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Abstract 11 

Indoor air quality is of growing concern with a current focus on formaldehyde emissions and 12 

sick building syndrome (SBS). One of the main approaches to reduce indoor pollutant 13 

concentrations has been to reduce formaldehyde use and emissions from products. Another 14 

approach is the potential of materials to act as scavengers to actively sequester formaldehyde 15 

from the indoor atmosphere. This paper evaluates the use of the shells of various types of 16 

nuts, which are an abundant agricultural waste material. Nut shells were exposed to gaseous 17 

formaldehyde using a Dynamic Vapour Sorption system and their nitrogen content 18 

determined using the Kjeldahl method. It was found that formaldehyde absorption increased 19 

with increasing nitrogen content and that walnut shell, peanut shell and sunflower seed shell 20 

could absorb significantly higher quantities of formaldehyde gas than a sheep wool control. 21 

 22 
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 24 

1. Introduction  25 

Indoor air quality and the effects of airborne contamination on human health, has been of 26 

growing concern in recent years (Mitchell et al., 2007; Salthammer et al., 2003; Takeda et al., 27 

2009). It was  reported that a significant proportion of the population suffer from eye and 28 

respiratory discomfort, headaches and feeling of lethargy linked to poor indoor air quality 29 

(Haghighat and De Bellis, 1998). This situation is now referred to as sick building syndrome 30 

(SBS) (Zhang and Xu, 2003). Formaldehyde (CH2O) has been the focus of many 31 

investigations as it contributes to poor indoor air quality. Formaldehyde occurs naturally in 32 

the environment and is present and reversibly bound in all biological material (Trézl et al., 33 

1997) and is used in many industrial products emit formaldehyde from textiles to 34 

disinfectants. A major source of formaldehyde is in pressed wood products, used in 35 

construction and furnishings (Hun et al., 2010; Kim et al., 2010). Current guidelines stipulate 36 

a limit of 0.1 mg/m
3
 in interior air to avoid adverse health effects (WHO, 2010).  Historically 37 

there has been considerable research into the reductions of formaldehyde emissions from their 38 

original source, namely replacing formaldehyde based resins with bio-based resins (Jiang et 39 

al., 2002; Pratelli et al., 2013). Another method is to actively modify a product to sequester 40 

VOCs, for example using cost effective lignocellulosic scavengers (Kim, 2009). 41 

Edible nuts are grown and cultivated in a variety of climates around the world on different 42 

scales. This enormous production of nuts every year generates a considerable amount of 43 

lignocellulosic waste. Table 1 summarises the cultivation, annual seed and waste production 44 
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and uses of 6 globally popular edible nuts. All of the mentioned wastes have demonstrated the 45 

potential to be used as an activated carbon for absorbing pollutants: walnut can be used as 46 

absorbent of copper ions (Kim et al., 2001), pistachio nut can remove organic compounds 47 

from air and water (mo Nor et al., 2013; Tavakoli Foroushani et al., 2016), coconut can 48 

remove methylene blue in aqueous solutions (Tan et al., 2008), sunflower seed shell (el-49 

Halwany, 2013) and peanut shell can act as absorbents  of CO2 (Deng et al., 2015). This paper 50 

aims to evaluate and describe the potential of using these 6 promising agricultural wastes, in 51 

their natural, solid state for the adsorption of formaldehyde from the atmosphere to improve 52 

indoor air quality. 53 

 54 

Table 1: 6 major edible nuts, their source and annual production  55 

Nut Sourced 
Annual 

production 

Waste 

Almonds  
(Prunus dulcis) 

Grown worldwide. North 

America, California greatest 

producer
4
 (>637,000 

tonnes/year)
2 

2.09 million 

tonnes
1 

0.7-1.5 million tonnes waste 

per year and has little 

industrial value
1 

Walnut  

(Juglans regia) 

17 major producers
3
. China 

largest producer (410,000 

tonnes /year)
5
, North 

America the 2
nd

 (300,000 

tonnes/year)
16

 and Iran is the 

3
rd

 (150,000 tonnes/year)
3 

1.48 million 

tonnes
3 

Multitudinous uses from dye 

in cosmetics, used in 

insecticides, fillers, asphalt, 

glues
4
 and improving tyre 

grip
3 

Pistachio  
(Pistacia vera) 

Grown mainly in Iran, 

Turkey and North America. 

Iran alone producing 

(>250,000 tonnes/year)
7,8 

489,000 tonnes
6 

Little industrial value, sent to 

landfill or burnt
19

 and small 

use in mordant
4
 and 

colouring and glues
20

 

Coconut  
(Cocos nucifera) 

Indonesia is the leading 

producer, followed by 

Philippines, India and Sri 

Lanka
16

. Malaysia alone 

requires 151,00ha of land for 

production
9 

5.5 million 

tones
16 

Husk used for rope and matts 

and core can be used as peat 

substitute
18

. 13.6 – 18.14 

million tonnes husk waste 

per annum
17 

Peanut  

(Arachis 

hypogaea) 

Grown worldwide. China 1
st
 

in production accounting for 

40% of global production
10

 

(14.5 tonnes/year), followed 

by India (23%)
 12

.  

32.22 million 

tonnes 

(including 

shell)
11 

Largely sold in shell or sent 

to landfill  

Sunflower seeds 
(Helianthus annus) Grown worldwide. North 

American alone produces 

1.72 million tonnes/year
15 

27 million 

tonnes
13

(Almost 

exclusively 

cultivated for 

oil
14

)
 

Small value, sent to landfill 

or used as low grade 

roughage for livestock
15

,  

Data derived from: (Pirayesh and Khazaeian, 2012)
1
, (Jayasena, 2016)

2
, (Malhotra, 2008)

3
, (Wickens 56 

G E, 1995)
4
, (Sze-Tao and Sathe, 2000)

5
, (Kahyaoglu, 2008)

6
, (Kashaninejad et al., 2006)

7
, (Razavi et 57 

al., 2007)
8
, (Tan et al., 2008)

9
, (Diop et al., 2004)

10
. (Zhang et al., 2012)

11
, (Zhang et al., 2013)

12
, (Li et 58 

al., 2011)
13

, (Hameed, 2008)
14

, (Kamireddy et al., 2014)
15

, (Anirudhan and Sreekumari, 2011)
16

, (van 59 

Dam et al., 2004)
17

, (Konduru et al., 1999)
18

, (Tavakoli Foroushani et al., 2016)
19

, (Fadavi et al., 60 

2013)
20 61 

 62 
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It is known that formaldehyde is highly reactive to proteins (Mansour et al., 2016) and reacts 63 

with the side chains of amino acids and amido groups of glucose (Curling et al., 2012). The 64 

nitrogen (protein) content was therefore determined to assess correlations with formaldehyde 65 

sorption. It is known that wool fibre will absorb formaldehyde (Curling et al., 2012) by 66 

physisorption, (absorbed into micropores within its structure) and chemisorption (forms a 67 

stable bond with the fibres). Wool fibre has therefore been used in this study as a comparative 68 

control. 69 

 70 

2. Materials and Methods 71 

 72 

2.1 Nut shell Waste and Wool 73 

The shell material was dry and oil free and crushed into small pieces (<3mm) and removing 74 

any contaminating (non shell) material. Scoured wool fibre was also analysed as a control 75 

material for formaldehyde absorption. Urea is a very common chemical added to materials 76 

used to absorb free formaldehyde emitted from formaldehyde based products such as 77 

particleboard. However the purpose of this study is to evaluate the potential of lignocellulosic 78 

wastes used as a protein additive, to absorb ambient formaldehyde emitted from external 79 

sources other than reducing a products’ formaldehyde emissions. As such, urea is beyond the 80 

scope of this study.  81 

 82 

2.2 Dynamic Vapour Sorption (DVS) 83 

Prior to the experiment, the nut shells and wool were conditioned at 23 ± 1 °C and 60 ± 3% 84 

RH until constant mass was obtained. Sorption analyses were performed using DVS system 85 

(Surface Measurement Systems, London, UK) in accordance with the methodology described 86 

by Curling et al. (2012). Three replicates were conducted for each sample. 87 

 88 

2.3 Nitrogen content 89 

To determine the nitrogen content of the waste nut shells, the Kjeldahl method was used. 90 

Three replicates were completed for each nut shell and wool. 91 

The shell materials were prepared by dry milling the shells into <5mm pieces and removing 92 

any contaminating material. The material was then oven dried overnight in a 50
o
C oven. 93 

Between 0.2g and 0.3g of the oven dried waste shell, weighed to four decimal places, and 94 

were placed into digestion tubes to which two Kjeldahl peroxide tablets and 12ml of sulphuric 95 

acid were added. The digestion tubes were then placed in a preheated (420
o
C) digester and 96 

left to digest for 1 hour from time of first vapour sighting. Once digestion was complete the 97 

cooled samples were transferred to the distilling unit. The distilled sample was removed for 98 

titration. Hydrochloric acid (HCl) was titrated into the sample until it became neutral (clear) 99 

with the volume of HCl recorded. The nitrogen content was calculated using equation 1: 100 

 101 

             [Equation 1] 102 

 103 

Where: ts ml of titration of sample, tb ml of titration blank, m oven dry weight of sample and 104 

Msd molarity of standard HCl (0.01. 105 
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 106 

3. Results and Discussion 107 

Table 2 and fig 1 show the maximum formaldehyde absorption by the different shell wastes 108 

and wool fibre.  109 

 110 

Table 2: Formaldehyde absorption by shell waste and wool fibre and their nitrogen content 111 

Scavenger Formaldehyde absorption 

(g kg
-1

) 

SD Nitrogen content 

(%) 

SD 

Wool 49.80 0.35 17.16 0.02 

Walnut shell 90.19 0.91 1.12 0.22 

Almond shell 64.86 0.67 0.26 0.11 

Coconut husk fibre 49.29 0.52 0.31 0.00 

Pistachio shell 31.70 0.49 0.10 0.01 

Peanut shell 81.48 0.43 0.73 0.03 

Sunflower seed shell 101.97 0.22 4.17 0.18 

 112 

Figure 1 shows the mass change of each waste shell and wool fibre, over 6 cycles (6 cycles 113 

was chosen based on previous experience). The graph reveals there is a rapid mass change in 114 

the first cycle and then generally a gradual increase, expect for coconut husk fibre, pistachio 115 

shell and wool fibre, which appear to have reached a maximum absorption. The other four 116 

shell wastes did not reach equilibrium in the 6 cycles. Theoretical maximum absorption 117 

values were determined via regression of the absorption curves for the Almond (65.25 g kg
-1

), 118 

Walnut (92.88 g kg
-1

), Sunflower (117.313 g kg
-1

) and Peanut (81.52 g kg
-1

). The calculated 119 

values for almond and peanut are within the standard deviation of the observed values with 120 

only the walnut and sunflower giving theoretical values outside the standard deviation of the 121 

observed.  122 

 123 

The nitrogen content was analysed to determine if there was a relationship between protein 124 

content and formaldehyde absorption. Table 2 also shows the Kjeldahl nitrogen content 125 

results of the waste shells and wool fibre. The higher nitrogen content of sunflower seed shell, 126 

walnut shell and peanut shell (4.17%, 1.12% and 0.73% respectively) correlates with their 127 

higher capacity to absorb formaldehyde (101.97 g kg
-1

, 90.19 g kg
-1

and 81.48 g kg
-128 

1
respectively). However, it appears the wool fibre values do not fit this relationship. Wool has 129 

a significantly higher nitrogen content17.16%, as it is of a protein structure, but it absorbed 130 

significantly less formaldehyde (49.80 g kg
-1

), than the top three shell waste scavengers. The 131 

Kjeldahl method measures total nitrogen and therefore may detect non protein nitrogen 132 

compounds within the wool.  133 

The reactions between formaldehyde and other compounds and molecules is very complex, as 134 

formaldehyde has low specificity and will readily react with a number of compounds in  135 

different ways (Reddie and Nicholls, 1971). The reactions between wool and formaldehyde 136 

are very complex. Polyamides form the backbone of the wool proteins and are comprised of 137 

many functional groups, each with varying reactivity (Reddie and Nicholls, 1971). The wool 138 

keratin reacts with formaldehyde and formaldehyde irreversibly binds to asparagine amide 139 

groups of the wool (Alexander et al., 1951; Middlebrook, 1949).  140 
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It is well reported that formaldehyde will react and bind with amino groups and result in the 141 

formation of a methylol derivative (Alexander et al., 1951; Levy and Silberman, 1937; 142 

Puchtler and Meloan, 1984; Reddie and Nicholls, 1971). Other crosslinks are formed between 143 

amine and amide, amine and phenol and amine and indole groups (Alexander et al., 1951). 144 

Lignocellulosic wastes composition contain a wide variety of functional groups (Altun and 145 

Pehlivan, 2012; Miretzky and Cirelli, 2010; Okuda et al., 2003; Reddie and Nicholls, 1971; 146 

Zitouni et al., 2000).  The predominant amino acids found in the lignocellulose material varies 147 

with species; walnut contains lysine, in almonds cysteine and methionine and peanut 148 

threonine and methionine (Venkatachalam and Sathe, 2006). These differences in the type, 149 

composition and quantity of the functional groups may be key factors in determining the 150 

ability of a material to absorb and bind formaldehyde. Determination of the different types of 151 

functional groups on these waste nut shells may help to explain the differences observed in 152 

the quantity of formaldehyde absorbed by the shells and wool. Physical factors may also play 153 

an important role as there may be differences due to access via diffusion into the materials 154 

and due to different quantities of active nitrogen sites.  155 

 156 

4. Conclusions 157 

The purpose of this study was to determine if low cost and unutilised waste nut shell could be 158 

used in their natural state to absorb formaldehyde. The study reveals that all the 6 shell types 159 

can absorb formaldehyde, with pistachio nut shell absorbing the least and sunflower seed shell 160 

absorbing the greatest amount. The Kjeldahl results revealed that the amount of formaldehyde 161 

absorbed increased as nitrogen content within the shells increased. To conclude, sunflower 162 

seed shell, peanut shell, almond and walnut shell biowaste could be better utilised as organic 163 

scavengers to absorb formaldehyde from the atmosphere and improve indoor air quality.  164 

 165 
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