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Abstract  15 

Interactions between parasite, host and host-associated microbiota are increasingly 16 

understood as important determinants of disease progression and morbidity. Salmon lice, 17 

including the parasitic copepod Lepeophtheirus salmonis and related species, are perhaps the 18 

most important problem facing Atlantic Salmon aquaculture after feed sustainability. Salmon 19 

lice parasitize the surface of the fish, feeding off mucus, scales and underlying tissue. 20 

Secondary bacterial infections are a major source of associated morbidity.  In this study we 21 

tracked the diversity and composition of Salmo salar skin surface microbiota throughout a 22 

complete L. salmonis infection cycle among 800 post-smolts as compared to healthy controls. 23 

Among infected fish we observed a significant reduction in microbial richness (Chao1, 24 

P=0.0136), raised diversity (Shannon, P<7.86e-06) as well as highly significant 25 

destabilisation of microbial community composition (Pairwise Unifrac, beta-diversity, 26 

P<1.86e-05; P = 0.0132) by comparison to controls. While undetectable on an individual 27 

level, network analysis of microbial taxa on infected fish revealed the association of multiple 28 

pathogenic genera (Vibrio, Flavobacterium, Tenacibaculum, Pseudomonas) with high louse 29 

burdens. We discuss our findings in the context of ecological theory and colonisation 30 

resistance, in addition to the role microbiota in driving primary and secondary pathology in 31 

the host. 32 

 33 

 34 

 35 

mailto:martin.llewellyn@glasgow.ac.uk


 2 

Introduction 36 

New data from epidermal (e.g. [1]) and intestinal (e.g. [2-4]) parasitic disease systems 37 

suggest major roles for host-associated microbiota in promoting effective host immunity (e.g. 38 

[1]) or driving host pathology [2]. More widely, commensal microbiota – especially in the 39 

gut - are known to exert ‘colonization resistance’ on potential opportunistic pathogens, 40 

inhibiting over-growth and pathogenesis (e.g. [5]).  In aquatic systems major pathogens and 41 

putative opportunists are frequently identified as asymptomatic infections. As such, the host-42 

associated microbiome can act as the source of many disease agents which emerge as 43 

important pathogens under the right conditions [6].  44 

Salmon lice are copepod ectoparasites of salmon. Several species of the two main genera, 45 

Lepeophtheirus and Caligus, are distributed globally and infect both Pacific and Atlantic 46 

salmonid species [7]. Costs and losses attributed to sea louse infection, estimated at €300M 47 

million annually, are the single greatest pathogen burden on the global salmonid aquaculture 48 

industry [8].  In the North Atlantic, a single species predominates (Lepeophtheirus salmonis), 49 

causing year-round infestations of Atlantic Salmon (Salmo salar)  housed in marine cages, 50 

with concomitant ramifications for fish health as well as aquaculture economics and 51 

sustainability. 52 

L. salmonis are the cause of substantial morbidity in their salmonid hosts. Pathology arises 53 

primarily through louse feeding behaviour whereby their rasping maxillae scrape mucus, 54 

scales, and underlying tissue into their digestive tract [9]. Osmoregulatory dysfunction, fluid 55 

and blood loss result. There is evidence that L. salmonis secrete several proteases to assist 56 

with feeding [10]. A further significant source of host pathology is secondary bacterial 57 

infections (e.g. Aeromonas salmonicida and Piscirickettsia salmonis, among others) that 58 

often accompany salmon lice infection [9,11,12]. In addition to breaking down physical 59 

barriers, it is thought that L. salmonis secrete immunosuppressive chemicals (e.g. 60 

Prostaglandin E, Trypsin), that down-regulate T-cell and other functions required to 61 

effectively cope with bacterial pathogens [13,14]. Experimental S. salar co-infections 62 

between a Chilean copepod species Caligus rogercresseyi and the bacteria P. salmonis show 63 

that survival rates in the co-infected fish (0% after 53 days) are substantially lower than in 64 

fish infected with P. salmonis alone (c.57% over the same period) [11]. Whilst there is an 65 

increasing understanding of salmonid immunity to copepod pathogens, as well as to 66 

secondary agents, nothing is known about the role commensal microbes may play in such 67 

infections.  68 

 69 
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In this study we set out to explore the evolution of the host epidermal microbial community 70 

during L. salmonis infection of marine-phase S. salar raised in aquaculture conditions. We 71 

aimed to assess the extent of association between features of the epidermal microbiome and 72 

different intensities of parasite burden.  To achieve this we employed 16S rRNA amplicon 73 

deep sequencing on the epidermal mucosa of a subset of 1200 S. salar post smolts (800 tests, 74 

400 controls) experimentally infected with L. salmonis. Substantial perturbation of microbial 75 

community structure and composition was observed in infected fish, consistent with a 76 

reduction in the ‘colonization resistance’ of the system. Network analysis suggested a 77 

correlation with increasing louse load and multiple potential pathogens. Together, our data 78 

highlight the role of parasite-perturbed host associated microbiota as drivers of disease, as 79 

well as new potential targets for therapeutic interventions. 80 

 81 

Results 82 

Experimental infection outcomes Exposure of post-smolts to 40 L. salmonis copepodids / 83 

fish resulted in final louse counts ranging between two and 67 adult lice per individual (See 84 

frequency distribution in Figure S1). Significant differences in louse load (ANOVA, 85 

P=0.0035) were noted between tanks (Figure S2). Weight gain differences were noted 86 

between some infected and control tanks at T3 (Figure 1). A mixed-model incorporating tank 87 

as a random effect showed a clear effect of lice on fish weight overall (Figure 1, P = 0.00679) 88 

. Only mucus samples from Test tank3 & Test tank 4 were only 16S rRNA sequenced at the 89 

final time point (T3), a decision taken prior to and weight / growth calculations. For the four 90 

test tanks, where individual fish were recaptured on multiple samplings, individual growth 91 

rates (mass change (g) day-1) were calculated (mean: 1.118 g day-1, range: -1.57 to 3.55). No 92 

correlation was observed between individual growth rate and louse load (Linear regression, 93 

P>0.05, R² = 0.01667). Among the 50 salmon families included in our study (all survivors), 94 

no impact of family was noted on louse density (ANOVA, P=0.425).  For the infected fish 95 

for which we could determine individual growth rate (N=36), no effect of family on growth 96 

rate was detected.  97 

 98 

Microbial alpha and beta diversity destabilisation in response to L. salmonis infection 99 

After error filtering, alignment and chimera removal, a total dataset of 4,512,783 reads was 100 

generated across all samples which clustered into 1754 97% OTUs (for sample numbers, see 101 

Supplementary Information). This dataset was then rarefied to 13,700 reads per sample and 102 

low abundance OTUs filtered out (<100 total). Rarefaction curves confirmed saturation at 103 

this depth across the dataset (Figure S3). Again treating tank as a random effect, alpha 104 
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diversity (Shannon) and richness (Chao1) were compared across test and control tanks and 105 

sampling points. A significant decline in Chao1 richness (Figure 2, , P=0.0136) was noted 106 

between test and control tanks at T2 but a significant increase in Shannon diversity at T3 107 

(Figure 2, P<7.86e-06).(Models: Chao1 ~ Time * Treatment + (1 | Tank); Shannon ~Time * 108 

Treatment + (1 | Tank)). Very strikingly, we noted strong evidence for beta-diversity 109 

destabilisation of host mucosal microbiota in fish infected by pre-adult (T2) and adult lice 110 

(T3) (Figure 3, T2 P<1.86e-05 T3, P = 0.0132; Model: Beta_Div ~ Time * Treatment + (1 | 111 

Tank)). No significance was obtained for treatment (infected or not) at earlier time points. 112 

Destabilisation can be clearly observed in the principal coordinates analysis based on Unifrac 113 

distances displayed in Figure 4. As is observable from Figure 3, destabilisation involves an 114 

increase in the mean beta-diversity and its variance with time. As such, beta-diversity in both 115 

test tanks experienced a ‘shot-gun’ spread of increasing dissimilarity over the course of 116 

infection, compared to the two control tanks. As well as the important role of time in defining 117 

microbiome composition, other features of interest in Figure 4 include clear clustering of all 118 

water samples (T0-3) with all mucus samples at T0&1 (Figure 4, Panel B). By contrast, biofilm 119 

samples were distributed more widely across different time points (Figure 4, Panel E). 120 

Samples taken from pooled L. salmonis intestines were highly divergent with respect to their 121 

microbial composition (Pairwise Unifrac, Figure 4, Panel F), although fairly similar among 122 

tanks. Multivariate permutational analysis of beta diversity undertaken in vegan at each time 123 

point for test and control samples were significant at every time point (T0-T3, 124 

PERMANOVA, P<0.001), indicative of standing compositional differences between test and 125 

control tanks prior to the addition of copepodids. However, R2 estimates did increase between 126 

test and control tanks over the course of infection, suggesting an increasingly important role 127 

of L. salmonis infection in explaining the variance between treatments as infection progressed 128 

(PERMANOVA, R2, T0 : 0.2608; T1:0.2726; T2:0.3351; T3:0.3492, p<0.001 in all cases). 129 

 130 

Dominant microbial taxa, taxon associations and networks. At the genus level, 131 

Tenacibaculum was perhaps the most abundant taxon across all samples in the experiment, 132 

including mucus and water in both tests and controls (Figure 5). Tenacibaculum was present 133 

but relatively less abundant in louse samples compared to other genera. Additional genera 134 

present at high abundances globally included Vibrio, Pseudomonas and Lewinella. Vibrio 135 

was particularly abundant among L. salmonis intestine samples, as was the genus Arcobacter 136 

and NS10_marine_group, a member of family Cryomorphaceae. To more robustly assess 137 

changes in taxon abundance in test and control tanks, we applied a Kruskal-Wallis test [15]. 138 

In view of standing variation present at T0 between infected and control fish, direct 139 
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comparisons between treatments at T3 would be meaningless. Therefore, we compared taxon 140 

abundance in control and infected tanks respectively between T0 and T3 and noted differences 141 

between these two comparisons (Figure 6). Genera significantly (P<0.001 after Bonferroni 142 

correction) more abundant at T3 in infected fish but not controls included Rhizobiales and 143 

NS10_marine_group (family Cryomorphacae). Only Arthrobacter were more abundant at T3 144 

in controls than in infected fish. Less abundant taxa in controls between T0 and T3 but not 145 

infected fish were individual OTUs within family Saprospiraceae, order Alteromonadales and 146 

order Gammaproteobacteria. The relative abundance of individual genera containing known 147 

salmonid pathogen species: Tenacibaculum, Vibrio, Flavobacterium, Pseudomonas was not 148 

higher among L. salmonis - infected fish at T3 as compared to the control T0-T3 comparison 149 

(Figure 6). We also explored any correlation with individual OTUs and louse load in the 150 

larger cohort of infected fish. No significant negative associations were uncovered (bacterial 151 

taxa associated with low louse loads). However, two OTUs – one belonging to 152 

Verrucomicrobia, the other Lewinella were consistently associated with increasing louse load 153 

(P<0.001 after Bonferroni correction) in all three tests applied. Consistent with Figure 4, 154 

Arcobacter, presumably of louse origin, was also positively associated with louse load at T3. 155 

Network analysis, including louse load as a continuous variable, partitioned the 50 most 156 

abundant OTUs in infected fish into two correlated groups (Figure 7), one large guild 157 

comprising mainly commensals, the other containing a number of putative pathogenic genera 158 

(Pseudomonas, Tenanicibaculum, Flavobacterium, among others). Importantly, significant 159 

associations were apparent between the commensal guild and lower louse load and the 160 

pathogenic guild and higher louse abundances on individual fish (Figure 7).  Thus, while 161 

individual associations between given microbial taxa and increasing louse abundance were 162 

limited – second order, multi-taxa associations were clearly at play.    163 

 164 

Discussion. Commensal microbiota may play a fundamental role in mediating host-parasite 165 

interactions (e.g. [1-3]). The aim of this study was to explore the impact of L. salmonis 166 

infection on the microbiota associated with Atlantic Salmon skin mucus in the context of 167 

salmon pathology, louse life-cycle stage (T0-3), and susceptibility to intense louse infections 168 

as well as secondary bacterial infections. We were successfully able to demonstrate the 169 

destabilizing influence that parasitism exerts on salmon skin microbiota. We did not 170 

demonstrate a link between louse infection and individual secondary pathogens. However, 171 

network analysis did reveal pathogenic and non-pathogenic guilds present within the 172 

communities of infect fish that correlated with high-intensity and low intensity infections 173 

respectively. We can thus conclude that perturbation of the mucosal microbiome may 174 
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promote pathology via proliferation of endogenous pathogenic genera and/or via decreased 175 

colonization resistance to exogenous opportunists.    176 

Numerous experimental studies have charted the detrimental impact of louse infection on 177 

marine phase Atlantic salmon in terms of basic morbidity and stress (e.g. [16]) as well as 178 

detailed immunological and transcriptional responses [17,18]. Our data generally corroborate 179 

these studies in terms of reduced fish performance in three out of four of our infected tanks. 180 

However, the limited time of exposure of the post-smolts to adult lice resulted in mass 181 

changes that were borderline with respect to controls. Mortality associated with louse load 182 

was not observed.  Nonetheless, we did achieve our primary aim in obtaining intense L. 183 

salmonis loads in S. salar that developed through to adult stage (mean parasites per fish: 184 

23.53), providing the opportunity to track microbial diversity over the time course of 185 

infection.    186 

The composition of the S. salar associated intestinal microbiome is increasingly well 187 

understood in both wild [19] and aquaculture [20] settings. Furthermore, the relative 188 

contributions of environment and host to shaping euryhaline teleost gut microbial diversity 189 

have also been estimated [21]. Data concerning the epidmermal mucosal microbiome in 190 

salmonids are less common, especially in the marine phase. Boutin et al., 2013 have 191 

extensively characterized freshwater salmonid mucosal microbiota in brook char (Salvelinus 192 

fontinalis) in the context of emergent opportunistic infections and stress [22,23]. Dominant 193 

genera in our study (e.g. Tenacibaculum, Lewinella, Vibrio) were highly divergent with 194 

respect to those uncovered by Boutin et al., with the possible exception of Pseudomonas 195 

species [22].  Human skin microbiota are known to be among the most temporally unstable 196 

assemblages in the human body, as well as showing high levels of inter-individual variation 197 

[24]. The high degree of sharing apparent between environmental (principally water) and 198 

salmon skin microbiota stands in stark to sharing between environmental samples and S. 199 

salar gut microbiota [19].  It is also apparent that time (rather than infection status) is the 200 

major driver behind many differences one sees between microbial assemblages in this study 201 

(Figures 4&5). However, fluctuations in environmental microbiota did not seem to be the 202 

root cause of such differences. Instead, most water samples were associated with salmon 203 

mucus samples at T0-T1 only, while salmon mucus a samples T2&T3 were divergent and 204 

distinct from those in the water. It is not clear whether skin microbiota might eventually 205 

converge on a stable state with respect to time, or whether, like in other vertebrate systems, 206 

skin communities are continually subject to high levels of stochastic temporal change (e.g. 207 

[24]). 208 
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Sampling point (time) was not the only driver of microbiome community dynamics. Infection 209 

with L. salmonis did play an increasingly important role in defining microbial community 210 

identity as infection progressed, as revealed by multivariate analyses.  In addition to 211 

community identity, we were able to demonstrate that community richness and beta-diversity 212 

were both impacted. ‘Destabilization’ of host-associated microbiota in comparison to healthy 213 

controls is a consistent feature of diseased states in both non-communicable (e.g. Crohns 214 

disease [25]) and communicable disease (e.g. Giardia [2]). The direction that these so-called 215 

‘dysbioses’ take is a matter for debate. Simple reductions in microbial diversity and/or 216 

richness can be associated with conditions such as Crohns [26]. Directional shifts in 217 

community identity can also be detected in Plasmodium-infected mice [27]. Moreover, 218 

microbial co-occurrence networks shift in bowel cancer and changes in microbiome 219 

functional metabolic signatures can be detected in periodontitis [28,29]. The impact of such 220 

microbial dysbiosis on the host is less clear, and may indeed be either a primary, 221 

deterministic feature that allow opportunistic disease to occur or a secondary, neutral feature 222 

of primary pathogenesis with little more than diagnostic significance. Given the importance 223 

of secondary infections in the L. salmonis system, the destabilization of surface microbiota 224 

may, however, have a direct impact on host health – perhaps primarily via the declining 225 

‘colonization resistance’ exerted by skin commensals that may result. Invasion ecologist 226 

Charles E. Elton first hypothesized that diverse communities might resist evasion more 227 

effectively that stable ones [30]. Various modifications of this argument linking aspects of 228 

microbial diversity to invasibility (i.e. colonization resistance) can be uncovered throughout 229 

the literature (reviewed in [31]). Fluctuating alpha and beta-diversity in infected fish did not 230 

significantly impact the abundance of putative pathogens in our study at individual level. For 231 

example OTUs of genus Tenacibaculum (to which Tenacibaculum maritinum, the etiological 232 

agent of salmon ulcerative tenacibaculosisis belongs [32]) were abundant in almost all fish 233 

sampled, irrespective of whether or not they where infected with L. salmonis. Individual 234 

OTUs that were significantly associated with louse load among infected fish (one belonging 235 

to phylum Verrucomicrobia, the other classified as Lewinella) were not attributable to any 236 

known pathogen. OTUs found associated with sea lice intestines showed some interesting 237 

features. The capacity of L. salmonis to propagate disease agents has been the subject of 238 

some discussion in the literature (e.g. [33]). Vibrio, a genus comprising several major fish 239 

pathogens [6], amongst other commensal taxa, was highly abundant in louse samples, 240 

although also present among fish and environmental samples in test and control tanks. One 241 

bacterial OTU (NS_10: Cryomorphaceae) was very clearly associated with louse infection 242 

and was amplified exclusively from lice intestines and test tanks T2 and T3. Whilst the 243 
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importance of this the bacterium is not clear, the data suggests an ability to proliferate in the 244 

louse and transfer effectively from one host to another and a role as an indirectly transmitted 245 

pathogen cannot be ruled out.  246 

Whilst associations between louse load and individual bacterial taxa do not suggest a clear 247 

link between parasite burden and the abundance specific secondary disease agents, network 248 

analyses were less equivocal. In line with previous work on microbial assemblages from 249 

salmonid skin mucus, co-occuring guilds of bacteria (respectively putative commensals or 250 

pathogens) persist whose relative abundance can be modulated by stress [22] – in our case 251 

corresponding to parasite load.  Establishing the role of such community dynamics in driving 252 

opportunistic disease or transmissible disease susceptibility is a crucial goal of future 253 

research. As such, maintaining stability in skin surface microbial assemblages via pre- pro- or 254 

syn-biotics may provide and effective means of mitigating disease in parasitized fish. Co-255 

infection experiments are vital in this context, involving paired macro- and micro- pathogens 256 

to simulate the real world scenarios  (e.g. [11]). Thus our study underlines the importance of 257 

taking a holistic approach that incorporates changing host, parasite and microbiome to 258 

appreciate their relative roles in modifying disease outcome.  259 

Materials and Methods: 260 

Experimental procedures: Salmon post-smolt (mean mass at experiment outset 149g +/- 261 

13.1g SE) from 50 salmon families were internally Passive Integrated Transponder (PIT) 262 

tagged and distributed randomly across six 1000L tanks in a flow through system at the 263 

Fisheries and Oceans Canada marine facility St. Andrews Biological Station (St. Andrews, 264 

New Brunswick (NB), Canada). All fish handling and procedures were approved by DFO 265 

Maritimes & Gulf / CFIA Regional Animal Care Committee (File Number 14-13) and carried 266 

out under the direct supervision of a trained Department of Fisheries and Oceans Canada 267 

operative  in strict compliance with regulations set out by the Canadian Council for Animal 268 

Care (http://www.ccac.ca/). Water conditions were maintained at 11-14°C with a salinity of 269 

30-33g L-1.  Each tank housed a maximum of 200 fish at a density under 40kg m-3 and water 270 

quality parameters (temperature and oxygen) were monitored daily. Fish were fed with 271 

commercial salmon feed (2.5 mm) at 1-2% body weight per day and oxygen was added to 272 

maintain a saturation level between 90 and 105% (8-10mg/l). Following an acclimation 273 

period of three weeks, four of the six tanks salmon were challenged with infective L. 274 

salmonis copepodids at a concentration of 40 copepodids per fish (8 copeodids L-1) for 1 275 

hour. Copepodids were hatched from egg strings collected from gravid female lice gathered 276 

at a commercial salmon farm by technical staff from the Huntsman Marine Sciences Centre 277 

(HMSC), St. Andrews, NB, Canada. Water flow to the experimental exposure tanks was 278 



 9 

stopped just prior to addition of lice and fish were observed closely during the infection 279 

event.  Jumping, flashing and behaviours such as rapid swimming were observed which is 280 

consistent with lice infection. After 1 hour, water flow was resumed and fish were not 281 

handled until the required sampling time point. 282 

 283 

At 48 hours prior to infection (T0), 6 days (T1), 22 days (T2) and 35 (T3) after infection, 284 

bacterial community sampling was undertaken. Mucus samples comprised skin swabs along 285 

one full lateral surface of the fish (including the gill operculum). Samples from two control 286 

(Tank C1&C2 - uninfected) and two test (Tank Test_1&Test_2 - infected) tanks were taken 287 

at sample point T0-3. In addition, samples were taken from two further test tanks at T3 (Tank 288 

Test_3&Test_4, identical conditions to Test_1&Test_2) to provide further insight on the 289 

impact of adult lice. A single inflowing water bacterial community sample was taken per time 290 

point (10 litres filtered through a 0.2 μm filter). Biofilm samples were taken along the sides 291 

of each tank per time point also. During sampling, all fish in each tank were sedated using 292 

Aquacalm at 0.9mg/l and 25 fish from each tank per time point were sampled randomly using 293 

individual sterilised soft-mesh nets to avoid cross-contamination and to avoid dislodging lice. 294 

Length (cm) and mass (g) were also recorded. Skin pH data for 10 fish were collected, while 295 

a blood sample for serum cortisol determination was collected for 5 fish per tank at time 296 

points T1-3. At day 35 (T3) all fish were euthanized with Tri-methanosuphonate (TMS) at 297 

100-150 mg/l in individual nets to account for mobile lice loss and lice count data, weight 298 

length and sex were recorded. At T3 , 10 adult lice per tank were collected and treated with 299 

0.1% hypochlorite solution for 30 minutes to remove adherent microbes, washed with 300 

microbe free water, pooled and frozen for gut microbial analysis.  301 

 302 

16S rDNA amplicon sequence analysis 303 

Mucus, environmental (biofilm, water) and louse samples were collected in sterile micro-304 

centrifuge tubes and immediately stored in liquid nitrogen (-196°C) until DNA extraction at 305 

the Institut de Biologie Intégrative et des Systèmes, at the Université Laval (Québec, QC). 306 

DNA was extracted from all samples using the Qiagen DNeasy blood and tissue kit according 307 

the manufacturers instructions. Amplification of the 16S rRNA V4 region was achieved with 308 

primers 519_f 5’-CAGCMGCCGCGGTAA-3’ and 785_r 5’-TACNVGGGTATCTAATCC-309 

3’ using Takara Taq Polymerase (CloneTech, USA), and a final concentration of 1 pmol of 310 

each primer [19]. Reaction conditions were 95°C for five minutes, followed by 30°C cycles 311 

and of 95°C for 30 seconds, 55°C for 30 seconds and 72°C for 30 seconds, followed by a 312 

final elongation step of 72°C for 10 minutes. Each amplification was run in triplicate 313 
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(technical replicates) and pooled to minimise PCR bias, purified using an AxyPrep™ Mag 314 

PCR Clean-Up Kit (Corning, USA). Sequence libraries were dual indexed using Illumina 315 

Nextera multiplex barcodes and sequenced in a single run on an Illumina MiSeq platform. V4 316 

was chosen in the light of its widespread use to profile vertebrate-associated microbiota as 317 

well as its suitability for Illumina paired end sequence read lengths at the time of sequencing 318 

[34].  319 

Amplicon data were processed as described previously ([19]). Briefly, SICKLE [35] was 320 

used for error screening (>Q30) and assembly of each paired end read into a single 321 

overlapping 290bp fragment from the 16S rRNA V4 hypervariable region was achieved in 322 

PANDASeq [36]. Sequences were aligned against the E. coli 16S rRNA gene and trimmed in 323 

Mothur [37] prior to operational taxonomic unit clustering in UPARSE at 97% identity [38]. 324 

Putatively chimeric OTUs were filtered out in reference to the genomes online database 325 

(GOLD v.5) in UCHIME [39]. Subsequently, the following steps were undertaken in QIIME 326 

[15]: after exclusion of chimeric OTUs, samples containing <13,700 reads were discarded 327 

and all samples were rarefied to an even depth of 13,700 reads. 13,700 represented the 328 

optimal minimum depth at which saturation was achieved while still including the maximum 329 

number of sample.  OTUs with fewer than 100 reads or that only occurred in a single sample 330 

were filtered out as a step to improve accuracy and diversity estimates [40].  331 

 332 

Statistical and diversity analyses  333 

Fish mass and growth rate (where the same individuals were resampled at different time 334 

points – mean mass gain (g) day-1) were recorded throughout the experiment. Differences in 335 

mass between time points and between test (infected) and controls (uninfected) were plotted 336 

and assessed for significance using mixed models incorporating different tanks as a random 337 

effect in R using lme4 (lmer(Weight ~ Time_point*Test + (1|Tank_Number)) and tested for 338 

significance using a likelihood ratio test in the same package  (anova(null, model)) [41]. For 339 

the microbial samples themselves, Shannon diversity and Chao1 richness estimators were 340 

calculated for each rarefied sample in QIIME [15]. Mixed models were also applied to  assess 341 

the distribution of variation in these parameters per treatment (fixed), tank (random) and 342 

sample point (fixed)  using lme4 and lmertest [41]. To evaluate differences in community 343 

composition (beta-diversity), unweighted Unifrac distances were calculated and plotted [42]. 344 

Differences in beta-diversity between treatments and tanks were also assessed using mixed 345 

models in lme4 [41]. Beta-diversity comparisons between all samples were also subjected to 346 

principal coordinates analysis, also in QIIME [15]. Differences in microbiome composition 347 

between test (Test tank 1 & Test Tank 2) and control (Control Tank 1 & Control 2) tanks at 348 
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each time point (T0-3) were tested using a permutation-based multivariate analyses of 349 

variance (PERMANOVA) in ADONIS in the Vegan package in R [43]. OTU abundances, 350 

genus and order-level taxonomic classifications were calculated and plotted. Differential 351 

abundance of majority OTUs (i.e. comprising 95% of all samples) were compared between 352 

times T0 and T3 in control and infected fish treatments respectively and tested for significance 353 

using a non-parametric Kruskal-Wallis test in QIIME. Among infected fish from four tanks at 354 

T3, correlations were explored between microbial diversity and abundance and sea louse load 355 

as well as individual fish growth rate (mass (g) day-1) via several Bonferroni-corrected 356 

correlation tests in QIIME including: Pearson, Kendal and Spearman rank tests. Only 357 

consistently occurring OTUs across these measures were reported. Finally, network analysis 358 

was achieved in Cytoscape v.3.2.1 based on correlations between the relative abundance of 359 

the top 50 OTUs on the test fish (T0-T3) in relation to lice load. Spearman correlations and 360 

node weightings were calculated in the R packages multtest, Hmisc,  parallel  and iterators. 361 

Correlations were considered significant when the Spearman correlation value was > 0.6 and 362 

the correlation p-value (corrected with Bonferroni) was < 0.05. 363 
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 491 

Figure 1 – Impact of Lepeophtheirus salmonis infection on salmon growth during the 492 

experiment. Mean values for fish mass with error bars showing +/- standard error are shown 493 

per tank and time point in test and control tanks. An analysis of variance indicates a 494 

borderline insignificant impact of infection on fish mass across all six tanks (P=0.082), and 495 

significant when only the four tanks (Test (Tt)1, Test(Tt) 2,C1,C2) from which longitudinal 496 

microbiome sampling had occurred (P=0.0007). 497 

 498 

Figure 2 – Alpha diversity (Shannon) and richness (Chao1) variation in Salmo salar 499 

skin mucosal microbiota in response to infection with the sea louse Lepeophtheirus 500 

salmonis. Box plots show diversity and richness profiles at each sampling point T0-T3. A 501 

significant decline in Chao1 richness (Figure 2) was noted between test and control tanks at 502 

T2 (P=0.0136). Shannon diversity increased at T3 (P<7.86e-06). * denotes significance level.  503 

 504 

Figure 3 – Pair-wise beta diversity measurements show destabilisation of Salmo salar 505 

skin mucus bacterial assemblages in response to infection with the sea louse 506 

Lepeophtheirus salmonis. Box plots indicate variation in inter-sample pairwise Unifrac 507 

distance per tank and sampling point T1-T4. Significant increases in inter-sample variation 508 

was noted at the Times 2&3 between control and infected tanks (T2 P<1.86e-05 T3, P = 509 

0.0132) 510 

 511 

Figure 4 – Relationship between microbiota sampled from Salmo salar,  Lepeophtheirus 512 

salmonis and environmental samples (water, biofilm) over the course of experimental 513 

infection. A composite multidemensional scaling (MDS) plot of sample clustering is based 514 

on a single principal coordinates analysis (PCoA) of pairwise un-weighted Unifrac distances 515 

between all samples. The left hand plot figure depicts samples coloured by time point 516 

(T0=red, T1=blue, T2=orange, T3=green). The right hand plot depicts the same plot coloured 517 

by sample type (skin mucous=blue, water samples=green, tank biofilm=red,  lice=orange)   518 

 519 
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Figure 5 – Taxonomic classifications and abundances of OTUs recovered among Salmo 520 

salar, Lepeophtheirus salmonis and water samples. The bubble shows mean abundance of 521 

core OTU taxomonic assignments (y axis, present in >85% of samples, represented by >100 522 

sequences) in each sample group respectively (test (infected) vs control (uninfected) at each 523 

time point) on the x-axis. Variance associated with mean abundances are included in 524 

Supplementary data. 525 

 526 

Figure 6 – Comparisons of mean abundance of bacterial taxa between infected and 527 

uninfected fish. Plots show log abundance of different taxa (y axis) compared between T0 528 

and T3 of all control (A) and test (B) tanks, respectively (x axis). Error bars are +/- standard 529 

error. Based on a Kruskal-Wallis test, data point (closed circles) colours in T3 indicate where 530 

an OTU was significantly less abundant than at T0 (blue), more abundant (red) or not 531 

significantly different (black). Abundance differences between taxa in control (top) and test 532 

(bottom) treatments for T0 (left) - T3 (right) comparisons (that are still significant after 533 

Bonferroni correction) are marked up by green dashed boxes. Putative secondary pathogens 534 

are listed in black (and indicated by the black dashed circles). Listed in red are taxa that were 535 

more abundant at T3 of control or infected fish respectively. Listed in blue were taxa that are 536 

less abundant given the same criteria.  537 

 538 

Figure 7 - Network of bacterial taxa based on co-abundance of the 50 most abundant 539 

bacterial genera on all infected fish between samplings T0 and T3. The abundance of the 540 

sea lice on each fish has been used as a factor. Each node represents a taxon or louse 541 

abundance. An edge between two samples indicates a Spearman correlation index > 0.7 542 

between the two samples and a correlation p-value corrected with Bonferroni  < 0.05. The 543 

size of each node is proportional to the number of edges to which it is connected. The two 544 

main clusters are labeled green (putative commensal) and red (putative pathogens). High lice 545 

abundance correlations refer to taxa which are positively correlated with lice abundance 546 

(Spearman correlation > 0.6), whereas low lice abundance correlations refer to taxa 547 

negatively correlated with lice abundance (Spearman correlation < -0.6). 548 

 549 


