
 

 

 

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y
 

 

Poly(ethylene glycol)-Based Hyperbranched Polymer from RAFT and Its
Application as a Silver-Sulfadiazine-Loaded Antibacterial Hydrogel in
Wound Care
McMahon, Sean; Kennedy, Robert; Vasquez, Jeddah Marie; Wall, J. Gerard;
Tai, Hongyun; Wang, Wenxin

ACS Applied materials and interfaces

DOI:
10.1021/acsami.6b11371

Published: 12/10/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
McMahon, S., Kennedy, R., Vasquez, J. M., Wall, J. G., Tai, H., & Wang, W. (2016).
Poly(ethylene glycol)-Based Hyperbranched Polymer from RAFT and Its Application as a Silver-
Sulfadiazine-Loaded Antibacterial Hydrogel in Wound Care. ACS Applied materials and
interfaces, 8(40), 26648-26656. https://doi.org/10.1021/acsami.6b11371

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 11. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bangor University Research Portal

https://core.ac.uk/display/186465245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/acsami.6b11371
https://research.bangor.ac.uk/portal/en/researchoutputs/polyethylene-glycolbased-hyperbranched-polymer-from-raft-and-its-application-as-a-silversulfadiazineloaded-antibacterial-hydrogel-in-wound-care(fc605865-9663-4c83-b4de-d8520f1821d2).html
https://research.bangor.ac.uk/portal/en/researchoutputs/polyethylene-glycolbased-hyperbranched-polymer-from-raft-and-its-application-as-a-silversulfadiazineloaded-antibacterial-hydrogel-in-wound-care(fc605865-9663-4c83-b4de-d8520f1821d2).html
https://research.bangor.ac.uk/portal/en/researchoutputs/polyethylene-glycolbased-hyperbranched-polymer-from-raft-and-its-application-as-a-silversulfadiazineloaded-antibacterial-hydrogel-in-wound-care(fc605865-9663-4c83-b4de-d8520f1821d2).html
https://doi.org/10.1021/acsami.6b11371


Poly (ethylene glycol) based hyper-branched polymer from RAFT 

and its application as a silver sulfadiazine loaded anti-bacterial 

hydrogel in wound care. 

Sean McMahon a, Robert Kennedy a, Patrick Duffy a, Jeddah Marie Vasquez a, J. Gerard Wall b, Hongyun 

Tai*c and Wenxin Wang*a 

a Charles Institute of Dermatology, School of Medicine, University College Dublin, Ireland.  

Email: Wenxin.wang@ucd.ie 
b Microbiology and Centre for Research in Medical Devices (CÚRAM), National University of 

Ireland, Galway, Ireland. 
c School of Chemistry, Bangor University, Bangor, UK. Email: h.tai@bangor.ac.uk 

 

Keywords: hydrogels, thiol-ene click chemistry, poly(ethylene glycol), hyperbranched polymer, 

hyaluronic acid, antibacterial, wound care

 

Abstract: A multifunctional branched co-polymer was synthesized by Reversible Addition- 

Fragmentation Chain Transfer polymerisation (RAFT) of poly (ethylene glycol) diacrylate (PEGDA 

Mn=575) and poly (ethylene glycol) methyl methacrylate (PEGMEMA Mn=500) at 50:50 molar ratio. 

Proton nuclear magnetic resonance spectroscopy (1H NMR) confirmed a hyper branched molecular 

structure and a high degree of vinyl functionality. An in situ cross-linkable hydrogel system was created 

via a “click” thiol-ene type Michael addition reaction of vinyl functional groups from this copolymer with 

thiol-modified hyaluronic acid, a natural immunoneutral polysaccharide. Further encapsulation with 

antimicrobial silver sulfadiazine (SSD) was conducted to create an advanced antimicrobial wound care 

dressing. This hydrogel demonstrated a sustained antibacterial activity against the bacteria 

Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli at a moderate level comparing to 

the direct topical application of SSD. In addition, in vitro toxicology evaluations demonstrated that this 

hydrogel, with low concentrations of SSD supported the survival of embedded human adipose derived 
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stem cells (hADSC’s) and inhibited growth of mentioned pathogens. This study demonstrates that this 

hydrogel encapsulated with a low concentration (1.0% w/v) of SSD can be used as a cell laden gel system 

with the ability to inhibit growth of pathogens without posing an unacceptable threat towards ADSC’s. 

 

1. Introduction 

In our quest to develop an advanced wound care dressing, hydrogels with multiple functions were 

investigated. Highly branched copolymers have been studied over the past decade while our research 

focus is on their applications in medicine and the wound care market including hydrogels. Pathogens are 

proving more difficult to eradicate as bacteria continue to develop worrying resistance towards 

antibiotics.  This bacterial resistance is growing daily in both community and hospital settings and is 

leading to increased mortality and morbidity1. For this reason, new innovative approaches, including 

reinvigoration of tried and tested agents with novel delivery must be investigated to prevent infection and 

encourage wound repair. 

Hydrogel technology is a rapidly advancing field with a wide range of applications2 3 4 . Hydrogels are 

composed of a high percentage of water which provides a perfect moist environment for tissue 

regeneration5 while also preventing contraction of the wound. Additionally, these hydrogel systems can 

be engineered to deliver cells and drugs6. This proposed moist environment can provide a rich supply of 

white blood cells, enzymes, cytokines and growth factors7. Primarily released enzymes from white blood 

cells can cause selective autolytic debridement of necrotic tissue8. Unfortunately this moist environment 

can also provide an ideal site for the colonization of bacteria 9and therefore hydrogels should be applied 

with a synergistic antimicrobial agent10. 

It is clear that the natural defence systems of organisms are highly advanced; nonetheless, the 

regeneration process is often delayed and hampered by a number of factors11.  The forefronts include 

infection and an inappropriate wound environment. Concerns in the treatment of wounds, and indeed 
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many other pathogenic conditions currently rest with the ever threatening development of bacterial 

resistance12. Worldwide, bacterial resistance has increased dramatically over the past few years13 and is 

recognised as a highly significant medical challenge. Many bacterial species are now resistant to 

antibiotics and some Gram-negative bacteria, especially the Pseudomonas aeruginosa species have 

developed resistance to most or all available antibiotics14. Furthermore, since the year 2000 only three 

new classes of antibiotics have been introduced to the market for human use15. Despite the certain need 

for novel antibiotics without cross-resistance issues, research and development has not yet delivered16, 

thus failing to provide an answer to the fast emergence and spread of these dangerous bacteria.  It is the 

focus of this work to develop an approach that is bio-medically engineered with strategic design to 

counteract the fast development of bacterial resistance that in the past has rendered many treatments 

obsolete. Novel treatments are clearly slow to develop and achieve regulatory approval;  thus it has been 

the aim of this research to re-invigorate use of an age-old antimicrobial agent, such as silver sulfadiazine 

(SSD), in medical wound care dressings/delivery for a lasting more effective antibacterial dressing with 

improved stimulation of wound regeneration in combination with cell therapy. Proof of concept research 

finding with this antibacterial agent will demonstrate the potential for this system being used in 

combination with many other antibacterial agents. 

A recent review into the mechanisms of bacterial resistance has detailed three important cases including 

E. coli resistance to third-generation cephalosporins, the emergence of vancomycin-resistant S. aureus, 

and multidrug resistance in P. aeruginosa 17 . Both S. aureus and P. aeruginosa are recognised as 

ESKAPE pathogens emphasizing their capacity to “escape” from common antibacterial treatments18. 

Research suggests that these bacteria are developing resistance through a host of mechanisms19. Aside 

from bacteria being intrinsically resistant to ≥1 class of agents, they may also acquire their resistance by 

mutation or acquisition of resistance genes from other organisms. These can enable a bacterium to 

produce an enzyme to supress the antibacterial agent, to prevent an agent reaching its target, to change its 

target site or to produce an alternative metabolic pathway to bypass the action of the drug entirely20. This 
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suggests that a long term effective treatment will need to employ a range of inhibitory mechanisms. This 

will effectively prolong the development of resistance by ensuring that development of one resisting trait 

will not be sufficient to prevent bacteria death. 

The anti-bacterial effectiveness of silver has a long history. It has been used for at least six millennia to 

prevent microbial infections. The first known record of silver nitrate being used as a medical agent was 

reported by Gabor in the year 702 and in the year 980 A.D. as a blood purifier and to treat palpitations of 

the heart21. By the 1800s it was taken as common practice (for wealthy) to store wine, water and milk in 

silver containers to keep them fresh for longer. Nano-Ag particles and their mechanisms of inhibition are 

a topic of disputed interest but have demonstrated the ability to destabilize the outer membrane, collapse 

the plasma membrane potential and deplete the levels of intracellular ATP of E. coli22. These silver based 

agents are particularly effective against a wide range of pathogens23 and it remains particularly difficult 

for bacteria to develop resistance to the action of silver due to the range of inhibitory mechanisms 

evoked24. It is well known that silver ions and silver based compounds are highly effective against micro-

organisms exhibiting potent antibacterial activity on as many as 16 species of bacteria25.    

SSD is a similar drug to silver nano particles in its mechanism of inhibition and is typically delivered in a 

1% cream or aqueous suspension. It has proved extremely effective for burn wounds to the extent that it is 

the current gold standard treatment used to treat serious burn wounds but presents opportunity for cross 

application in other high infection risk areas. This is a highly efficient inhibitor of microbial growth 

belonging to a family of drugs called sulfa antibiotics. Silver is complexed to propylene glycol, steryl 

alcohol and isopropyl myrislate. This is mixed with the antibiotic Sulfadiazine to achieve a combined 

formulation that is highly effective. By substituting a silver atom for a hydrogen atom in the sulfadiazine 

molecule it results in a combination of the inhibitory action of the silver with the anti-bacterial effect of 

the sulfadiazine26 27. This antibacterial agent is appropriate for hydrogel incorporation in its powder form. 

It is relatively inexpensive, easy to apply, well tolerated by host cells and has good activity against most 

pathogens but more importantly it employs a range of mechanisms which makes it difficult to develop 
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resistance against28 29. Interest in these silver based antibacterial agents has recently been rejuvenated, 

mainly due to the spread of methycillin-resistant S. aureus (MRSA) and the associated reduction in 

effective antibiotics.  This silver sulfadiazine combination is highly effective which can be explained by 

the strong bonding that occurs between this silver compound with DNA which differs from silver salts 

alone. Furthermore this silver sulfadiazine combination has an increased effectiveness on disrupting the 

bacterial wall. Therefore, SSD has been selected for this application due to the broad spectrum of activity 

and the significantly lower propensity to induce microbial resistance than other antibiotics30. However, a 

high dosage of SSD through topical administration could be toxic and cause side effects. 

We hypothesise that the encapsulation of SSD within a PEG based 3D hydrogel scaffold can provide an 

enhanced wound regeneration environment with controlled release of an antimicrobial agent and ease the 

need for improved anti-resistant solutions. This advanced antimicrobial hydrogel can be used for delivery 

of therapeutic cells while preventing cell death caused by infection. In this work, a hydrogel was created 

by combining our in situ crosslinkable copolymer with thiol modified (SH) hyaluronic acid (HA). 

Hyaluronan or hyaluronic acid (HA) is a linear d-glucuronic acid and N-acetyl-D-glucosamine 

copolymer32 and is known as a good biopolymer for many biomedical applications33. This report presents 

experimental data on the synthesis of hydrogels, loading of SSD, antibacterial disk diffusion tests and cell 

viability assays, building on a previous publication34.  
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Figure 1. Preparation of highly branched polymer from the monomers PEGDA and PEGMEMA using 

the RAFT polymerisation technique initiated by ACHN. The highly branched polymer structure contains 

multiple vinyl functional groups, which will react with thiol functional groups in HA-SH via thio-ene 

addition reaction mechanism, to form cross-linked hydrogels. 

2. Materials and Methods 
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2.1. Materials 

Silver Sulfadiazine (SSD) Powder (98%), Poly (ethylene glycol) methyl ether methacrylate (PEGMEMA, 

𝑀𝑛= 500 g mol-1), Poly (ethylene glycol) diacrylate (PEGDA, 𝑀𝑛 = 575 g mol-1) and the initiator: 1, 1′-

Azobis cyclohexanecarbonitrile (ACHN) were purchased from Sigma-Aldrich. The RAFT agent was 

synthesised according to published method34. Thiol-modified hyaluronic acid (HA-SH) was purchased 

from Glycosan. Bacterial strains S. aureus, P. aeruginosa and E. coli were supplied by the Microbiology 

group at NUI Galway. 

2.2. Methods 

2.2.1. Synthesis of PEGDA-PEGMEMA Hyperbranched Copolymer 

The multivinyl hyperbranched PEGDA-PEGMEMA co-polymer was synthesized via RAFT 

polymerisation from the monomers poly (ethylene glycol) diacrylate (PEGDA Mn=575) and poly 

(ethylene glycol) methyl methacrylate (PEGMEMA Mn=500) at 50:50 molar ratio according to previous 

published method34  (Figure 1). PEGDA-PEGMEMA co-polymer was analysed using 1H NMR to 

confirm its structure and composition and using GPC to obtain its Mw and PDI. The data can be found in 

the supporting information (SI).  

2.2.2 Preparation of Hydrogel Samples 

A 10% PEGDA-PEGMEMA copolymer solution was prepared using 1X PBS solution. 150µL of this 

polymer solution was transferred into separate eppendorfs under sterile conditions. SSD was measured by 

weight in its powder form and added to these eppendorfs to create concentrations of 0.0, 0.1, 1.0 and 

5.0% (see Table S4 in supplementary information). A volume of 150µL of thiol modified Hyaluronan 

was added to each Eppendorf creating a 1:1 copolymer: hyaluronan ratio in order to cross link and create 

hydrogels as shown in Figure 2. The addition of Hyaluronan was conducted to one eppendorf at a time, 

followed by rapid mixing and pipetting of 50µL samples to a clean sterile teflon surface under a flow 

hood. The samples formed globular shaped gels due to rapid cross linking within 2 minutes. This process 



8 
 

was repeated to create sufficient hydrogel (50µL) samples to conduct experiments in triplicate (n=3) for 

all SSD concentrations against three bacterial strains. These samples contained the SSD at concentrations 

of 0.0, 0.1, 1.0 and 5.0% w/v. 

 

Figure 2. Hydrogel sample preparation by cross linking of the vinyl groups on the polymer chains using a 

thiol modified hyaluronic acid. Polymer and thiol modified hyaluronic acid were represented by blue and 

tan interconnected lines while chemical structure at the cross link site was illustrated.  (Tan structure 

represents HA-SH). 
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2.2.2. Antibacterial Activity  

S. aureus, P. aeruginosa and E. coli were used as test organisms given their relevance as infectious agents 

and affinity to develop bacterial resistance. Bacteria were prepared and cultured in fresh Mueller Hinton 

Agar (MH). One loopful of bacteria was inoculated in a test tube of 5mL Luria Broth (LB) and grown, 

with shaking, at 37°C for 24 h. The optical density of these solutions was then measured using a Thermo 

Fisher Scientific Biomate 3 Spectrometer. These cultures were diluted in LB broth to an OD600 of 0.8 and 

moved to an incubator at 37oC with shaking at 250 RPM to re-grow bacteria to an OD600 of 0.1.  

A standard disk diffusion test was then performed in accordance to the protocol outlined in the Kirby-

Bauer test35. Mueller Hinton agar plates of 20 ml volume were prepared and 100µL samples of bacterial 

cultures were spread on plates. After 30 minutes incubation at room temperature, hydrogel samples 

containing varied SSD concentrations (0.0, 0.1, 1.0 and 5.0%) were added in triplicate to produce a total 

of 12 plates containing 36 hydrogel samples (3 bacterial strains x 4 SSD concentrations and n=3). All 

plates were incubated for 72 hours at 37oC, with zones of inhibition measured after 24, 48 and 72 hours 

using a Vernier Calliper’s. Measurement of zones was conducted by measuring three randomly orientated 

diameters from each hydrogel sample. Note, hydrogels containing SSD < 0.1% were not studied for 

antimicrobial activity as the literature suggests36 that concentrations below this nominal value are not as 

effective in maintaining antimicrobial environments. 

 

2.2.3. Diffusion Studies 

A simple release assay37 was conducted to investigate the release of these SSD particles over an extended 

period of time in PBS buffer. Initially the optimum wavelength for detection of particles was identified 

using spectroscopy (290nm) for assessing the presence of SSD particles. After identification of the 

appropriate wavelength, release studies were conducted on hydrogel samples containing SSD which were 
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prepared in triplicate (n=3) as previously described at the concentrations of 0.0, 0.1, 1.0 and 5% w/v. The 

release assay was conducted over 168 hours, time points taken at 2, 4, 21, 51 and 168 hours. 

 

2.2.4. Cytotoxicity Testing 

2.2.4.1. Cell Culture and Cell Count 

Adipose derived stem cells (ADSC’s) were passaged in a 1. 75𝑐𝑚3  culture flask and incubated at 37°C 

and 5% 𝐶𝑂2  with media changed every 2-3 days. The media used was Dulbecco’s Modified Eagles 

medium with Bovine Fetal 10% bovine serum and 1% penicillin streptomycin. 

Working in conjunction with standard protocol38 a cell count was conducted.  Taking a 96-well plate, 

20uL of Trypsin Blue was added to 3 of the wells. To the first well, 20uL of cell solution was added 

resulting in a 50% dilution. This was then diluted to 25% and 12.5% solutions by adding 20uL from the 

50% and 25% wells. The study determined a cell density of 2.8 𝑥 105 cells/ml. 

 

2.2.4.2. Cell Viability 

Cell viability was evaluated using the AlamarBlue assay following the protocol39 using freshly prepared 

(sterile) SSD encapsulated hydrogels. Experiments were conducted in triplicate to assure confidence. 

Hydrogels containing concentrations of 0.0, 0.005, 0.01 and 1.0% of SSD were synthesized for the 

experiment as explained previously. A concentration of 5.0% SSD was not tested as the literature reported 

that this level is too high for good cell viability40. 

Briefly the experiment was prepared by adding 50,000 cells and 2ml DMEM to each well (Total of 12 

wells per plate and labelled accordingly). In triplicate these gels were added to wells. Plates were all 

incubated at 37°C and 5% 𝐶𝑂2. On days 1, 3 and 7 cell viability was assessed using AlamarBlue assay. 
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3. Results 

3.1. Preparation of Hydrogel Samples 

The hydrogel samples were prepared using a PEGDA-PEGMEMA hyperbranched copolymer with the 

composition of of 40:60 and molecular weight (Mn) of 15.5 KDa, which was synthesized using the feed 

molar ratio of PEGDA and PEGMEMA as 50:50 according to previously published methods (see SI for 

more information) This copolymer was crosslinked with thiol modified hyaluronic acid via thiol-ene click 

chemistry and loaded with SSD to create a matrix represented by Figure 3. These hydrogels (50µL) were 

prepared on sterile Teflon, which were uniform, soft and semi-transparent depending on the concentration 

of SSD used. Hydrogels exhibited a whitish colour with increased addition of SSD. All samples were 

easily removed from the Teflon tape and were globular in shape as shown in Figure 4. Hydrogels were 

structurally stable and kept their shape throughout process presenting little difficult in handling. Samples 

could be inverted on Teflon slide without detachment or shape changes, exhibiting good structural 

conformity and well defined cross linking network. 

 

Figure 3. SSD loaded crosslinked hydrogels. Prior to the addition of HA-SH to create crosslinked gels 

with PEG based hyperbranched copolymer, the copolymer was dissolved in water and mixed with SSD as 

an aqueous solution. 
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Figure 4. (A) Hydrogel samples (40 - 50µl) with no loading and (B) Hydrogel (without loading) 

illustrating good workability and ease of use (no deformation in handling). (C) Hydrogel samples loaded 

with silver nano particles (SNP) (Black). Note, SNP loaded gels shown in image (C) as the black colour 

presents clear contrast. Silver sulfadiazine (SSD) encapsulated hydrogels present as  white hydrogels. 

 

3.2. Antibacterial Activity 

The zone of inhibition of bacteria was dependant on the diffusion of antibacterial agent as well as the 

SSD % presence. The zones of inhibition were clearly visible and are shown in Figure 5. When compared 

with silver nano particle (SNP’s) loading in the same concentration, the SSD samples proved more 

effective as inhibiting agents for combination with this particular hydrogel, some SNP loading and results 

are presented in supplementary information. These SSD loaded hydrogel samples displayed large zones 

of inhibition after a period of 24 h. These zones were inspected again at 48h and 72 h. The zones of 

inhibition did not change notably after these periods of time. Areas outside of the SSD diffusion showed 

high bacterial development notable by colour contrast in Figure 5. Colour images of plated bacteria are 

presented in the supplementary information, notice the light amber colour of (A) E. coli, the green of (B) 

P. aeruginosa, and the tan colour of (C) S. aureus in Figure S11. 
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Zones of inhibition are present in all SSD hydrogel samples with best results at 1% and 5% w/v 

concentrations. No zones of inhibition are present in control samples indicating the presence of SSD is 

required to prevent bacterial growth. This also demonstrates that the hydrogel allows diffusion of SSD 

and that SSD inhibits growth of each strain of bacteria tested with inhibition zones dependent on the 

diffusion behaviour. 

The study was repeated at increased concentrations of SSD, from 0.0%, 0.1 %, 1% to 5% in hydrogel 

samples. Test data from 1% and 5.0% proved to be equally efficient for inhibiting bacteria growth in 

terms of diffusion zones with no significant difference being observed. This suggests that a concentration 

of 1% SSD may be optimal for this particular hydrogel; however, diffusion limitations could be a 

contributing factor to inhibition zones. These results demonstrate that the use of SSD as an antibacterial 

agent is highly suitable in this hydrogel system since relatively low concentrations of 1% w/v SSD can 

readily diffuse in an acceptable timeframe. Inhibition of bacterial growth from 3 bacterial strains, 

including both Gram-positive and Gram-negative species, demonstrates good potential for this hydrogel 

to be used across a variety of bacterial pathogens. 

 

Figure 5. P. aeruginosa plated in agar containing uniform hydrogel samples loaded with silver 

sulfadiazine (SSD).  (A) 5.0% w/v, (B) 1.0% w/v, (C) 0.1% w/v, (D) 0.0% w/v. Note, hydrogel contrast is 
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more visible at higher SSD concentrations and gel samples without SSD appeared transparent as observed 

in (D). 

 

 

Figure 6. Disk Diffusion zones after 72 hours on plated samples. Zone diameters were taken using a 

Vernier Callipers. Legend on right refers to w/v% of SSD per hydrogel sample.  Control hydrogels 

containing 0.0% SSD showed no zones of inhibition. Zones of inhibition for E. coli were smallest in 

diameter while SSD demonstrated inhibition in all cases where present. “1.0% SSD No hydrogel” 

represents SSD in aqueous solution plated on filter paper against bacterial samples without hydrogel 

carrier. 

 

From the data presented in Figure 5, it is clear that the presence of silver sulfadiazine inhibited growth of 

P. aeruginosa in all hydrogel samples excluding control sample containing no SSD. Note, image appears 

as though only one sample present in 0.0% concentration; however, hydrogel samples containing no SSD 

were transparent and therefore not optically visible in these images due to transparency. From Figure 5, it 
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is clear that the presence of SSD in small amounts (ranging from 0.1% - 5.0% w/v) was sufficient in all 

studied cases to prevent bacterial growth. Bacterial strains: P. aeruginosa, S. aureus and E. coli were all 

studied and corresponding images presented in supporting information. Further studies will be undertaken 

to optimise the dosage with respect to inhibition of growth, SSD dispersion and cell viability. 

From the data presented in Figure 6, we observe the numerical quantification of the zones of inhibition of 

hydrogels with loadings of 0.0, 0.1, 1.0, 5.0 % w/v SSD and a positive control of 1.0% SSD in aqueous 

solution (no hydrogel) plated on filter paper. It is clear that the presence of SSD is required to cause 

bacterial inhibition. The negative control for this study is the hydrogel material containing 0.0% SSD 

loading which presents no zone of inhibition. The positive control for this study is the 1.0% SSD plated 

on filter paper which presents clearly defined zones of inhibition. When we consider the hydrogel loaded 

with SSD, we observe zones of inhibition that are comparable with those of the positive control. In all 

hydrogel cases, loading of SSD in dosage of 0.1% w/v presents zones of inhibition that are smaller than 

those of 1.0 and 5.0% w/v loadings. There was no significant difference in the zones of inhibition for 

1.0% and 5.0% w/v SSD loaded hydrogels when tested on bacteria S. aureus and P. aeruginosa. 

However, when hydrogels containing 1.0% and 5.0% SSD w/v loadings were tested on E. coli, the 5.0% 

w/v loading performed significantly better creating a larger zone of inhibition. It is noted that when this 

5.0% w/v SSD loaded hydrogel was tested against E. coli, it presents a zone of inhibition that is no 

greater in size than the zones of inhibition for 1.0% and 5.0% w/v loadings when tested against S. aureus 

or P. aeruginosa. This data suggests that E. coli may be more resistant to SSD than P. aeruginosa and S. 

aureus, thus requiring a larger dosage. 

 



3.3. Diffusion Studies 

  

Figure 7. Plot of silver sulfadiazine (SSD) release (absorbance) measured by UV-vis spectroscopy 

against time (hours). 
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Figure 8: Plot of silver sulfadiazine (SSD) concentration in hydrogel sample against the square root of 

incubation time. 

Diffusion studies were undertaken as a function of absorbance over time using spectroscopy. Prior to 

diffusion study we identified the optimum wavelength for observing the presence of SSD. This study 

identified 290nm as the most appropriate wavelength for SSD identification. From the above diffusion 

studies (Figure 7) it is clear that the SSD is released from these hydrogel samples in a controlled and 

predictable manner (increasing concentrations of SSD results in a faster and higher level of SSD release). 

This SSD release study demonstrates an initial burst release of sufficient quantities of SSD to create 

strong adjacent antibacterial effect (particularly beneficial in infected wound cases). The same step leads 

to a slow prolonged release thereafter which would allow for good surface compatibility after the initial 

hours. This initial SSD burst release from the hydrogel also helps to avoid possible risks or potential of 

resistance and tolerance of bacterial cells to Ag 41 42 , which might occur in a constantly low silver 

releasing environment. 

Furthermore, increasing concentration of SSD within 0 – 5% w/v range does increase both the burst 

release rate and the amount of SSD release over a controlled period. This demonstrates that these 
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hydrogels could be tuned for controlled release of predictable drug levels. Furthermore this study shows 

that this hydrogel system steadily releases SSD beyond a time point of seven days. A recent study found 

that three commonly used silver based dressings ( ACTICOAT™ Flex 3 (Smith & Nephew, Milan, Italy), 

Mepilex® Ag, Mölnlycke Health Care, Gallarate, Italy and ACTISORB® Silver 220 (Johnson & 

Johnson, Rome, Italy) guarantee sustained antimicrobial action for 3, 7 and 7 days respectively43. This 

demonstrates that our hydrogel system has potential to compete in this aspect with currently available 

silver based dressings.   

When SSD absorption is plotted against the square root of incubation time (Figure 8), a linear 

relationship is obtained (except for the initial stages of soaking). Figure 9 shows that the samples 

containing SSD present the trend-line with a high goodness of fit R2 values (0.896, 0.9901 and 0.9012). 

This is supported by literature44 and indicates that the release of SSD is controlled by inter-diffusion of 

the particles within the hydrogel45. This inter-diffusion is an important mechanism to confirm as it 

demonstrates that the release profile is tuneable and predictable based on the concentration of SSD loaded 

initially and the structure of the hydrogels. 
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3.4. Cytotoxicity Investigation 

 

Figure 9. Cell Viability day 1.  0.005%, 0.01%, 1.0% silver sulfadiazine (SSD) hydrogels and 0.0% 

control hydrogel. 

 

 

Figure 10. Cell Viability day 3. 0.005%, 0.01%, 1.0% silver sulfadiazine (SSD) hydrogels and 0.0% 

control hydrogel. 
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Figure 11. Cell Viability Day 7. 0.005%, 0.01%, 1.0% silver sulfadiazine (SSD) hydrogels and 0.0% 

control hydrogel. 

In terms of the cell viability evaluation, hydrogel samples containing SSD of 0, 0.005, 0.01 and 1.0% w/v 

were tested using a standard Alamar blue assay on Adipose Derived Stem Cell’s (ADSC’s). The 

concentration of SSD was chosen at a lower level range for this study because it quickly became apparent 

that a higher concentration of SSD was toxic to these cells. Control hydrogel sample did not reduce the 

cell viability at day 1 (Figure 9), day 3 (Figure 10) and day 7 (Figure 11). Promisingly, the tests using 

SSD at 0.01 and 0.005% w/v dosage did not significantly reduce cell viability and cell proliferation either 

as observed by Day 7. However, the 1.0% w/v SSD loading resulted in a reduction in cell viability at Day 

1. This can be explained by the toxicity caused by the initial burst release of SSD upon initial introduction 

of hydrogel samples to cells. At Day 1 cell viability is reduced to 64.61%. However, at Day 3 (Cell 

viability: 71.42%) and Day 7 (Cell Viability: 62.18%). Cell viability figures did not drop significantly 

over prolonged time, suggesting a high burst release being a contributory factor to early cell mortality. 

Interestingly, hydrogel samples containing low levels of SSD (0.01 & 0.005%) in figure 11 & 12 

demonstrated increased cell proliferation at Day 3 and Day 7 with respect to the control hydrogel. This 

proliferation could be attributed to a friendlier hydrogel environment created at a low SSD concentration 
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whereby, an environment of sufficient antibacterial activity prevents bacterial growth without adversely 

impacting cellular activity thus providing a more ideal environment for cellular proliferation. 

4. Discussion 

One of the primary aims for the treatment of wounds is to prevent infection and then to promote 

proliferation of epithelial cells 46 . Therefore a wound dressing must find a balance between the 

antibacterial efficacy and cytotoxicity47. A moist environment is most suited for epithelialization and 

healing but this environment cannot become compromised with infection and therefore must actively 

inhibit bacterial growth. With this in mind, providing sufficient antibacterial efficacy to prevent bacterial 

growth but not to the extent that regenerative processes are hampered by aggressive treatments. New 

bioactive hydrogels such as cell laden hydrogels and gene delivery hydrogels require a good micro-

environment that is free of infection to function effectively in the treatment of hard-to-heal chronic 

wounds.  Therefore, antimicrobial hydrogel wound dressings should not simply aim to perform better 

than direct topical application of antimicrobial agent in terms of killing bacteria. It would be highly 

advantageous for the antimicrobial gel to contain low levels of antimicrobial agents (such as SSD) and 

release SSD in a controlled and sustained manner thus exhibiting low toxicity and minimized side effects. 

Moreover, antimicrobial hydrogels also have the advantage of being easily administered with a known 

dosage and forming gel in-situ. This antimicrobial gel can be used to deliver cells to the wound sites 

because of its cyto-compatibility. 

A poly (ethylene glycol) PEG based copolymer was developed for the purpose of the hydrogel synthesis 

owing to its controllability, reproducibility and suitable chemical structure for hydrogel formation48. A 

PEGDA-PEGMEMA copolymer and subsequently 3-D hydrogel matrix were successfully created and 

optimised in combination with thiol modified Hyaluronic acid acting as the cross linking agent. The 

hyperbranched structure provides multiple acrylate functional groups which allow more effective 

crosslinking to form a network structure with a higher crosslinking density so that to tailor the release 

profile of the bioactive molecules encapsulated 34. We applied this hydrogel as a drug delivery system to 
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inhibit the growth of the bacteria: S. aureus, P. aeruginosa and E. coli. After consideration of a number of 

antibacterial agents, silver sulfadiazine (SSD) was selected. SSD was loaded into these hydrogel samples 

successfully at varying concentration.  

A standard Kirby-bauer disk diffusion test 49  was adapted and used to evaluate SSD encapsulated 

hydrogels on their  bacterial inhibiting capability. Results were encouraging and showed that the growth 

of tested bacterial strains was thoroughly supressed when low concentrations of SSD were used. Upon 

analysis of these results and comparison of the zones of inhibition achieved from antibacterial agent 

concentrations of 0.0, 0.1, 1.0, 5.0% we noted that diffusion of SSD was a key factor in the zone of 

inhibition and that the direct contact and immediate areas surrounding it effectively inhibited growth of 

all three bacterial strains. Additionally, in an attempt to model and assess the release profile of this 

hydrogel system, release assays were performed in a PBS buffer over extended periods of time using SSD 

in the previously studied 0.0, 0.1, 1.0 and 5.0% w/v concentrations. This allowed for a detailed 

representation of the diffusion profile that can be expected from these hydrogels. The study demonstrated 

a burst release effect initially of SSD owing to the presence of particles on the hydrogel surface. The 

study also revealed that increased concentrations of SSD resulted in a faster rate of diffusion with higher 

SSD released over a more prolonged timeline.  

Finally a simple biological assay in the form of Alamar blue cell viability assay was performed to 

evaluate the effect of SSD loaded hydrogels on the survival and proliferation of ADSC’s. The test was 

performed at lowered concentrations as it became apparent that high (> 1.0% w/v) SSD concentration was 

toxic to cell viability. This test confirms that levels of SSD concentration above 1.0% w/v SSD in these 

hydrogels can be toxic to cells. This can in part be related to the initial burst release of SSD being 

overwhelming as the cell viability decreases initially (Day 1) for 1.0% w/v SSD and remains relatively 

stable through Day 3 and Day 7. The antibacterial assessment by means of a Disk Diffusion study of this 

hydrogel has confirmed that this low concentration (0.1 & 1.0% w/v) can have significant antimicrobial 

potency and can protect a wound from pathogenic development for extended time periods.  This study 
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also suggests that at lowered concentrations (0.1% & 1% w/v), these hydrogels can be used to inhibit 

bacteria without un-acceptable cell viability; however, burst release should be kept mindful.  

5. Conclusions 

In conclusion, a new dressing in the form of a composite hydrogel was successfully synthesised from the 

copolymer PEGDA-PEGMEMA and thiol modified hyaluronic acid as a cross linker, while silver based 

antimicrobial agent SSD was encapsulated. This new dressing demonstrates powerful antibacterial 

efficacy against three strains of the prime concern (S. aureus, P. aeruginosa and E. coli) in the fight 

against resistant bacteria. 

 Early cytotoxicity assessment of the dressing has revealed that increased concentrations of silver 

sulfadiazine adversely effects ADSC proliferation but that low concentrations can be used effectively 

without causing unacceptable cell mortality. However; burst release of SSD in contact with cells is an 

area for concern to keep mindful. Of these concentrations we determined that 1.0% w/v SSD 

concentration was most suitable for this application as it effectively inhibited bacterial growth of tested 

pathogens S. aureus, P. aeruginosa and E. coli while presenting an acceptable mortality to ADSC’s. Cell 

viability did highlight the concerns around the burst release effect and warrants this as an area of concern 

for future studies.  Furthermore, this 1% w/v formulation demonstrated a release profile with high burst 

rate in the beginning but a controlled slow release rate up as far as a 7 days tested period. We think that 

this release profile should be predictable and controllable given that release is governed by inter-diffusion 

of particles after initial burst release of surface SSD. This burst release aspect presents a design challenge 

for this hydrogel loading that we will seek overcome in future studies.  Further confirmation of the drug 

loading limitations will be optimised in a subsequent study. 

This research presents relevant information indicating that our new hydrogel system can be readily 

combined with current drugs/therapies (SSD) to prevent growth of bacteria. This partnership works well 

and our study into the systems release profile suggests a predictable, controllable release pattern. This 
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early study will be continued into further detailed optimisation and investigation into long term 

response/release and performance against infectious pathogens as well as detailed cell proliferation 

studies. 
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