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Abstract 22 

Shrublands cover a large proportion of the world’s land surface, yet they remain 23 

poorly studied in comparison to other ecosystems. Within shrublands, soil organic 24 

matter (SOM) is replenished from inputs of both above- and below-ground plant litter, 25 

however, their relative importance depends on their respective turnover rates. To 26 

critically address this, we measured the biodegradation rates of the soluble and 27 

insoluble components of 14C-labelled above- and below-ground plant litter in soil. 28 

During the 150 day incubation, the amount of plant-derived soluble-C lost as 14CO2 was 29 

similar for the different plant parts being 64.7 ± 2.3% for roots, 72.1 ± 7.4% for stems, 30 

and 72.4 ± 1.8% for leaves. In comparison, the turnover of the insoluble fraction was 31 

much slower. However, again little difference in mineralisation was seen for the 32 

different plant parts with the total losses being 21.1 ± 0.9% for roots, 19.5 ± 1.6% for 33 

stems, and 19.6 ± 1% for leaves. A double exponential first order kinetic model fitted 34 

well to the experimental data. It also allowed the partitioning of C between microbial 35 

anabolic and catabolic processes for the soluble C component. Using this model, we 36 

deduced that the soluble fraction turns over ca. 40 times annually, whereas it takes ca. 37 

2.5 years to turnover the insoluble fraction. For the soluble plant component, the overall 38 

microbial carbon use efficiency (CUE) was estimated to be greater for root-derived C 39 

in comparison to that derived from aboveground (no difference was observed for the 40 

insoluble component). From this, we tentatively suggest that C sourced from 41 

belowground plant components may persist longer in soil than C derived from 42 

aboveground plant components. 43 

44 

Key words: belowground carbon storage, mineralisation, nutrient cycling, litter 45 

decomposition, root turnover 46 
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47 

Soil organic matter (SOM) represents a major store of terrestrial carbon (C) 48 

(Schlesinger, 1997) and its turnover and replenishment represents a critical component 49 

of the global C cycle. SOM is primarily derived from the continual input of above- and 50 

below-ground plant components, however, their relative importance, particularly in 51 

shrubland ecosystems, remains poorly understood (Vogt et al., 1986). Earlier studies 52 

have suggested that plant roots contribute a larger proportion of C to soil organic carbon 53 

(SOC) than plant shoots, due to their greater chemical recalcitrance in relation to 54 

microbial enzymatic breakdown (Broadbent and Nakashima, 1974; Jane et al., 2007). 55 

In contrast, within some agroecosystems, significant contributions by crop shoots have 56 

also been observed (Barber, 1979). 57 

The input of organic matter to the soil can be broadly classified into two pools 58 

(van Hees et al., 2005). The first pool is described as the dissolved organic C component 59 

that includes low molecular weight, highly bioavailable compounds such as organic 60 

acids, peptides, amino acids, mono- and oligo-saccharides, amino sugars, phenolics and 61 

siderophores (McKeague et al., 1986). The second pool consists of plant polymers such 62 

as cellulose, hemicellulose, lignin and some proteins, which are relatively resistant to 63 

microbial attack (Kalbitz et al., 2000). These two pools can have vastly different C:N:P 64 

ratios which may subsequently influence their rate of processing and also microbial 65 

carbon use efficiency (CUE; Schmidt et al., 2011). 66 

Numerous studies have described the mineralisation of individual low molecular 67 

weight compounds (Glanville et al., 2012), plant material (Simfukwe et al., 2011) and 68 

have measured the subsequent rates of 14CO2 evolution and/or microbial incorporation. 69 

These studies have enhanced our understanding of the 14C mineralisation process of 70 

single or occasionally combinations of simple C compounds by the microbial 71 
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community. However, plant material consists of vast range of compounds 72 

(Buckingham, 1993) and the mineralisation capacity of microorganisms to act upon 73 

more complex suite of substrates provides a more representative estimate of the 74 

potential for C storage in soil. Therefore, the aim of this study was to assess the 75 

microbial turnover of the soluble and insoluble fractions of above- and below-ground 76 

plant components (root, stem, leaf) from a common shrubland plant to assess their 77 

persistence in the soil under laboratory conditions.  78 

Soil was obtained from the Henfaes experimental station located in 79 

Abergwyngregyn, Gwynedd, North Wales (53°14'N, 4°01'W) UK. The sandy clay loam 80 

textured soil is classified as a Eutric Cambisol (FAO) or Dystric Eutrudepts (US Soil 81 

Taxonomy) (see SM1 and Table S1). Cistus monspeliensis L. plants were grown in a 82 

hydroponic system consisting of 50% strength Long Ashton nutrient solution under 83 

laboratory conditions. Plants were labelled with 14C twice, 3 days apart for 5 h each 84 

time to get sufficient translocation of 14C to all plant components (see SM2). 85 

Immediately after the second labelling, the plant components were separated into 86 

leaves, stem, and roots and air-dried. The dried plant parts were finely ground using a 87 

ball mill and stored in 50 ml polypropylene tubes at 20°C for further analysis. The 88 

distribution of 14C label among soluble and structural fractions of plant material was 89 

determined by performing a sequential chemical extraction. These results were tested 90 

in parallel with unlabelled plants, using an automated fibre analyser (see SM3). The 91 

soluble and insoluble fraction from each of the three plant components were separated 92 

using a hot water extract (see SM4) and amended to field-moist soil contained in 50 cm3 93 

polypropylene tubes. The mineralisation of the 14C-labelled components was studied 94 

for 150 days and values were expressed as a percentage of the initial amount of 14C 95 

applied to the soil (see SM5). Similar extraction process was conducted with unlabelled 96 
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plant components and the soluble fraction from each component was analysed for 97 

distribution of low molecular weight (≤ 300 Da) compounds using MALDI-TOF mass 98 

spectrometry (Bruker Reflex IV) with TiO2 as a matrix.  At the end of the incubation 99 

period, the amount of soluble 14C remaining in the soil either as unaltered plant material 100 

or fixed in the microbial biomass was determined by extracting the soil in 0.5 M K2SO4 101 

(see SM6). A double exponential first order decay model was then fitted to the 102 

experimental data (Glanville et al., 2016). Substrate-C pool distribution within the 103 

microbial community, decay constants, CUE and half-lives (Newton-Raphson iteration 104 

method) (Oburger and Jones, 2009) were calculated (see SM7). The data was analysed 105 

by one-way ANOVA with Post-Hoc least significant difference test using SPSSv20.0 106 

(SPSS Inc., Chicago, IL) using P < 0.05 as an indication of statistical significance.  107 

Following the labelling process, the distribution of 14C into soluble and 108 

structural fractions of the different plant components was broadly similar to the total 109 

amount of unlabelled 12C in each chemical fraction, although the data for stems is not 110 

available (Table S2). This indicates a fairly uniform dilution of the 14C isotope within 111 

the plant. The addition of 14C-labelled soluble and insoluble fractions to soil caused an 112 

initial rapid phase of 14CO2 evolution followed by a secondary slower phase, 113 

irrespective of plant tissue type (Fig. 1). The overall amount of 14C mineralisation in 114 

soils amended with soluble fractions was substantially higher compared to the values 115 

obtained for the insoluble fractions (P < 0.001). This was presumably due to the 116 

presence of more labile low molecular weight compounds in the soluble fractions. 117 

Conversely, insoluble fractions broadly consist of structural polymers which require 118 

enzymatic depolymerisation to promote solubilisation prior to uptake and assimilation 119 

by the microbial community (van Hees et al., 2005). Among the soluble fractions, root-120 

derived 14C showed the fastest mineralisation rate followed by stem and leaf 14C during 121 
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the first hour, presumably because of relatively higher quantities of low molecular 122 

weight compounds which exist in roots (Figs. S1 and S2). After 24 h, the amount of 14C 123 

mineralisation of the root soluble fraction (19.7 ± 0.4%) was substantially higher than 124 

for the stems (8.7 ± 0.3%) and leaves (5.7 ± 0.3%). Similarly, among the insoluble 125 

fractions, the root-derived 14C fraction had the highest initial mineralization rate (0.62 126 

± 0.2%) within 24 h, followed by the stems (0.43 ± 0.02%) and leaves (0.26 ± 0.01%).  127 

However, at the end of 150 days, the pattern had changed with 64.7% ± 2.3, 72.1 ± 128 

7.4%, and 72.4 ± 1.8% of the soluble fraction lost for the root, stem and leaf-derived 129 

14C, respectively. In contrast, for the three insoluble fractions the amount recovered as 130 

14CO2 after 150 d was very similar, being 21.1 ± 0.9%, 19.5 ± 1.6%, and 19.6 ± 1% of 131 

the total 14C added for the root, stem and leaves respectively.  132 

The amount of 14C allocated to the rapid mineralisation pool (a1) and 133 

corresponding decay constant values (k1) were much higher for soluble fractions than 134 

insoluble fractions (Table 1), presumably due to their rapid assimilation by microbial 135 

biomass (Boddy et al., 2007). This is supported by the lack of soluble-14C recovered 136 

from the soil after 150 d (Fig. 2).  The half-life periods calculated from k1 for the 137 

insoluble fractions were 3-5 fold longer than that of the soluble fraction. However, the 138 

k2 values were very low (100-200 times lower than the k1 values) for both soluble and 139 

insoluble fractions and were significantly different. Using the Newton-Raphson 140 

iteration method, the combined half-life period for both pools together (a1+a2) was ca. 141 

9 and 930 d for the soluble and insoluble fractions respectively (Oburger and Jones, 142 

2009). Thus, soluble fractions turnover ca. 40 times annually, whereas insoluble 143 

fractions take ca. 2.5 years to turnover.  144 

It was interesting to note that approximately 20% more soluble C derived from 145 

the aboveground plant components (leaf and stem) was allocated to microbial catabolic 146 
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C pools (pool a1) than soluble C derived from the belowground component (despite 147 

having an initial slower 14C mineralisation rate). Conversely, more root-derived soluble 148 

14C was allocated to anabolic microbial processes (pool a2) thus resulting in a higher 149 

CUE for the below-ground soluble component (Glanville et al., 2016). Hence, microbes 150 

have shown more efficient usage of root soluble 14C compared to leaf and stem which 151 

could be major driver for ecosystem C storage potential (Sinsabaugh et al., 2013). Thus, 152 

we tentatively suggest that C sourced from belowground plant components persists 153 

longer than the above ground plant components in soil. However, overall contributions 154 

can only be calculated once the total flux of each component into the ecosystem is 155 

known. In addition, the amount of C associated with mycorrhizal turnover and root 156 

exudation would be needed to complete the budget. Nevertheless, the results obtained 157 

here highlight the importance of roots in soil C storage especially as plants in most 158 

shrublands heavily invest in belowground biomass in the form of a deeper root system 159 

(Meyer, 2011). Results also support suggestions that increased allocation of C to roots 160 

under elevated atmospheric CO2 may partially mitigate atmospheric CO2 rise by 161 

increasing soil C storage (Madhu and Hatfield, 2013). 162 

In conclusion, this study has clearly demonstrated the faster mineralisation of 163 

soluble fractions compared to the insoluble fractions. Additionally, modelling of the C 164 

pools tentatively suggests the longer persistence of belowground components in soil 165 

relative to shoots and leaves. 166 
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