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Abstract 15 

The Near and Middle East is a hotspot of biodiversity, but the region remains underexplored at the 16 

level of genetic biodiversity. Here, we present an extensive molecular phylogeny of the viperid snake 17 

genus Montivipera, including all known taxa. Based on nuclear and mitochondrial data, we present 18 

novel insights into the phylogeny of the genus and review the status of its constituent species. 19 

Maximum likelihood methods revealed a montane origin of Montivipera at 12.3 Mya. We then 20 

analyzed factors of mountain viper diversity. Our data support substantial changes in effective 21 

population size through Plio-Pleistocene periods. We conclude that climatic oscillations were drivers 22 

of allopatric speciation, and that mountain systems of the Near and Middle East have strongly 23 

influenced the evolution and survival of taxa, because climatic and topographical heterogeneities 24 

induced by mountains have played a crucial role as filters for dispersal and as multiple refugia. The 25 

wide diversity of montane microhabitats enabled mountain vipers to retain their ecological niche 26 

during climatic pessima. In consequence the varied geological and topographical conditions between 27 

refugia favoured genetic isolation and created patterns of species richness resulting in the formation 28 

of neoendemic taxa. Our data support high concordance between geographic distributions of 29 

Montivipera haplotypes with putative plant refugia. 30 

 31 
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 35 

1. Introduction  36 

In recent decades, biota of the Mediterranean Basin have been studied extensively to understand the 37 

determinants of present-day biodiversity. The patterns revealed by multiple authors indicate that 38 

biodiversity of the Mediterranean region has had a turbulent history triggered by climatic changes. In 39 

particular, the deterioration of warm, moist Tertiary climates during the Plio-Pleistocene appears to 40 

have had profound effects on faunal and floral compositions. 41 

There is ample evidence for Plio-Pleistocene climatic oscillations as drivers for glacial refugia, 42 

hotspots of genetic diversity, postglacial re-colonization routes and so on (e.g. Hewitt, 1996; 2000; 43 

2004a; 2011). Climatic oscillations during the Plio-Pleistocene caused expansion or regressive 44 

fragmentation of fauna and flora (e.g. Hewitt, 2000; 2004a; Varga and Schmitt, 2008) at both global 45 

(e.g. Bennett, 1997) and regional (Svenning and Skov, 2007) scales. Owing to regional differences in 46 

landforms, different species respond differentially to climatic changes. In central and northern 47 

Europe, biota underwent latitudinal shifts over long distances, changing organismal abundances and 48 

species compositions dramatically, including through extinction of the Pleistocene megafauna (e.g., 49 

Hofreiter and Stewart, 2009). However, Pleistocene climatic cycles also profoundly affected the 50 

distribution and composition of Mediterranean biota (Taberlet et al., 1998; Weiss and Ferrand, 51 

2007). In particular, for thermophilic animals, southern regions of the Mediterranean acted as 52 

refugia, by providing suitable habitats during adverse climate periods (e.g. Ursenbacher et al., 53 

2006a,b Joger et al. 2007): refugial areas accumulated populations of species through both range 54 

expansions and contractions resulting in latitudinal clines in species richness (e.g. Hewitt, 2004b). As 55 

a result, the European peninsulas in the Mediterranean (Iberia, Italy and the Balkans) are rich in 56 

endemic reptiles (see Cheylan and Poitevin, 1994), because refugia appear to have reduced 57 

extinction rates and, through their isolation, favoured the emergence of new evolutionary lineages 58 

(e.g. Hungerer and Kadereit, 1998). This is even more applicable to the circum-Mediterranean region 59 

as a whole, which constitutes one of the world’s major biodiversity hotspots (Médail and Myers, 60 

2004). 61 

One of the goals of phylogeographic examinations is to infer the historical and contemporary forces 62 

that have shaped the genetic architecture of populations and closely related species (Avise, 2009) 63 

through the use of gene genealogies. Numerous studies have shown that dramatic changes of 64 

environmental conditions have left still-detectable traces in the genome of current biota. These 65 

genetic consequences of climatic oscillations have been studied for many organisms in the European 66 

part of the Mediterranean Basin. In contrast, although the ecosystems of the Near and Middle East 67 

harbor a similarly rich biological diversity, a much more substantial proportion remains partially 68 

undocumented (Ansell et al., 2012), especially at the level of genetic diversity (Krupp et al., 2009), 69 
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and phylogeographic studies remain rare, impeding our understanding of the processes that have 70 

shaped the biodiversity of the region.  71 

The Near and Middle East have been described as either a center of origin with active speciation (e.g. 72 

Hungerer and Kadereit, 1998), or as Plio-Pleistocene refugia for relict biota (Médail and Diadema, 73 

2009). Extremely relevant to evolutionary biogeography is the high topographic relief of the region, 74 

creating a variety of heterogeneous Mediterranean oro-biomes, which allowed biota to retain their 75 

ecological niches during climatic pessima by altitudinal range shifts. Thus, geomorphological settings 76 

conserve regional genetic diversity as refugia and initiate vicariant allopatric speciation, because of 77 

distributional dissection. These effects have been shown to be relevant for European biota in high 78 

mountain systems (e.g. Schmitt, 2009). Generally, geographic vicariance is considered to be the most 79 

common mode for speciation (e.g. Futuyma, 1998; Barraclough and Vogler, 2000; Turelli et al., 2001). 80 

However, allopatric speciation driven by vicariance is not simply a geographic event (Wiens, 2004). 81 

Wiens illustrates how niche conservatism drives allopatric lineage splitting in mountain systems. 82 

Intrinsic physiological factors constrain species to their ecological niches over time and reduce their 83 

fitness outside of the niche (Holt and Gaines, 1992; Holt, 1996). The process impedes gene flow 84 

(Wiens, 2004) and creates phylogenetic pattern in ecological data (Wiens et al., 2010). 85 

Many groups of reptiles make ideal model organisms for the study of the impact of past climatic 86 

changes on patterns of species diversity and distribution, due to their low vagility and often narrow 87 

ecological niches. Moreover, reptiles are often important or even dominant components of the fauna 88 

of Mediterranean and semi-arid ecosystems. The Near and Middle East contain a high diversity of 89 

reptile taxa, including a number of endemic lineages. Among other groups, the Near and Middle East 90 

are notable for harboring the highest diversity of true vipers within Eurasia. Eurasian vipers have 91 

been the subjects of intensive surveys of phylogeny (e.g. Lenk et al., 2001; Wüster et al., 2008; 92 

Ursenbacher et al., 2008) and phylogeography (e.g. Ursenbacher et al., 2006a,b; Barbanera et al., 93 

2009; Ferchaud et al., 2012; Zinenko et al., 2015). However, while the overwhelming majority of 94 

papers focus on the genus Vipera, only scant data are available about the Near and Middle Eastern 95 

endemic genus Montivipera.  96 

Mountain vipers (Montivipera) are excellent model organisms to study the impact of past climatic 97 

oscillations for allopatric speciation in the mountain systems of the Near and Middle East. These 98 

snakes are endemic to the Near and Middle East, from the Aegean coast of Anatolia and neighboring 99 

islands to the highlands of central Iran. Most taxa have a montane distribution above an elevation of 100 

1400 m a.s.l. and are mainly confined to oro-Mediterranean habitats, which expanded and retracted 101 

with climatic cycles since late Miocene. As sit-and-wait predators with a short and stout 102 

physiognomy, mountain vipers have a low vagility/movement capability (e.g. Mebert et al. 2015) that 103 

increases the effects of physical vicariance and isolation by distance.  104 
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Mountain vipers have a comparatively recent history of discovery: seven out of ten taxa have been 105 

described since the 1960s, and new taxa might be remain to be discovered (Rajabizadeh et al., 2011). 106 

Based on analyses of immunological distances (Herrmann et al., 1992) and DNA-DNA hybridization 107 

experiments (Nilson et al., 1999), Montivipera was initially separated from Vipera as a subgenus, and 108 

later raised to full genus rank (Joger, 2005). Montivipera consists of two allopatrically distributed 109 

species complexes (Nilson and Andrén, 1986). The xanthina-complex includes the monotypic species 110 

xanthina Gray, 1849, bornmuelleri Werner, 1898, wagneri Nilson & Andrén, 1984, bulgardaghica 111 

Nilson & Andrén, 1985 and albizona Nilson, Andrén & Flärdh 1990, and is restricted to Anatolia and 112 

the Levant. As the eastern counterpart, species of the raddei-complex are known from Armenia, 113 

Azerbaijan, Iran and Turkey. Four species with two subspecies have been described: raddei Boettger, 114 

1890 with the nominate subspecies and raddei kurdistanica Nilson & Andrén 1986, latifii Mertens, 115 

Darevsky & Klemmer, 1967, albicornuta Nilson & Andrén, 1985 and recently kuhrangica Rajabizadeh, 116 

Nilson & Kami, 2011.  117 

The history of the taxonomy and systematics of the genus Montivipera was marked by a heated 118 

scientific debate about species concepts and phenotype diversity (see Schätti et al.,1991;1992; Nilson 119 

and Andrén, 1992). In the absence of conclusive data, this controversy created much confusion and a 120 

persistent lack of consensus on the systematic situation of the group. As a result, different 121 

herpetologists adopted different classifications on the sole basis of personal preference (e.g. David 122 

and Vogel, 2010; Phelps, 2010). Legitimately, Wüster et al. (1997, p.335) stated that "Until a full 123 

analysis of the population phylogeny of these forms is carried out, using large samples and preferably 124 

a wide range of characters, and in particular molecular markers, the situation is likely to remain 125 

confused." We here follow Wüster et al. (1997) and provide the first molecular phylogenetic and 126 

phylogeographic analysis of the genus Montivipera, based on extensive sampling through most of its 127 

range. In addition to the academic interest of the group, mountain vipers are of considerable medical 128 

importance due to their wide distribution in the Middle East, causing many envenomations in rural 129 

regions with morbidity and mortality in Turkey (Ozay et al., 2005). However, Montivipera venoms 130 

and the level of compositional variation in them (Chippaux et al., 1991) have not been thoroughly 131 

characterized pharmacologically, and specific or evidence based polyvalent antivenoms for these 132 

taxa are only available for members of the raddei-complex (Razi Institute Teheran). Understanding 133 

the phylogeny and species diversity within the genus represents an essential underpinning for 134 

rigorous studies of venom variation and antivenom effectiveness. 135 

The first goal of this study is thus to review the state of Montivipera systematics. Using a dense 136 

sampling embracing all known taxa and a multilocus mitochondrial and nuclear dataset to overcome 137 

the limitations of studies based solely on mitochondrial DNA (Galtier et al., 2009), we reconstruct the 138 

phylogenetic history of the genus. Based on a multilocus analysis with four nuclear and three 139 
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mitochondrial genes we test the monophyly of the xanthina- and-raddei-complexes, determine its 140 

constituent taxa and test, if the taxa bornmuelleri, wagneri, bulgardaghica and albizona are 141 

monophyletic.  142 

The second objective is to ascertain the determinants of present-day lineage diversity in time and 143 

space. We analyze, whether Montivipera has a montane origin, and if Plio-Pleistocene climatic 144 

oscillations have left a spatially arranged genetic imprint on the genome of mountain vipers, and, 145 

more specifically, whether population size changes over their demographic history are still 146 

detectable in the current genome. Finally, we discuss, whether the observed genetic diversification is 147 

the result of isolation in Quaternary glacial refugia. 148 

Our study illustrates the importance of Near and Middle Eastern mountain systems for allopatric 149 

speciation, and recovers for the first time the phylogenetic history within the genus Montivipera on 150 

the basis of nuclear and mitochondrial genes. 151 

2. Material and Methods 152 

2.1. Specimen acquisition and molecular protocols  153 

A total of 115 viper samples were gathered from colleagues, zoological institutions, or were donated 154 

with permission from museum collections (Tab. A.1).  155 

Genomic DNA was extracted from muscle, scale clips or exuvia using DNeasy Blood & Tissue Kit 156 

(Qiagen) according to the manufacturer's instructions. We amplified three protein-coding 157 

mitochondrial (mt) genes (CYTB, COX1, ND5) from 115 viper samples with 2489 alignment positions 158 

totall. As nuclear markers, we amplified four nuclear (nc) genes (RAG1, BACH1, MKL1, MC1R) with 159 

5013 alignment positions totall. All of them have been previously used for multilocus species 160 

delimitation in Squamates (e.g. Vidal and Hedges, 2005; Lynch and Wagner, 2010; McVay and 161 

Carstens, 2013; Tolley et al. 2013) and show polymorphism within and between closely related taxa. 162 

We designed specific PCR primers for most loci amplified in this study (Tab. A.2). 163 

For the amplification of target genes the TaKaRa Ex TaqTM PCR reaction system was used, containing 164 

2.5 μl 10XBuffer, 2 μl dNTP Mix, 2.5 U enzyme, 1 μl of 10 pmol primer each, 1 μl genomic DNA, filled 165 

up with dH20 to 25 µl volume in total. Polymerase chain reaction was carried out, using the 166 

automated Eppendorf Mastercyclergradient. Conditions for PCR reaction were specific for each 167 

gene and are given in Table A.3. After PCR products were cooled down and stored until use at 8 °C. 168 

Dye terminator cycle sequencing was set up according to suppliers' instructions (DTCS Quick Start Kit, 169 

Beckman Coulter) in a two step thermal reaction with 30 cycles of 96°C 20 s, 60°C 4 min. For Dye-170 

terminator removal we used the Agencourt CleanSEQ system (SPRI-technology), and ran the samples 171 

on a Beckman Coulter CEQ 8000 sequencing apparatus. All new DNA sequences generated for this 172 

study were submitted to GenBank (FJxx–FJxx). 173 
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2.2. Sequence alignment and mtDNA phylogenetic analyses 174 

Mitochondrial and nuclear sequences were edited and assembled using SEQUENCHER (Gene Codes). 175 

Gene fragments were aligned separately using ClustalW (Thompson et al., 1994) implemented in 176 

Bioedit 7.0.9 (Hall, 1999). 177 

Heterozygous sequences were identified visually by checking for double peaks (point mutations) in 178 

the electropherograms. Alleles were reconstructed for each specimen, using the software PHASE v. 179 

2.1.1 (Stephens et al., 2001; Stephens and Scheet, 2005) by conducting two independent runs under 180 

the default settings. Then  the most likely haplotype pairs for each individual were chosen. 181 

The program PartitionFinder (Lanfear et al., 2012) was used to determine the best partitioning 182 

strategy and substitution models for the analysis. However, to identify the most appropriate models 183 

of sequence evolution for each gene and dataset, we tested also other partitioning strategies using 184 

MrModeltest 2.3 (Nylander, 2004). 185 

The phylogenetic history of mt-genes was reconstructed, using Bayesian inference (BI) and Maximum 186 

likelihood (ML). For Bayesian inference (BI) we used MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003) 187 

and partitioned the analysis by genes and codon positions. We ran the analyses with one cold and 188 

three heated chains (MC3) for 50 million generations sampling every 1000th generation and 189 

discarding the first 25% of the trees as burn-in. Convergence was estimated in Tracer v1.5 (Rambaut 190 

and Drummond, 2007) and observed with the convergence diagnostic parameters implemented in 191 

MrBayes.  192 

For maximum likelihood we used the software PhyML version 3.0 (Guindon et al., 2010), under the 193 

GTR model with four substitution rate categories and 1000 non-parametric bootstrap replicates.  194 

We specified Macrovipera as the outgroup for all analyses, as they are likely to be the sistergroup of 195 

Montivipera (Lenk et al., 2001; Wüster et al., 2008, Stümpel and Joger, 2009). 196 

2.3. Species tree reconstruction and molecular dating 197 

We used a coalescent-based method to estimate a time calibrated species tree from four nuclear 198 

(RAG1, BACH1, MKL1, MC1R) and three mitochondrial (CYTB, COX1, ND5) genes, using a Bayesian 199 

framework implemented in the computer software *BEAST v. 1.8.0 (Drummond et al., 2012). Unlike 200 

concatenated analyses, which shoehorn all loci into a single tree topology, this approach enables 201 

multiple independent loci to be analysed simultaneously within a framework that accounts for gene 202 

tree incongruence resulting from incomplete lineage sorting. This approach is preferable to 203 

concatenation, which can lead to poor performance of standard phylogenetic estimates (Kubatko 204 

and Degnan 2007). 205 

Species tree approaches assume OTUs to be reproductively isolated, so that shared haplotypes are 206 

the result of retention of ancestral haplotypes rather than ongoing gene flow. It follows that any 207 
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group that has an independent evolutionary history, can be designated as ‘species’ for the analysis. 208 

Here, Montivipera xanthina has a substantial, well supported phylogeographic mt-DNA structure that 209 

coincides with differences in the phenotypic appearance and ecological adaptations between the 210 

populations of geographical regions (see below). We argue that this suggests the presence of a 211 

taxonomically unrecognized diversity and consequently treated the populations of Montivipera 212 

xanthina suggested by the mtDNA gene tree as independent evolutionary entities. 213 

Molecular dating is critically affected by the quality of calibration points. Calibrations at internal 214 

nodes are usually based on the fossil record, which is largely incomplete and biased (Lieberman, 215 

2002; Hedges and Kumar, 2004). Its use and interpretation is often problematic. According to 216 

Gandolfo et al. (2008) fossil calibration errors may be caused mainly by five factors: (1) fossil 217 

preservation, (2) taxonomic assignment of the fossil, (3) identification of fossil homologies, (4) 218 

sampling effort, and (5) fossil age determination. Especially in terrestrial environments, in which the 219 

fossil record is poorer, identifications at the species level are difficult (Padian et al., 1994). 220 

Consequently the availability of reliable calibration dates is traditionally restricted to few model 221 

organisms (Benton and Donoghue, 2007). Most viper fossils are isolated vertebrae, so that their 222 

taxonomic identification is problematic and relationships between extant and extinct species are in 223 

many cases unclear (Szyndlar and Rage, 1999). Head (2005) pointed out that ontogenetic variation in 224 

snake vertebrae is not well understood. In fact, the size of vertebrae is a character for taxonomic 225 

assignment of fossil vipers (Szyndlar and Rage, 1999). Consequently, the fossil record of Eurasian 226 

vipers does not provide enough verified evidence to date their cladogenesis. 227 

For all of these reasons, we have used secondary calibrations of robust divergence time calculations 228 

to improve the precision and accuracy of time estimates. Any node of a robust primary divergence 229 

time calculation can be used as a secondary calibration point in a separate analysis, if there are no 230 

known biases (Hedges and Kumar, 2004). Stümpel (2012) computed a chronogram based on 50 231 

amino acid sequences of complete mt-genomes, representing the full diversity of amniotes. In order 232 

to avoid fossil calibration errors inside viperids Stümpel dated the pedigree with 10 prominent 233 

tetrapod calibration points of Szyndlar and Rage (1990), Rage et al. (1992), Evans (2003), Müller and 234 

Reisz, (2005) and Benton and Donoghue (2007), using relaxed clock models. Based on these 235 

calculations, extant species from Montivipera and Macrovipera shared their last common ancestor 236 

(MRCA) at 15.3 Mya. Following lithological-palaeogeographic maps of Popov et al. (2004) the 237 

divergence time correlates with a long standing isolation of “Asia Minor” during the Langhian, 238 

between 16 and 15 Mya. The second calibration point we used, is the branching point between 239 

extant species of the Montivipera xanthina- and Montivipera raddei-complexes. Calculations of 240 

Stümpel (2012) date the timing of divergence at 10.7 Mya. However, the tectonic event that fits the 241 

palaeobiogeographical reconstruction of oriental vipers, and which may have acted as vicariant 242 
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event, was the opening of a marine seaway along the Bitlis and Eastern Anatolian Fault zones in the 243 

middle Serravallian (13-12.2 Mya) (Stümpel, 2012). Consequently we used both tectonic events as 244 

calibration points to date the cladogenesis of the species tree. The initial divergence between 245 

Montivipera and Macrovipera was modeled with a normal distribution with a mean of 15.5 Mya and 246 

a standard deviation of 0.5 Mya, providing a 95% confidence interval of 14.68 and 16.32 Mya. For the 247 

split between species of Montivipera xanthina- and Montivipera raddei-complexes we used a normal 248 

distribution with a mean of 12.6 Mya and a standard deviation of 1.2 Mya, giving a 95% CI of 10.63–249 

14.57 Mya. 250 

The analysis was run for 600 million generations sampling every 3000th generation, of which the first 251 

25% were discarded as burn-in. To test the most appropriate partitioning strategy and substitution 252 

models for the analysis, we used the program PartitionFinder (Lanfear et al., 2012), applying 253 

partitions to the first/second and third codon for every gene. 254 

To account for lineage-specific rate heterogeneity we used a Log-normal relaxed clock model and 255 

specified a birth-death process for modeling the dynamical process of speciation and extinction. 256 

Convergence statistics were monitored by effective samples sizes (ESS), analyzing the run in Tracer 257 

version v1.5 (Rambaut and Drummond, 2007). A consensus tree with divergence times was obtained 258 

from the 150,000 trees after discarding the first 25% as burn-in.  259 

2.4. Mitochondrial phylogeography 260 

For estimating the phylogeographic history we used statistical methods, implemented in the 261 

software PhyloMapper 1b1 (Lemmon and Lemmon, 2008), which allows testing of a priori 262 

hypotheses. We first tested the phylogeographic association between phylogenetic and geographic 263 

distance for the mt-data matrix (CYTB, COX1, ND5) within each group after optimizing all parameters 264 

and then generating the null distribution by performing 10,000 randomizations. Significance of the 265 

test statistics rejects the null hypothesis that no association exists between geographic proximity and 266 

genealogical proximity within the clade. We then tested, if the individuals of each species complex 267 

tend to migrate in a non-random direction, using the overall directionality test as described by 268 

Lemmon and Lemmon (2008). To estimate the geographic location of the ancestors of the raddei- 269 

and xanthina-complex we calculated the locations of ancestors and estimated likelihood surfaces. 270 

We initially performed the estimates for a wide geographic range, using a low resolution factor and 271 

subsequently constrained the geographic grid for the final analyses. For the species complex of 272 

Montivipera xanthina we constrained the latitude from 35.0 to 40.5 and the longitude from 32.0 to 273 

40.0, and for the species complex of Montivipera raddei we applied a latitude from 35.0 to 40.0 and a 274 

longitude from 44.0 to 52.0, using a resolution of 0.3 in each group. All analyses were optimized by 275 

10,000 replications. 276 

2.5. Neutrality tests and demographic analyses 277 
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In order to detect a population's departures from equilibrium conditions, which may result from 278 

changes in population size, selection or gene flow, we used mt-DNA (CYTB,COX1,ND5) to calculate 279 

nucleotide diversity for each clade in addition to Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 1997), 280 

under the neutral model. For historically stable populations, both D and Fs would be expected to be 281 

close to zero. Negative values of both D and Fs would be indicative of recent population expansion, 282 

whereas positive values would be expect from a recent population bottleneck or from negative 283 

selection (Slatkin and Hudson, 1991; Rogers and Harpending, 1992; Charlesworth et al., 1995). 284 

Significance was assessed for both statistics by comparison with data simulated under a constant 285 

population size model, with significant P values indicating rejection of the hypothesis of constant 286 

population size.  287 

Population expansions have also been shown to leave particular signatures in the distribution of 288 

pairwise sequence differences. Unimodal and smooth mismatch distributions indicate panmictic 289 

populations, which undergo sudden range expansions (Slatkin and Hudson, 1991; Rogers and 290 

Harpending, 1992). In contrast, multimodal mismatch distributions suggest structured or diminishing 291 

population and ragged distributions indicate a stable and widespread population (Excoffier et al., 292 

1992; Rogers and Harpending, 1992; Rogers et al., 1996; Excoffier and Schneider, 1999). Statistically 293 

significant differences between observed and simulated expected distributions were evaluated with 294 

the sum of the square deviations (SSD) and Harpending’s raggedness index (RI), with significant P 295 

values indicating rejection of the recent expansion hypothesis (Slatkin and Hudson, 1991; Rogers and 296 

Harpending, 1992). All analyses were performed using Arlequin v.3.1 (Excoffier et al., 2005). 297 

To visualize changes in effective population size through time, we also inferred the demographic 298 

history of mountain vipers, using the extended Bayesian skyline plot (EBSP), as implemented in the 299 

Bayesian phylogenetic software BEAST (Drummond and Rambaut, 2007). The coalescent-based 300 

approach permits the analysis of multiple unlinked loci, enabling the rate and pattern of the 301 

evolutionary process to vary among loci. For both phylo-groups we performed two independent runs 302 

with 500 million generations for the bornmuelleri-clade (sampling every 3000 iterations) and 800 303 

million for the xanthina- and raddei-clade (sampling every 3500 iterations). Results of each run were 304 

visualized using Tracer v1.5 (Rambaut and Drummond, 2007) to ensure stationarity and convergence 305 

had been reached, and that effective sample sizes (ESS) were higher than 200. 306 

3. Results 307 

3.1. DNA sequence characteristics and phylogenetic results 308 

The concatenated mt-DNA matrix with 111 individual Montivipera DNA sequences and 2489 aligned 309 

positions (825 bp COX1, 1062 bp CYTB, 602 bp ND5) is characterized by 424 invariable, 178 310 

polymorphic and 150 parsimony informative sites with 58 unique haplotypes totally. 311 
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The nuclear data set embraces 270 Montivipera sequences, with 5013 alignment positions (2481 bp 312 

RAG1, 1105 bp BACH1, 777 bp MKL1, 650 bp MC1R) 43 polymorphic sites and59 unique sequences. 313 

Bayesian inference (BI) and Maximum Likelihood (ML) analysis of mt-DNA data produced concordant 314 

trees with considerable phylogenetic structure with distinct geographic associations (Fig. 2). Within 315 

the genus Montivipera the BI and ML genealogies support a sister-group relationship between the M. 316 

raddei- and the M. xanthina-complexes, with maximal statistical robustness and an uncorrected p-317 

distance of 0.107. Haplotypes of the M. xanthina-complex segregate into two evolutionary clades 318 

with considerable divergences (p-distance = 0.069). The eastern bornmuelleri-clade embraces the 319 

nominal taxa M. bornmuelleri, M. wagneri, M. bulgardaghica, M. albizona and a new taxon from 320 

Syria, which is separated by a p-distance of 0.028 from its sister taxa bulgardaghica and albizona. The 321 

bornmuelleri-clade has a monophyletic origin and its evolutionary lineages are separated by a 322 

maximum p-distance of 0.040. The Anatolian xanthina-clade displays unexpectedly deep 323 

phylogeographic structure, suggesting long standing evolutionary isolation between groups, with 324 

higher p-distances (up to 0.056) than between the species of the bornmuelleri-clade. The common 325 

ancestry of the Anatolian populations is not well supported, suggesting the possibility of alternative 326 

genealogical relations (Fig. 2). However, each evolutionary lineage within the Anatolian clade is 327 

supported by maximal posterior probabilities and bootstrap values, with specimens from western 328 

Taurus in basal position, which are the sister-group of populations from Lycia and those from the 329 

Aegean coast. 330 

In contrast to the high genetic structure of the xanthina-complex, we found only 16 unique mt-gene 331 

sequences among the raddei-complex, with a maximum genetic distance of p=0.029, indicating a 332 

historically young radiation. Haplotypes of the nominal taxon M. raddei kurdistanica are paraphyletic 333 

and also a common ancestry of M. albicornuta is statistically not well supported. Montivipera 334 

kuhrangica represents a separate evolutionary lineage, having a common ancestry with M. raddei. 335 

As expected the nuclear data set of Montivipera has a low variability with a maximal genetic distance 336 

of p=0.0203. Measures of the nuclear genetic distances confirm a more recent origin of the raddei-337 

complex and an older divergence of the xanthina-complex. The genetic distance of the Montivipera 338 

xanthina-complex (p-distance = 0.0201) is 6-fold higher than within the raddei-complex (p-distance = 339 

p=0.0032). 340 

3.2. Species tree and molecular dating 341 

Post run diagnosis parameters of Tracer observed high effective sample sizes (ESS) and indicated that 342 

runs of the *Beast analyses converged.  343 

The topology of the time calibrated multilocus species tree (Fig. 3) from the combined data set of 344 

nuclear and mitochondrial genes is congruent with the mt-genealogies obtained with MrBayes and 345 

PHYML and strongly supports a sister relationship between the Montivipera xanthina and the M. 346 
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raddei-complex. Species of the xanthina-complex segregate into two clades with high Posterior 347 

Probabilities for a monophyletic origin of the bornmuelleri-clade. The relatively low support (PP 0.83) 348 

for the xanthina-clade suggests contradictory topologies with a possible paraphyletic origin of M. 349 

xanthina (Fig. 3). Divergence times support a late Miocene diversification of the M. xanthina-350 

complex. Populations of M. xanthina from the Taurus Mountains were identified as the oldest 351 

evolutionary lineage, which split off from its sister-group 5.2 Mya ago, and are thereby older than 352 

basal lineages within the bornmuelleri-clade. In contrast, divergence time estimates derived from 353 

sampled raddei populations were considerably closer to the present and have a Pliocene origin. 354 

3.3. Mitochondrial Phylogeography 355 

We found significant evidence for phylogeographic association in the M. xanthina- and the M. raddei-356 

complex at the α = 0.001 level (Tab. 2) and in the analyzed clades individuals tend to migrate in an 357 

non-random direction (overall directionality test: p < 0.001). 358 

We then estimated the geographic locations for the ancestors of the M. xanthina- and M. raddei-359 

complexes (Fig. 4). According to the analysis the mountain vipers of the xanthina-complex had their 360 

origin in the Anatolian Taurus Mountains (latitude 37.94, longitude 34.78, lnL -381.33). Present 361 

haplotype distributions suggest a colonization of early ancestors mainly in east-west directions. 362 

Montivipera bornmuelleri from the Levant is the only recent population that indicates an ancestral 363 

colonization advance also to southern territories. Despite their spatial proximity, xanthina 364 

populations from Greek and Turkish Thrace go back to different dispersal events and do not share a 365 

common ancestor (Fig. 1).  366 

The origin with the maximum likelihood estimate for the basal ancestor of the raddei-complex is 367 

located in the Persian Alborz Mountains (lat 35.06, long 49.18, lnL -145.99).  368 

3.4. Population genetic analyses and historical demography 369 

Extended Bayesian skyline plots (EBSP) of the bornmuelleri- and xanthina-clade indicate a substantial 370 

population size change over their demographic history. Both clades had maintained high population 371 

size during Pleistocene glaciations of Northern hemisphere (Fig. 6). The EBSP of the xanthina-clade is 372 

bimodal with a broad peak between 2.8 and 1.6 Mya during late Piacenzian and Gelasian and a 373 

second peak in current times. In contrast, the bornmuelleri-clade reached its highest population 374 

between 1.2 and 0.4 Mya, when the xanthina population decreased to its all-time low. Since the 375 

Middle Pleistocene, the EBSP reveals a rapid decrease of the bornmuelleri-clade. In recent times the 376 

population started to increase slightly to current size. Populations of the M. raddei-complex (Fig. 7) 377 

were constant over long time periods and decreased around 116.000 years ago with End of Eemian 378 

warm phase and beginning of Tarantian stage of upper Pleistocene. The negative population trend 379 

turned 8.000 years ago and started to increase to the present day. 380 
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Mismatch frequencies were calculated separately for the xanthina-, bornmuelleri- and the raddei-381 

clade (Fig. 5). The shapes of the observed distributions deviate from a smooth unimodal pattern 382 

simulated under a sudden expansion model. Mismatch distributions have multimodal characteristics 383 

for all groups. In the raddei-complex the mismatch distribution has a high frequency of sequence 384 

pairs with low mismatch counts, indicating a shrinking or declining Ne. Thus the associated 385 

Raggedness-Index is high for the bimodal distribution in raddei and much smaller for the multimodal 386 

distributions of xanthina and bornmuelleri. The variances (SSD) and Harpending raggedness index (RI) 387 

indicate that the observed distributions differ significantly from the distributions expected under the 388 

model of population expansion in all groups for SSD. For the raggedness index significance was only 389 

assessed for bornmuelleri. Fu’s Fs and Tajima's D are positive and differ from zero except for raddei. 390 

In concordance with the EBSP, high values for Fs and D suggest a recent population bottleneck or 391 

negative selection in bornmuelleri and xanthina. However, test statistics for Tajima's D and Fu’s Fs 392 

cannot reject the null hypothesis (Ho) that the sample of DNA sequences were taken from a 393 

population with constant effective population size (Tab. 1).  394 

4. Discussion 395 

4.1. Mitochondrial genealogy uncovers hidden genetic diversity within Montivipera 396 

Our mitochondrial based phylogeny is a continuation of Stümpel et al. (2009) and represents the first 397 

study that includes all known taxa. The results provide significant new insights into the evolutionary 398 

history of mountain vipers. Previous mt-genealogies of Lenk et al. (2001) considered only three OTU’s 399 

of mountain vipers and revealed a paraphyly of the Montivipera xanthina-complex, with M. raddei 400 

being closer to wagneri than xanthina. A CYTB based Maximum-Parsimony tree of Garrigues et al. 401 

(2005) with six OTUs of mountain vipers revealed the species of the xanthina-complex as a 402 

monophyletic assemblage, but without resolving their relations, because of low statistical support 403 

and a basal polytomy.  404 

Our BI and ML genealogies support a sister relation between the raddei-complex and the xanthina-405 

complex with maximal statistical robustness, previously suggested by Nilson and Andrén (1986) 406 

based on morphological data and revealed with mt-marker by Garrigues et al. (2005). The monophyly 407 

of both complexes coincides with considerably differences in scalation, of which the circum-ocular 408 

ring, separating the supraocular from the eye, is most conspicuous (Nilson and Andrén, 1986).  409 

Our phylogenetic inference showed that the xanthina-complex consists of two monophyletic groups, 410 

which correspond to east Anatolia (bornmuelleri-clade) and west Anatolia (xanthina-clade). Within 411 

the east Anatolian clade, we found bornmuelleri to be the most basal taxon. After the description of 412 

Vipera bornmuelleri Werner, 1898 as full species, it was synonymized with Vipera lebetina xanthina 413 

by Schwarz (1936), until Mertens (1967) resurrected the mountain viper from Lebanon as valid 414 
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species under the assumption that Daboia palaestinae belongs to the “Rassenkreis” (species 415 

complex) of xanthina. This taxonomic position remained largely undisputed and most herpetologists 416 

(e.g. Joger, 1984; Brodmann, 1987; Golay et al., 1993) followed Mertens (1967). Only Schätti et al. 417 

(1991) doubted its validity and synonymized the populations from the Levant with xanthina, without 418 

granting them any taxonomic status. Golay et al. (1993) treated bornmuelleri as a subspecies of 419 

xanthina. Our mitochondrial genealogy strongly supports bornmuelleri as an independent 420 

evolutionary lineage, which belongs to the east Anatolian clade and has no common ancestry with 421 

xanthina, as suggested by Schätti et al. (1991).  422 

Montivipera bornmuelleri is the sister taxon of the nominal taxa wagneri, bulgardaghica and 423 

albizona, which have a common ancestry. Montivipera wagneri was collected in 1846 by Moritz 424 

Wagner in the vicinity of Lake Urmia. Until its rediscovery by Teynié (1987) only the single female 425 

holotype was known (Nilson and Andrén, 1984). Today Wagner’s mountain viper is only known from 426 

a small isolated exclave around the Aras river catchment in east Anatolia (Joger et al. 1988). Recently 427 

Göçmen et al. (2014) reported new localities of mountain vipers extending their range in Anatolia. 428 

However, in combination with the distinct morphology (Joger et al., 1988) and considerable 429 

differences in blood protein analyses (Herrmann et al., 1987), our results validate the populations 430 

from the Aras region as full species M. wagneri.  431 

The sister-group of wagneri embraces the two nominal species bulgardaghica and albizona. The 432 

discourse about their systematics is discussed page by page in Schätti et al. (1991). Both taxa are 433 

restricted to the Taurus Mountains, but their distribution is only known from few individual localities 434 

and detailed sampling locations from the few caught specimens have never been published. 435 

However, the possibility of a parapatric contact zone between bulgardaghica and albizona exists and 436 

was discussed by Schätti et al. (1991). Our analyses show that haplotypes of M. bulgardaghica are 437 

nested within albizona and do not support the species status of albizona. The nearest populations of 438 

M. albizona are known from Tahtalı Dağları (Teynié, 1991) and Dibek Dağları (own observations), less 439 

than 200 km from Bolkar Mountains. Interestingly Schätti et al. (1991) mention a specimen caught in 440 

Kar Boğaz, which displayed a coloration that could be a morphological indicator for genetic contact 441 

between both taxa. Our data confirm this hypothesis. One specimen from the type territory, which 442 

was morphologically identified as bulgardaghica, shares an albizona haplotype.  443 

Due to homoplasies in color pattern Bettex (1993) supposes albizona to be synonymous with 444 

wagneri, and Phelps (2010) treats bulgardaghica as conspecific with bornmuelleri. A specimen from 445 

the Syrian coastal Mountains near Slanfah (ص����������لنفه ),formerly identified as M. xanthina by Sindaco et 446 

al. (2006), represents a new taxon basal to bulgardaghica.  447 

Our mitochondrial genealogy confirms the statement of Nilson and Andrén (1986) and of Nilson et al. 448 

(1990) that M. xanthina is the closest relative of the four east Anatolian mountain vipers, which 449 
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represents a divergent evolutionary lineage. Following Nilson and Andrén (1986), M. xanthina is also 450 

characterized by autapomorphies, such as ten supralabials and high number of subcaudals. However, 451 

the monophyly of xanthina (s.str.) is statistically significant in the MrBayes analysis, but is less 452 

robustly supported by the species tree of *BEAST. 453 

Within M. xanthina our mt-genealogy recovers unexpected high levels of genetic diversity with a well 454 

supported phylogenetic structure. This is unexpected, as M. xanthina displays comparatively low 455 

variability in external morphology within its rather large range, as Nilson and Andrén (1986) note. 456 

Phenotypes do not display eye-catching differences in coloration or pattern, like M. wagneri and M. 457 

albizona, or a distinctive dorsal pattern like M. bornmuelleri. However, the unexpected cryptic 458 

genetic diversity revealed here suggests the presence of unrecognized taxa (Stümpel and Joger, 459 

2009). Nilson and Andrén (1986) performed a hierarchical cluster analysis based on morphometric 460 

characters for species of the genus Montivipera and found considerable intraspecific variation within 461 

M. xanthina, but the results were not consistent for both sexes, and the authors distinguished, 462 

without drawing taxonomic conclusions, two subgroups (a northern and a southern xanthina) below 463 

the subspecies level. Their findings partially support the substantial genetic structure within 464 

xanthina. 465 

In our data set the M. raddei-complex is a genetically relatively homogenous lineage, with the lowest 466 

haplotype diversity within the mountain vipers, possibly indicating their historically young radiation. 467 

The recently described species M. kuhrangica (Rajabizadeh et al., 2011) is the sister taxon of M. 468 

raddei and reflects the very incomplete knowledge of the distribution area, especially in the southern 469 

Zagros Mountains.  470 

Given the poor exploration and the large geographic distance to the next populations of raddei (s. l.) 471 

it seems possible that unknown haplotypes may have been overlooked. Obst (1982) treats the taxa 472 

latifii and raddei as diverging populations of the same species, and Schätti et al. (1991) added also 473 

albicornuta to the synonyms of raddei. Nilson and Andrén (1986) hypothesized albicornuta and latifii 474 

to have a common ancestor. Our phylogenetic inference revealed latifii as a separate evolutionary 475 

lineage, which is confirmed by its distinctive ecological adaptation to alpine habitats in the Alborz 476 

Mountains (Mertens et al., 1967; Andrén and Nilson, 1979). Samples assigned to the subspecies 477 

raddei kurdistanica are scattered throughout the raddei-complex. 478 

4.2. Speciation and divergence times 479 

A key aim of this study was the molecular dating of important nodes for the reconstruction of 480 

biogeographical histories. For estimating rates of molecular evolution in a tree, nodes must be fixed 481 

to a time scale. Key means of clock calibration are fossil data, providing minimum constraints on the 482 

timing of lineage divergence events (Benton and Ayala, 2003; Benton and Donoghue, 2007). It is 483 

obvious that the quality of the fossil record has a large impact on the inferred divergence times of 484 
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the pedigree. Eurasian vipers have a very poor fossil record and the taxonomic identification of fossils 485 

is often problematic. However, according to Antunes and Rage (1974) and Szyndlar and Rage (1999) 486 

oriental vipers of the genera Macrovipera or Montivipera appeared in the European fossil record for 487 

the first time in the lower Miocene (MN 3, 22.1 – 17 Mya). But the single vertebra from Lisboa, which 488 

is the evidence for the first appearance, could not be assigned with absolute taxonomic confidence. 489 

For the following Mammal period of the Neogene (MN 4, 17 – 16 Mya) Szyndlar and Rage (1999) 490 

claim that oriental vipers were already widespread in Europe and remained so until the Pleistocene, 491 

embracing a time period of at least 15 Mya. However, molecular divergence times do not confirm an 492 

early Miocene origin of Macrovipera and Montivipera. To date divergences among Colubroidea, 493 

Wüster et al. (2008) used a mitochondrial data matrix, mainly calibrated with fossil snake calibration 494 

points. According to the authors’ analysis, Macrovipera was separated from Montivipera about 11 495 

Mya ago, considerably younger than our results. The taxonomic affinity and/or stratigraphic age of 496 

calibration points used by Wüster et al. (2008) were doubted by Lukoschek et al. (2012), who 497 

demonstrated that the use of mitochondrial-only data by Wüster et al. (2008) may have inflated the 498 

ages of distal nodes relative to basal ones due to the saturated third codon position of mtDNA loci. 499 

Consequently Lukoschek et al. (2012) corrected the split between Montivipera vs. Macrovipera of 500 

Wüster et al. (2008) to younger ages – even less compatible with the estimates presented here.  501 

Szyndlar and Rage (1999) note that a distinction between fossil species of Macrovipera and 502 

Montivipera is hardly possible. Given the uncertainty of taxonomic identification it seems likely that 503 

extinct lineages and members of the stem-group were pooled by Szyndlar and Rage (1999) and may 504 

thus bias biogeographic hypotheses and systematic assignments. 505 

To be free from circularity derived from the biased fossil record of snakes, we used secondary 506 

calibration points of Stümpel (2012), which were calculated using protein sequences of complete mt-507 

genomes and are in concordance with vicariant events in the Tethyan realm and confirm the 508 

divergence times for the MRCA of Viperidae and Viperinae published by Wüster et al. (2008).  509 

The topology of the multilocus *BEAST chronogram (Fig. 4) is congruent with the mitochondrial 510 

genealogy resulting from the MrBayes run. Nodes of the combined analysis of mtDNA and nuclear 511 

loci suggest a late Miocene (12.3 Mya) origin for the MRCA of Montivipera. The time frame correlates 512 

with a prominent tectonic event in the Middle East, the uplift of the Turkish-Iranian plateau to an 513 

elevation of 1.5-2 km  a.s.l. (Şapaş and Boztepe-Güney, 2009). Along with the increase of elevation, 514 

climatic, spatial, biotic and evolutionary factors changed. The most obvious is the generally linear 515 

decrease in temperature, which decreases by an average of approximately 0.68 °C for each 100 m 516 

increase in elevation (Barry, 2008), so that the Turkish-Iranian plateau cooled down by approximately 517 

10.2 to 13.6 °C due to the uplift. Other abiotic factors like air pressure, solar radiation and humidity 518 

change predictably along the montane gradients. These determinants are well known to impact 519 
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species richness (McCain and Grytnes, 2010) and are thus likely to have strongly influenced 520 

organismal communities and habitats in the Near and Middle East. Flora and fauna respond to these 521 

changes in their speciation and extinction rates. We propose this scenario as a driver for the 522 

Montivipera stem-group to adapt to mountainous conditions. The diversification of the xanthina-523 

clade began in the early Pliocene at 4.7 Mya, as already hypothesized by Nilson and Andrén (1986). It 524 

is worth reiterating that this group was considered as monotypic until recently. The relatively old 525 

origin suggests extensive cryptic diversity. Recent species of the bornmuelleri-clade are of 526 

considerable younger age and have their origin in the late Pliocene. Based on immunological 527 

distances Herrmann et al. (1987) determined an age of less than 5 Mya for the MRCA of the 528 

bornmuelleri-clade. Wüster et al. (2008) estimated the taxa Montivipera xanthina having separated 529 

from Montivipera albizona approximately 4 Mya ago.  530 

Despite the late Miocene origin of the raddei and xanthina stem-group, the most extant evolutionary 531 

lineages emerged not before the Pleistocene, except of the Lycian and Taurus lineages, which are of 532 

considerable older age. The absence of old lineages within the raddei-complex suggests a massive 533 

loss of lineage diversity through time. The global climate system experienced drastic changes from 534 

the middle Eocene to the present with global cooling and an overall increase of seasonality 535 

(Mosbrugger et al., 2005), which resulted in numerous shifts in the distribution and abundances of 536 

species (Hewitt, 2004a). However, Avise et al. (1998) calculated that 57% of the recent herpetofauna 537 

goes back to Pleistocene speciation events. The same time frame is mentioned by Veith et al. (2003) 538 

and Plötner et al. (2010) as relevant for the speciation of Anatolian anurans. Besides the climatic 539 

effects we could identify geological settings in Anatolia that are likely to have been relevant for 540 

lineage differentiation of Montivipera populations. The river Göksu Nehri, breaking the Taurus 541 

Mountains between the cities Mut and Silifke, is a barrier for montane biota. The valley bottom, with 542 

an elevation of less than 250 m  a.s.l., is a barrier for dispersal of montane organisms, dividing 543 

Montivipera populations into an eastern (bornmuelleri-) and a western (xanthina)-clade. Beyond 544 

that, the tectonic evolution of the Isparta Angle might have triggered the isolation of the basal 545 

xanthina lineage from its sister-group. The Isparta Angle is a junction between the Aegean and 546 

Cyprus arcs, with a long-term polyphase deformation history, which is characterized by a massive E-547 

W compression, resulting in the N-S orientation of main structural lines (e.g. Van Hinsbergen et al., 548 

2010; Poisson et al., 2011 and references therein). The inner Isparta Angle hosts several basins and 549 

lakes, which might constitute barriers to the dispersal of montane xanthina populations. Evolutionary 550 

lineages east of the Isparta Angle (Isparta, Geyik Dağı) are clearly separated from the West Anatolian 551 

lineages (Lycia, Aegean).  552 
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4.3. Phylogeography, population genetic analyses and historical demography 553 

Descriptive summary statistics and inferential methods of both mt and ncDNA are congruent and 554 

support substantial changes in effective population size of mountain vipers through time (Fig. 6). 555 

Based on our data, we argue that climatic oscillations during the Pleistocene, together with the high 556 

relief Near and Middle Eastern mountain systems, were key drivers of lineage diversity of mountain 557 

vipers. 558 

Mountain vipers are spatially constrained to montane habitats, especially the taxa of the raddei and 559 

bornmuelleri-clades, which inhabit exclusively an elevational zone between 1400 and 2800 m a.s.l. 560 

We hypothesize the stem-group of Montivipera to have originated in oro-biomes, adapting to a 561 

seasonal climate and a diurnal lifestyle. The spatial hypothesis that Montivipera has a montane 562 

origin, is supported by the Likelihood estimates (center of origin), which reveal a montane origin of 563 

both the MRCA of xanthina-complex and the MRCA of the raddei-complex. In addition, the 564 

phylogenetic results (Fig. 2) show that the most basal and oldest lineages are invariably distributed in 565 

mountainous habitats, outnumbering lowland populations, which are of considerably younger age 566 

and nested deep within otherwise montane clades. Today species of the East Anatolian bornmuelleri-567 

clade are ecologically confined to oro-Mediterranean habitats between 1400 and 2500 m a.s.l. In the 568 

Taurus Mountains the zone corresponds to the Cedrus-Abies forests (Querco-Cedretalia libani) 569 

outlined by the range of the Astragalo-Brometalia (Parolly, 2004). Evolutionary lineages of the 570 

xanthina-clade have a broader ecological amplitude distributed from sea level up to 2000 m  a.s.l. 571 

The ultimate causes of why some lineages of the west Anatolian xanthina-clade display more 572 

plasticity remain unclear. However, we argue that the ancestral ecological trait is montane and 573 

adaption to lowland habitats occurred secondarily.  574 

Our data indicate that the populations suffered substantial changes in effective population size over 575 

time. Growth and decline of populations can be associated with two relatively abrupt climate 576 

transitions, the onset of major northern hemisphere glaciations at approximately 2.7 Mya and the 577 

mid-Pleistocene transition (at approximately 900 ka), when the dominant periodicity of glacial 578 

response changes from 41 to 100 kyr (Milankovitch, 1941; Paillard, 2001). This historical pressure on 579 

natural systems could have shaped species ranges and been the driver for demographic processes. 580 

EBSP indicate that ancestors of the xanthina and the bornmuelleri-clades responded differently to 581 

the change of environmental conditions. The xanthina-clade expanded during the warm phase of the 582 

Pliocene ('Green House effect'), but reached maximum population size at the beginning of the 583 

Pleistocene. During the climatic reorganization and the end of the Pliocene warm period (5–3 Mya 584 

ago) ancestors of the xanthina-clade must have successfully adapted to the changing abiotic and 585 

biotic conditions. During the continuous cooling of earth climate and the switch in the frequency of 586 

the astronomical Milankovitch cycles, ancestors of the xanthina-clade responded with a negative 587 
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population growth rate, due to the deterioration of environmental conditions. Finally, the xanthina-588 

clade shows evidence of population growth at the end of the Pleistocene, presumably as a result of 589 

the increase in available habitats for this warm, lowland-adapted species during the current 590 

interglacial. 591 

Unlike in the xanthina-clade, evidence from EBSP indicates that ancestors of the bornmuelleri-clade 592 

increased population sizes during the Pleistocene, and had the adaptive capacity to use the 593 

ecological opportunities arising from Pleistocene climate oscillations through adaptive responses 594 

such as cold tolerance. Similarly, the bornmuelleri-clade shows no evidence of late Pleistocene 595 

population expansion, which is to be expected for a species inhabiting cool, high altitude habitats, 596 

which may have shrunk and become restricted to higher elevations as a result of late Quaternary 597 

climatic warming. In contrast populations of the raddei-complex collapsed from 116,000 to 8,000 598 

years ago, coinciding with the final glacial episode of the Pleistocene (Tarantian), supposedly because 599 

of late Pleistocene hyperaridity. Pollen records from Lake Urmia in Iran give evidence that the lack of 600 

moisture supply during last glaciation changed the herbaceous vegetation to a xerophytic Artemisia 601 

and grass steppe (Djamali et al. 2008). In Iran the late glacial to early Holocene transition is marked 602 

by the expansion of deciduous forests (Djamali et al. 2008), indicating the increase of  603 

paleoenvironmental moisture supply and the extension of suitable habitats with an increasing 604 

population size of M. raddei ancestors. 605 

Mountains have a high richness of different climatic zones and microhabitats. On a larger scale, this 606 

richness is primarily related to the change of abiotic factors along the altitudinal gradient and, on a 607 

more local scale, by slopes facing different geographic directions. In a spatio-temporal scenario, 608 

different microhabitats are very dynamic in terms of their distribution at different elevations at 609 

different times, but stable in terms of their continued existence within the mountain system. They 610 

thus enable species to retain their ecological niches during climatic changes by means of changes in 611 

their elevational distribution. The local range or ´biogeographical stasis` is therefore linked to 612 

capacity of the mountain range to provide the required microhabitat of the species despite changes 613 

in overall climatic conditions (Médail and Diadema, 2009). As a result of the elevational shifts, the 614 

habitats of montane species became restricted during global warming, because eco-zones shift to 615 

higher elevations, resulting in loss of available surface area. Conversely, climatic cooling shifts the 616 

range of acceptable ecological conditions back to lower altitudes and formerly isolated populations 617 

probably became connected again. In mountainous regions, climatic oscillations are thus a driving 618 

force of allopatric speciation: due to phylogenetic niche conservatism (Wiens, 2004), species tend to 619 

retain similar ecological niches over time (Ricklefs and Latham, 1992; Peterson et al., 1999, Webb et 620 

al., 2002), and their ranges are thus fragmented and reconnected repeatedly through climatic cycles. 621 
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The mountains of the Middle East were not affected by glaciations to the same extent as northern 622 

Europe, although at higher altitudes glacial erosive or depositional features have been found (e.g. 623 

Akçar & Schlüchter, 2005). However, it is a fallacy to believe that the Near and Middle East did not 624 

experience climatic fluctuations of large magnitude (e.g. Joannin et al., 2010). In mountains, the 625 

upper vegetation zone is restricted by the snow line. Today, the habitats of Montivipera populations 626 

have their upper elevational limit approximately 800-1500 m below the summer snow line. During 627 

last glacial maximum (19-23 ka) the palaeo snowline was estimated to have been 1000 m below the 628 

modern snow line (Sarýkaya, 2011), suggesting that the elevational range of mountain viper species 629 

was similarly lowered, leading to range expansion and reconnection for populations of montane 630 

species. This explains both, the pattern of allopatric speciation seen between montane forms in 631 

separated mountain systems in the bornmuelleri-clade, but also the shallow divergences between 632 

currently isolated populations of the raddei-complex. 633 

This Plio-Pleistocene scenario has thus left distinctive marks on the genome (Hewitt, 1996) and 634 

initiated vicariant allopatric speciation and dispersal. Allopatric populations, which experienced little 635 

gene flow, can be isolated over long time periods, allowing them to acquire and retain unique and 636 

high genetic variation (Petit et al., 2003; Hampe and Petit, 2005). During glacial–interglacial episodes 637 

the Mediterranean mountains played a key role in speciation processes as refugia (Médail and 638 

Diadema, 2009). This hypothesis is also supported by plant diversity-environment relationships in 639 

southern Europe (Svenning et al., 2009). 640 

Our results evidently imply restricted gene flow among the populations by the appearance of 641 

physical vicariance. This phenomenon of decreasing chances of mating might have been caused by 642 

the topographic relief and discontinuous habitats in the Near and Middle East. 643 

Presumably, mountain viper populations survived glacial periods in allopatric refugial areas adjoining 644 

mountain chains in the Near and Middle East, or in situ within valley systems of high mountains, with 645 

each distinct regional clade having had its own refugium. 646 

Comparable studies are rare for the Near and Middle East. For Asia Minor our results are in 647 

concordance with other studies pointing out the impact of Anatolian Mountains for species diversity 648 

(e.g. Hewitt, 1999; 2000; Veith et al., 2003; Çiplak, 2003; 2004; Mutun, 2010; Bilgin, 2011) and fit in 649 

with the hypothesis of Nilson et al. (1990) that the Anatolian Diagonal is a key factor for 650 

diversification of the Montivipera xanthina-complex and a hot spot for other biota (Ekim and Güner, 651 

1986; Duran et al., 2005). It is worth mentioning that, despite their aquatic life history, eastern 652 

Mediterranean water frogs (Plötner et al., 2010) show a highly congruent distribution of mt-653 

haplotypes with the Anatolian mountain vipers, supporting the broad relevance of vicariant 654 

palaeogeological events for the evolution of Eastern Mediterranean biota. Médail and Diadema 655 

(2009) identified multiple floral refugia in the Mediterranean mountains, which indicate continuous 656 
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divergence and speciation over many millions of years to the present. The high congruence between 657 

the geographic distribution of Montivipera haplotypes and plant refugia (Fig. 8) is astonishing and 658 

evidently indicates the importance of common historical events as drivers of speciation and 659 

distribution across a broad swath of Near and Middle Eastern biota. 660 

4.4. Implications for mountain viper systematics and future work 661 

Translating the phylogeographic results obtained in this study into a formal taxonomic framework 662 

remains challenging and subject to multiple different interpretations, depending on the species 663 

delimitation criteria used (de Queiroz, 2007). Mountain vipers are allopatrically distributed and 664 

inhabit isolated disjunct mountain areas and are therefore genetically and geographically isolated. 665 

However, experimental hybridizations between M. wagneri and M. xanthina result in fertile offspring 666 

(own observations). Further research may yet reveal natural hybrid zones, where populations share 667 

haplotypes of different species. On the other hand, many isolated populations are clearly geographic 668 

variants of one another, but display distinctive phenotypic features, so that no intermediates exist. 669 

Speciation is a complex process culminating in the evolution of intrinsic isolation mechanisms, which 670 

result in genetic isolation. During the preceding transition time, when populations diverge, it is 671 

difficult to find objective criteria for species delimitation (Hey, 2009), because the lineage simply may 672 

not yet have evolved distinctive properties. However, the presence of any unique property 673 

constitutes evidence for lineage separation and the possession of several properties highly 674 

corroborate the existence of different species (De Queiroz, 2007).  675 

Proposals for taxonomic classification of the Montivipera taxa have been made in either the splitting 676 

or lumping direction. Nilson and Andrén (1986), who described wagneri, bulgardaghica and albizona 677 

as full species, stated that these taxa including bornmuelleri could also be treated as subspecies or 678 

allospecies of one superspecies. In line with this argumentation, Montivipera would consist of three 679 

species xanthina, bornmuelleri and raddei. 680 

According to the molecular evidence presented in this paper, we suggest to treat each major 681 

evolutionary lineage of Montivipera as valid species. Our molecular genealogy supports bornmuelleri, 682 

wagneri, bulgardaghica, albizona, raddei, latifii and kuhrangica as valid taxa. They all represent 683 

unique evolutionary lineages, separated by considerable genetic distances. The exception are 684 

albicornuta and kurdistanica, where we found no evidence for monophyletic origins. Nominal 685 

haplotypes of both taxa scatter through the tree and belong to the raddei haplo-group. In the 686 

absence of unique morphological characters, albicornuta and kurdistanica should be collapsed into 687 

raddei and considered geographic variants of the latter. Montivipera albizona has a unique nuclear 688 

haplotype, which separates the taxon from the allopatric bulgardaghica, but the mtDNA genealogy 689 

evidently suppose genetic contact between both taxa. Considering the allopatric distribution and 690 

similar morphological and ecological synapomorphies, we prefer to treat albizona as a subspecies of 691 
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bulgardaghica. A single specimen from the Syrian Levant represents a new phyletic lineage in the 692 

pedigree. However, without any further knowledge and additional specimens, further taxonomic 693 

conclusions are hardly possible.  694 

In the light of our genetic data, M. xanthina appears to constitute a cryptic species complex with 695 

three or four new taxa. Each of them has a long standing history of isolation comparable to the 696 

species of the bornmuelleri-clade. Prior to this genetic analysis, a phenotypic distinction between the 697 

phyletic xanthina lineages was not possible, probably due to the lack of material. With the 698 

phylogenetic background of this study, genetic information is available which can be included for 699 

accurate species identification, and can guide the search for morphological characters that can help 700 

differentiate these taxa. Taxonomic revisions have different connotations for further biological 701 

analysis.  702 

Together with Macrovipera, Montivipera is responsible for serious, often-lethal clinical problems in 703 

the Near and Middle East (e.g. Chippaux 1998). Venom composition varies both interspecifically and 704 

intraspecifically in many snakes, and this can have severe consequences for snakebite victims 705 

(Casewell et al., 2013). Where victims of bites require antivenom, and in the absence of direct 706 

evidence on venom composition of antivenom effectiveness, phylogenetic relatedness of lineages 707 

could potentially inform antivenom choice. Moreover, the evolutionary tree for a group of species 708 

can also inform conservation measures for these taxa. 709 

Future morphological work including more samples is necessary to identify diagnostic characters for 710 

species delimitation and to evaluate the species concept made here on the basis of molecular data 711 

alone. 712 
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