and Porter, 2007; Parker and Gillingham, 1990; Porter et 503 

al., 2002), and this model could form the basis of a similar approach, but with the aim of 504 

optimising the farmland landscape for production. Traditional hill farms in North Wales 505 
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incorporate grazing sites from lowland to mountain top, so such a tool would be of great 506 

utility in cost: benefit assessments for investing in shelter provision across the farm landscape.  507 

Further development of the WTT plot will provide more accurate quantification of the 508 

benefits of establishing a windbreak at a given location, by weighting each pair of wind speed 509 

and ambient temperature conditions by its frequency of occurrence rather than considered 510 

equally probable. Seasonal weather and extreme storm events are also likely to impact 511 

differently on animal thermal balance and welfare; thus, modelling of these meteorological 512 

scenarios separately may best inform effective shelter provision and weather-wise farm 513 

planning. Nevertheless, the thermal/wind envelope of a particular location, superimposed on 514 

the WTT plot for a given organism, provides a useful and convenient means of illustrating 515 

the response of livestock to wind-chill and to the effects introducing a windbreak and has 516 

been an effective tool for discussion of these subjects with non-experts (such as farmers). A 517 

follow-up study will focus on a spatial and temporal integration of the thermal benefits by 518 

combining the WTT plot and the windbreak model at a farm and landscape scale.  519 

5 Conclusions 520 

The models proposed in this paper, whilst simple, are effective in capturing real-world 521 

meteorological conditions and the resulting impacts of these on the thermal stress 522 

experienced by sheep. Wind chill has the potential to compromise farm productivity and 523 

animal welfare; windbreaks offer a mitigation of this by reducing local wind speed and 524 

resulting heat loss from livestock via convection. An organism-specific WTT plot may be 525 

used in a cost-benefit analysis of introducing windbreaks into real-world meteorological 526 

situations and may form the basis of an efficient and precise quantification of windbreak 527 

effects on animal productivity. The economy of the models described here offer significant 528 

potential for scaling up in computationally-efficient, spatially-explicit, applications for 529 

optimizing green infrastructure and scientifically-informed ‘weather-wise’ farm planning.  530 
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