

Assessment of lignocellulosic nut wastes as an absorbent for gaseous formaldehyde

Stefanowski, Bronia; Curling, Simon; Ormondroyd, Graham

Industrial Crops and Products

DOI: 10.1016/j.indcrop.2017.01.012

Published: 01/04/2017

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Stefanowski, B., Curling, S., & Ormondroyd, G. (2017). Assessment of lignocellulosic nut wastes as an absorbent for gaseous formaldehyde. *Industrial Crops and Products*, *98*(April), 25-28. https://doi.org/10.1016/j.indcrop.2017.01.012

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1 2

Assessment of lignocellulosic nut wastes as an absorbent for gaseous formaldehyde

3 Stefanowski B.K¹, Curling S.F¹, Ormondroyd G.A^{1,2}

¹The BioComposites Centre, Bangor University, Bangor, Gwynedd, United Kingdom LL57
⁵ 2UW

- ² Department of Architecture and Civil Engineering, University of Bath, Claverton Down,
 Bath, BA2 7AY, UK
- 8
- 9 Corresponding author: Stefanowski B.K (b.stefanowski@bangor.ac.uk)
- 10

11 Abstract

12 Indoor air quality is of growing concern with a current focus on formaldehyde emissions and sick building syndrome (SBS). One of the main approaches to reduce indoor pollutant 13 concentrations has been to reduce formaldehyde use and emissions from products. Another 14 15 approach is the potential of materials to act as scavengers to actively sequester formaldehyde from the indoor atmosphere. This paper evaluates the use of the shells of various types of 16 nuts, which are an abundant agricultural waste material. Nut shells were exposed to gaseous 17 formaldehyde using a Dynamic Vapour Sorption system and their nitrogen content 18 determined using the Kjeldahl method. It was found that formaldehyde absorption increased 19 20 with increasing nitrogen content and that walnut shell, peanut shell and sunflower seed shell could absorb significantly higher quantities of formaldehyde gas than a sheep wool control. 21

22

23 Key words: Nut waste, Dynamic Vapour Sorption, Formaldehyde, Kjeldahl, Absorption

24

25 **1.** Introduction

Indoor air quality and the effects of airborne contamination on human health, has been of 26 growing concern in recent years (Mitchell et al., 2007; Salthammer et al., 2003; Takeda et al., 27 28 2009). It was reported that a significant proportion of the population suffer from eye and respiratory discomfort, headaches and feeling of lethargy linked to poor indoor air quality 29 (Haghighat and De Bellis, 1998). This situation is now referred to as sick building syndrome 30 (SBS) (Zhang and Xu, 2003). Formaldehyde (CH₂O) has been the focus of many 31 32 investigations as it contributes to poor indoor air quality. Formaldehyde occurs naturally in 33 the environment and is present and reversibly bound in all biological material (Trézl et al., 1997) and is used in many industrial products emit formaldehyde from textiles to 34 disinfectants. A major source of formaldehyde is in pressed wood products, used in 35 construction and furnishings (Hun et al., 2010; Kim et al., 2010). Current guidelines stipulate 36 a limit of 0.1 mg/m³ in interior air to avoid adverse health effects (WHO, 2010). Historically 37 there has been considerable research into the reductions of formaldehyde emissions from their 38 original source, namely replacing formaldehyde based resins with bio-based resins (Jiang et 39 al., 2002; Pratelli et al., 2013). Another method is to actively modify a product to sequester 40 VOCs, for example using cost effective lignocellulosic scavengers (Kim, 2009). 41

Edible nuts are grown and cultivated in a variety of climates around the world on different scales. This enormous production of nuts every year generates a considerable amount of lignocellulosic waste. Table 1 summarises the cultivation, annual seed and waste production 45 and uses of 6 globally popular edible nuts. All of the mentioned wastes have demonstrated the potential to be used as an activated carbon for absorbing pollutants: walnut can be used as 46 absorbent of copper ions (Kim et al., 2001), pistachio nut can remove organic compounds 47 from air and water (mo Nor et al., 2013; Tavakoli Foroushani et al., 2016), coconut can 48 remove methylene blue in aqueous solutions (Tan et al., 2008), sunflower seed shell (el-49 50 Halwany, 2013) and peanut shell can act as absorbents of CO₂ (Deng et al., 2015). This paper aims to evaluate and describe the potential of using these 6 promising agricultural wastes, in 51 their natural, solid state for the adsorption of formaldehyde from the atmosphere to improve 52 indoor air quality. 53

54

Nut	Sourced	Annual	Waste
	~	production	
Almonds (Prunus dulcis)	Grown worldwide. North America, California greatest producer ⁴ (>637,000 tonnes/year) ²	2.09 million tonnes ¹	0.7-1.5 million tonnes waste per year and has little industrial value ¹
Walnut (Juglans regia)	17 major producers ³ . China largest producer (410,000 tonnes /year) ⁵ , North America the 2 nd (300,000 tonnes/year) ¹⁶ and Iran is the 3 rd (150,000 tonnes/year) ³	1.48 million tonnes ³	Multitudinous uses from dye in cosmetics, used in insecticides, fillers, asphalt, glues ⁴ and improving tyre grip ³
Pistachio (<i>Pistacia vera</i>)	Grown mainly in Iran, Turkey and North America. Iran alone producing (>250,000 tonnes/year) ^{7,8}	489,000 tonnes ⁶	Little industrial value, sent to landfill or burnt ¹⁹ and small use in mordant ⁴ and colouring and glues ²⁰
Coconut (Cocos nucifera)	Indonesia is the leading producer, followed by Philippines, India and Sri Lanka ¹⁶ . Malaysia alone requires 151,00ha of land for production ⁹	5.5 million tones ¹⁶	Husk used for rope and matts and core can be used as peat substitute ¹⁸ . $13.6 - 18.14$ million tonnes husk waste per annum ¹⁷
Peanut (Arachis hypogaea)	Grown worldwide. China 1 st in production accounting for 40% of global production ¹⁰ (14.5 tonnes/year), followed by India (23%) ¹² .	32.22 million tonnes (including shell) ¹¹	Largely sold in shell or sent to landfill
Sunflower seeds (Helianthus annus)	Grown worldwide. North American alone produces 1.72 million tonnes/year ¹⁵	27 million tonnes ¹³ (Almost exclusively cultivated for oil ¹⁴)	Small value, sent to landfill or used as low grade roughage for livestock ¹⁵ ,

55 Table 1: 6 major edible nuts, their source and annual production

56 Data derived from: (Pirayesh and Khazaeian, 2012)¹, (Jayasena, 2016)², (Malhotra, 2008)³, (Wickens 57 G E, 1995)⁴, (Sze-Tao and Sathe, 2000)⁵, (Kahyaoglu, 2008)⁶, (Kashaninejad et al., 2006)⁷, (Razavi et 58 al., 2007)⁸, (Tan et al., 2008)⁹, (Diop et al., 2004)¹⁰. (Zhang et al., 2012)¹¹, (Zhang et al., 2013)¹², (Li et 59 al., 2011)¹³, (Hameed, 2008)¹⁴, (Kamireddy et al., 2014)¹⁵, (Anirudhan and Sreekumari, 2011)¹⁶, (van 60 Dam et al., 2004)¹⁷, (Konduru et al., 1999)¹⁸, (Tavakoli Foroushani et al., 2016)¹⁹, (Fadavi et al., 61 2013)²⁰

61 62

- 63 It is known that formaldehyde is highly reactive to proteins (Mansour et al., 2016) and reacts
- 64 with the side chains of amino acids and amido groups of glucose (Curling et al., 2012). The
- nitrogen (protein) content was therefore determined to assess correlations with formaldehyde
- sorption. It is known that wool fibre will absorb formaldehyde (Curling et al., 2012) by
- 67 physisorption, (absorbed into micropores within its structure) and chemisorption (forms a
- stable bond with the fibres). Wool fibre has therefore been used in this study as a comparativecontrol.
- 70 71

2. Materials and Methods

72

73 2.1 Nut shell Waste and Wool

74 The shell material was dry and oil free and crushed into small pieces (<3mm) and removing any contaminating (non shell) material. Scoured wool fibre was also analysed as a control 75 material for formaldehyde absorption. Urea is a very common chemical added to materials 76 77 used to absorb free formaldehyde emitted from formaldehyde based products such as particleboard. However the purpose of this study is to evaluate the potential of lignocellulosic 78 79 wastes used as a protein additive, to absorb ambient formaldehyde emitted from external sources other than reducing a products' formaldehyde emissions. As such, urea is beyond the 80 81 scope of this study.

82

83 2.2 Dynamic Vapour Sorption (DVS)

Prior to the experiment, the nut shells and wool were conditioned at 23 ± 1 °C and $60 \pm 3\%$

85 RH until constant mass was obtained. Sorption analyses were performed using DVS system

86 (Surface Measurement Systems, London, UK) in accordance with the methodology described

by Curling *et al.* (2012). Three replicates were conducted for each sample.

- 88
- 89 2.3 Nitrogen content

To determine the nitrogen content of the waste nut shells, the Kjeldahl method was used.Three replicates were completed for each nut shell and wool.

The shell materials were prepared by dry milling the shells into <5mm pieces and removing 92 93 any contaminating material. The material was then oven dried overnight in a 50°C oven. Between 0.2g and 0.3g of the oven dried waste shell, weighed to four decimal places, and 94 were placed into digestion tubes to which two Kjeldahl peroxide tablets and 12ml of sulphuric 95 acid were added. The digestion tubes were then placed in a preheated $(420^{\circ}C)$ digester and 96 left to digest for 1 hour from time of first vapour sighting. Once digestion was complete the 97 cooled samples were transferred to the distilling unit. The distilled sample was removed for 98 99 titration. Hydrochloric acid (HCl) was titrated into the sample until it became neutral (clear) with the volume of HCl recorded. The nitrogen content was calculated using equation 1: 100

101

102 %
$$N = 14.01 x ((t_s - t_b)/m) x M_{sd}$$
 [Equation 1]

103

104 Where: t_s ml of titration of sample, t_b ml of titration blank, *m* oven dry weight of sample and 105 M_{sd} molarity of standard HCl (0.01. 106

107 **3.** Results and Discussion

Table 2 and fig 1 show the maximum formaldehyde absorption by the different shell wastesand wool fibre.

- 110
- 111

Scavenger	Formaldehyde absorption	SD	Nitrogen content	SD
	(g kg ⁻¹)		(%)	
Wool	49.80	0.35	17.16	0.02
Walnut shell	90.19	0.91	1.12	0.22
Almond shell	64.86	0.67	0.26	0.11
Coconut husk fibre	49.29	0.52	0.31	0.00
Pistachio shell	31.70	0.49	0.10	0.01
Peanut shell	81.48	0.43	0.73	0.03
Sunflower seed shell	101.97	0.22	4.17	0.18

Table 2: Formaldehyde absorption by shell waste and wool fibre and their nitrogen content

112

Figure 1 shows the mass change of each waste shell and wool fibre, over 6 cycles (6 cycles 113 was chosen based on previous experience). The graph reveals there is a rapid mass change in 114 the first cycle and then generally a gradual increase, expect for coconut husk fibre, pistachio 115 116 shell and wool fibre, which appear to have reached a maximum absorption. The other four shell wastes did not reach equilibrium in the 6 cycles. Theoretical maximum absorption 117 values were determined via regression of the absorption curves for the Almond (65.25 g kg^{-1}), 118 Walnut (92.88 g kg⁻¹), Sunflower (117.313 g kg⁻¹) and Peanut (81.52 g kg⁻¹). The calculated 119 values for almond and peanut are within the standard deviation of the observed values with 120 only the walnut and sunflower giving theoretical values outside the standard deviation of the 121 observed. 122

123

124 The nitrogen content was analysed to determine if there was a relationship between protein content and formaldehyde absorption. Table 2 also shows the Kjeldahl nitrogen content 125 results of the waste shells and wool fibre. The higher nitrogen content of sunflower seed shell, 126 walnut shell and peanut shell (4.17%, 1.12% and 0.73% respectively) correlates with their 127 higher capacity to absorb formaldehyde (101.97 g kg⁻¹, 90.19 g kg⁻¹ and 81.48 g kg⁻¹ 128 ¹respectively). However, it appears the wool fibre values do not fit this relationship. Wool has 129 a significantly higher nitrogen content17.16%, as it is of a protein structure, but it absorbed 130 significantly less formaldehyde (49.80 g kg⁻¹), than the top three shell waste scavengers. The 131 Kjeldahl method measures total nitrogen and therefore may detect non protein nitrogen

Kjeldahl method measures total nitrogen and therefore may detect non procompounds within the wool.

134 The reactions between formaldehyde and other compounds and molecules is very complex, as

135 formaldehyde has low specificity and will readily react with a number of compounds in

136 different ways (Reddie and Nicholls, 1971). The reactions between wool and formaldehyde

137 are very complex. Polyamides form the backbone of the wool proteins and are comprised of

many functional groups, each with varying reactivity (Reddie and Nicholls, 1971). The wool

- 139 keratin reacts with formaldehyde and formaldehyde irreversibly binds to asparagine amide
- 140 groups of the wool (Alexander et al., 1951; Middlebrook, 1949).

It is well reported that formaldehyde will react and bind with amino groups and result in the 141 formation of a methylol derivative (Alexander et al., 1951; Levy and Silberman, 1937; 142 Puchtler and Meloan, 1984; Reddie and Nicholls, 1971). Other crosslinks are formed between 143 amine and amide, amine and phenol and amine and indole groups (Alexander et al., 1951). 144 Lignocellulosic wastes composition contain a wide variety of functional groups (Altun and 145 Pehlivan, 2012; Miretzky and Cirelli, 2010; Okuda et al., 2003; Reddie and Nicholls, 1971; 146 147 Zitouni et al., 2000). The predominant amino acids found in the lignocellulose material varies with species; walnut contains lysine, in almonds cysteine and methionine and peanut 148 threonine and methionine (Venkatachalam and Sathe, 2006). These differences in the type, 149 composition and quantity of the functional groups may be key factors in determining the 150 151 ability of a material to absorb and bind formaldehyde. Determination of the different types of functional groups on these waste nut shells may help to explain the differences observed in 152 the quantity of formaldehyde absorbed by the shells and wool. Physical factors may also play 153 an important role as there may be differences due to access via diffusion into the materials 154 155 and due to different quantities of active nitrogen sites.

156

157 **4.** Conclusions

The purpose of this study was to determine if low cost and unutilised waste nut shell could be used in their natural state to absorb formaldehyde. The study reveals that all the 6 shell types can absorb formaldehyde, with pistachio nut shell absorbing the least and sunflower seed shell absorbing the greatest amount. The Kjeldahl results revealed that the amount of formaldehyde absorbed increased as nitrogen content within the shells increased. To conclude, sunflower seed shell, peanut shell, almond and walnut shell biowaste could be better utilised as organic scavengers to absorb formaldehyde from the atmosphere and improve indoor air quality.

165

166 5. **References**

- Alexander, P., Carter, D., Johnson, K.G., 1951. Formation by formaldehyde of a cross-link
 between lysine and tyrosine residues in wool. Biochem. J. 48, 435–441.
- Altun, T., Pehlivan, E., 2012. Removal of Cr(VI) from aqueous solutions by modified walnut
 shells. Food Chem. 132, 693–700. doi:10.1016/j.foodchem.2011.10.099
- Anirudhan, T.S., Sreekumari, S.S., 2011. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23, 1989–1998. doi:10.1016/S1001-0742(10)60515-3
- Curling, S.F., Loxton, C., Ormondroyd, G.A., 2012. A rapid method for investigating the
 absorption of formaldehyde from air by wool. J. Mater. Sci. 47, 3248–3251.
 doi:10.1007/s10853-011-6163-7
- Deng, S., Hu, B., Chen, T., Wang, B., Huang, J., Wang, Y., Yu, G., 2015. Activated carbons
 prepared from peanut shell and sunflower seed shell for high CO2. Adsorption 21,
 125–133. doi:10.1007/s10450-015-9655-y
- Diop, N., Beghin, J.C., Sewadeh, M., 2004. Global Agricultural Trade and Developing
 Countries ISBN: 0821358634 GATChapter12.pdf [WWW Document]. URL
 http://siteresources.worldbank.org/INTPROSPECTS/Resources/GATChapter12.pdf
 (accessed 5.31.16).
- el-Halwany, M.M., 2013. Kinetics and Thermodynamics of Activated Sunflowers Seeds Shell
 Carbon (SSSC) as Sorbent Material. J. Chromatogr. Sep. Tech. 4. doi:10.4172/2157 7064.1000183

- Fadavi, A., Hassan-Beygi, S.R., Karimi, F., 2013. Moisture dependent physical and
 mechanical properties of Syrjan region wild pistachio nut. Agric. Eng. Int. CIGR J. 15,
 221–230.
- Haghighat, F., De Bellis, L., 1998. Material emission rates: Literature review, and the impact
 of indoor air temperature and relative humidity. Build. Environ. 33, 261–277.
 doi:10.1016/S0360-1323(97)00060-7
- Hameed, B.H., 2008. Equilibrium and kinetic studies of methyl violet sorption by agricultural
 waste. J. Hazard. Mater. 154, 204–212. doi:10.1016/j.jhazmat.2007.10.010
- Hun, D.E., Corsi, R.L., Morandi, M.T., Siegel, J.A., 2010. Formaldehyde in residences: long-term indoor concentrations and influencing factors. Indoor Air 20, 196–203.
 doi:10.1111/j.0905-6947.2010.00644.x
- Jayasena, S.H., 2016. Purification and Characterization of Select Glycoproteins of Almonds
 (Prunus Dulcis L.).
- Jiang, T., Gardner, D.J., Baumann, M.G.D., 2002. Volatile organic compound emission
 arising from the hot-pressing of mixed-hardwood particleboard. For. Prod. J. 52, 66–
 77.
- Kahyaoglu, T., 2008. Optimization of the pistachio nut roasting process using response
 surface methodology and gene expression programming. LWT Food Sci. Technol.
 41, 26–33. doi:10.1016/j.lwt.2007.03.026
- Kashaninejad, M., Mortazavi, A., Safekordi, A., Tabil, L.G., 2006. Some physical properties
 of Pistachio (Pistacia vera L.) nut and its kernel. J. Food Eng. 72, 30–38.
 doi:10.1016/j.jfoodeng.2004.11.016
- Kim, J.-W., Sohn, M.-H., Kim, D.-S., Sohn, S.-M., Kwon, Y.-S., 2001. Production of granular
 activated carbon from waste walnut shell and its adsorption characteristics for Cu2+
 ion. J. Hazard. Mater. 85, 301–315. doi:10.1016/S0304-3894(01)00239-4
- Kim, S., 2009. The reduction of indoor air pollutant from wood-based composite by adding
 pozzolan for building materials. Constr. Build. Mater. 23, 2319–2323.
 doi:10.1016/j.conbuildmat.2008.11.008
- Kim, S., Choi, Y.-K., Park, K.-W., Kim, J.T., 2010. Test methods and reduction of organic
 pollutant compound emissions from wood-based building and furniture materials.
 Bioresour. Technol. 101, 6562–6568. doi:10.1016/j.biortech.2010.03.059
- Konduru, S., Evans, M.R., Stamps, R.H., 1999. Coconut Husk and Processing Effects on
 Chemical and Physical Properties of Coconut Coir Dust. HortScience 34, 88–90.
- Levy, M., Silberman, D.E., 1937. The Reactions of Amino and Imino Acids with
 Formaldehyde. J. Biol. Chem. 118, 723–734.
- Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.-Z., Lu, G.-Q., 2011. Preparation of
 capacitor's electrode from sunflower seed shell. Bioresour. Technol. 102, 1118–1123.
 doi:10.1016/j.biortech.2010.08.110
- 225 Malhotra, S.P., 2008. World Edible Nuts Economy. Concept Publishing Company.
- Mansour, E., Curling, S., Stéphan, A., Ormondroyd, G., 2016. Absorption of volatile organic
 compounds by different wool types. Green Mater. 4, 1–7. doi:10.1680/jgrma.15.00031
- Middlebrook, W.R., 1949. The irreversible combination of formaldehyde with proteins.
 Biochem. J. 44, 17–23.
- Miretzky, P., Cirelli, A.F., 2010. Cr(VI) and Cr(III) removal from aqueous solution by raw
 and modified lignocellulosic materials: A review. J. Hazard. Mater. 180, 1–19.
 doi:10.1016/j.jhazmat.2010.04.060
- Mitchell, C.S., Zhang, J., Sigsgaard, T., Jantunen, M., Lioy, P.J., Samson, R., Karol, M.H.,
 2007. Current State of the Science: Health Effects and Indoor Environmental Quality.
 Environ. Health Perspect. 115, 958–964.

- Mohamad Nor, N., Lau, L.C., Lee, K.T., Mohamed, A.R., 2013. Synthesis of activated carbon
 from lignocellulosic biomass and its applications in air pollution control—a review. J.
 Environ. Chem. Eng. 1, 658–666. doi:10.1016/j.jece.2013.09.017
- Okuda, T., Nishijima, W., Okada, M., 2003. Chemical properties of anion-exchangers
 prepared from waste natural materials. React. Funct. Polym. 55, 311–318.
 doi:10.1016/S1381-5148(03)00002-6
- Pirayesh, H., Khazaeian, A., 2012. Using almond (Prunus amygdalus L.) shell as a bio-waste
 resource in wood based composite. Compos. Part B Eng. 43, 1475–1479.
 doi:10.1016/j.compositesb.2011.06.008
- Pratelli, D., Servaas, H., Phanopoulos, C., Carleer, R., Adriaensens, P., 2013. MDI-bonded
 hardwood composites: some indications of the impact of MDI on formaldehyde and
 VOC emissions.
- Puchtler, H., Meloan, S.N., 1984. On the chemistry of formaldehyde fixation and its effects
 on immunohistochemical reactions. Histochemistry 82, 201–204.
 doi:10.1007/BF00501395
- Razavi, S.M.A., Emadzadeh, B., Rafe, A., Mohammad Amini, A., 2007. The physical
 properties of pistachio nut and its kernel as a function of moisture content and variety:
 Part I. Geometrical properties. J. Food Eng. 81, 209–217.
- doi:10.1016/j.jfoodeng.2006.11.003
- Reddie, R.N., Nicholls, C.H., 1971. Some Reactions Between Wool and Formaldehyde. Text.
 Res. J. 41, 841–852. doi:10.1177/004051757104101008
- Salthammer, T., Fuhrmann, F., Uhde, E., 2003. Flame retardants in the indoor environment –
 Part II: release of VOCs (triethylphosphate and halogenated degradation products)
 from polyurethane. Indoor Air 13, 49–52. doi:10.1034/j.1600-0668.2003.01150.x
- Sze-Tao, K.W.C., Sathe, S.K., 2000. Walnuts (Juglans regia L): proximate composition,
 protein solubility, protein amino acid composition and protein in vitro digestibility. J.
 Sci. Food Agric. 80, 1393–1401. doi:10.1002/1097-0010(200007)80:9<1393::AID-
 JSFA653>3.0.CO;2-F
- Takeda, M., Saijo, Y., Yuasa, M., Kanazawa, A., Araki, A., Kishi, R., 2009. Relationship
 between sick building syndrome and indoor environmental factors in newly built
 Japanese dwellings. Int. Arch. Occup. Environ. Health 82, 583–593.
 doi:10.1007/s00420-009-0395-8
- Tan, I.A.W., Ahmad, A.L., Hameed, B.H., 2008. Adsorption of basic dye on high-surfacearea activated carbon prepared from coconut husk: Equilibrium, kinetic and
 thermodynamic studies. J. Hazard. Mater. 154, 337–346.
 doi:10.1016/j.jhazmat.2007.10.031
- Tavakoli Foroushani, F., Tavanai, H., Hosseini, F.A., 2016. An investigation on the effect of
 KMnO4 on the pore characteristics of pistachio nut shell based activated carbon.
 Microporous Mesoporous Mater. 230, 39–48. doi:10.1016/j.micromeso.2016.04.030
- Trézl, L., Csiba, A., Juhász, S., Szentgyörgyi, M., Lombai, G., Hullán, L., Juhász, A., 1997.
 Endogenous formaldehyde level of foods and its biological significance. Z. Für Leb. Forsch. A 205, 300–304. doi:10.1007/s002170050169
- van Dam, J.E.G., van den Oever, M.J.A., Teunissen, W., Keijsers, E.R.P., Peralta, A.G., 2004.
 Process for production of high density/high performance binderless boards from whole
 coconut husk: Part 1: Lignin as intrinsic thermosetting binder resin. Ind. Crops Prod.
 19, 207–216. doi:10.1016/j.indcrop.2003.10.003
- Venkatachalam, M., Sathe, S.K., 2006. Chemical Composition of Selected Edible Nut Seeds.
 J. Agric. Food Chem. 54, 4705–4714. doi:10.1021/jf0606959
- WHO, 2010. WHO Guidelines for indoor air quality : selected pollutants [WWW Document].
 WHO Guid. Indoor Air Qual. URL

- 286 http://www.euro.who.int/__data/assets/pdf_file/0009/128169/e94535.pdf (accessed
 287 5.18.16).
- Wickens G E, 1995. Non-Wood Forest Products: Edible Nuts [WWW Document]. URL
 http://www.fao.org/3/a-v8929e.pdf (accessed 5.31.16).
- Zhang, G., Hu, M., He, L., Fu, P., Wang, L., Zhou, J., 2013. Optimization of microwaveassisted enzymatic extraction of polyphenols from waste peanut shells and evaluation
 of its antioxidant and antibacterial activities in vitro. Food Bioprod. Process. 91, 158–
 168. doi:10.1016/j.fbp.2012.09.003
- Zhang, J., Liang, S., Duan, J., Wang, J., Chen, S., Cheng, Z., Zhang, Q., Liang, X., Li, Y.,
 2012. De novo assembly and Characterisation of the Transcriptome during seed
 development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.).
 BMC Genomics 13, 90. doi:10.1186/1471-2164-13-90
- Zhang, Y., Xu, Y., 2003. Characteristics and correlations of VOC emissions from building materials. Int. J. Heat Mass Transf. 46, 4877–4883. doi:10.1016/S0017-9310(03)00352-1
- Zitouni, N., Errahali, Y., Metche, M., Kanny, G., Moneret-Vautrin, D.A., Nicolas, J.P.,
 Fremont, S., 2000. Influence of refining steps on trace allergenic protein content in
 sunflower oil. J. Allergy Clin. Immunol. 106, 962–967. doi:10.1067/mai.2000.110229
- 304

307