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Experimental Demonstration of Cross-Channel Interference 

Cancellation for Digital Filter Multiple Access PONs 
 

R.P. Giddings, X. Duan and J.M. Tang 
School of Electronic Engineering, Bangor University, Bangor, LL57 1UT, UK  

 

Abstract: A DSP-based cross-channel interference cancellation technique with initial condition-

free fast convergence is proposed and experimentally demonstrated, for the first time, which 

improves BER performances up to 1000 times after only one iteration in IMDD DFMA-PONs.  
OCIS codes: (060.0060) Fiber optics and optical communications; (060.4230) Multiplexing. 

 

1. Introduction  

A digital filter multiple access (DFMA) technique [1] has been recently proposed to utilise centralized SDN 

controller-managed, dynamic software-reconfigurable, embedded digital orthogonal filters to considerably enhance 

the functionality, flexibility and upgradability of both DSP-based optical transceivers and network operations. 

Furthermore, when combined with optical filter- and E-O-E conversion-free, cost-effective (ROADMs) [2] that 

perform the add/drop operations at wavelength, sub-wavelength and orthogonal sub-band levels, DFMA also has 

great potential for supporting future cloud access networks capable of seamlessly integrating traditional optical 

access networks, metropolitan area optical networks and mobile front-haul/back-haul networks, as, apart from the 

features mentioned above, DFMA also has other salient advantages including [1]: i) Fully supporting the SDN 

solution with the network control further extended to the physical layer; ii) Providing good compatibility with all 

existing networks; iii) Transparent to both underlying transmission technologies and network topologies and iv) 

Enhanced data security. 

In [1], DFMA has been applied in cost-sensitive PON application scenarios, and detailed ONU count-dependent 

performance characteristics of IMDD DFMA-PONs have been numerically explored in terms of maximum 

achievable transmission capacity and system power budget [1]. In addition, a real-time OFDM-based IMDD 

DFMA-PON system has also been experimentally demonstrated over a 25km SSMF link [3]. The aforementioned 

investigations [1,3] have shown that DFMA-PON performance characteristics may be considerably degraded when 

imperfect orthogonality between various information-bearing digital filters occur because of a diversified range of 

nonlinearities associated with signal generation, transmission, channel routing/switching and detection. To address 

such a technical challenge, two general DSP-based techniques may be considered including strong channel 

equalization such as least mean square (LMS)-based equalization [4] and successive interference cancellation [5]. 

However, when applied to DFMA-PONs, these two techniques suffer from a number of significant disadvantages 

outlined below: i) signal modulation format-dependent performance; ii) high DSP complexity which increases with 

higher modulation formats; iii) a large number of iterations required to achieve the performance convergence, and 

iv) high convergence sensitivity to initial conditions.  

In this paper, we propose and experimentally demonstrate, for the first time, a simple but highly effective DSP-

based cross-channel interference cancellation (CCIC) technique, which operates by estimating and subsequently 

cancelling the cross-channel interference (CCI) effect associated with IMDD DFMA-PON systems. The proposed 

CCIC technique is modulation format-independent, has comparatively low DSP complexity, has a fast iteration 

speed and it is completely free from dependence on any initial conditions. The results presented in this paper suggest 

that the CCIC technique can be highly advantageous when applied to IMDD DFMA-PONs.     

2.  CCIC principle 

For simplicity but without losing generality, a two-channel IMDD DFMA-PON system carrying two independent 

information signals is shown in Fig. 1. The system employs a pair of shaping (matching) filters in the transmitter 

(receiver) which form a Hilbert pair to produce channel orthogonality, thus these two signals occupy the same 

spectral region [1]. A full description of the digital orthogonal filter-enabled channel multiplexing/demultiplexing 

principle is given in [6]. As the CCI occurs mainly between two spectrally-overlapped orthogonal channels, the 

considered two-channel system is thus sufficient to evaluate the CCIC technique. In addition, an OFDM signal is 

considered for each channel in Fig.1, the DFMA technique can, however, support arbitrary signal modulation 

formats. The top-level DSP functional blocks illustrated in Fig. 1 includes the proposed CCIC block in the receiver.  

In the CCIC technique applied here we mitigate the linear CCI generated as a consequence of the non-ideal 

physical system frequency response. A channel’s received signal can thus be considered as a linear combination of 

the desired signal and the CCI from its associated orthogonal channel. If an estimate of the linear CCI on a channel  



 

 

  

 
can be determined it can then be subtracted from the channel’s received signal to give an improved estimate of the 

transmitted signal. The CCI signals are functions of the transmitted signal, however as these are clearly not available 

at the receiver, the recovered signals, before signal demodulation, are used as the best estimate of the transmitted 

signals for input to the CCIC function. The first CCIC stage continuously computes the two CCI estimates and 

subtracts these from the suitably delayed received signals, thus generating improved estimates of the transmitted 

signals. Further CCIC stages can then be used to implement successive CCIC iterations to iteratively improve the 

accuracy of the transmitted signal estimates. The internal DSP structure of the evaluated CCIC block is shown in 

Fig. 2(a), which shows two successive CCIC stages, the offline DSP being easily modified to implement either one, 

two or more iterations for evaluating the optimum iteration requirement. The DSP processes that calculate the CCI 

estimates operate by emulating the real processes that generates the actual CCI. For ch1 to ch2 CCI this process 

starts by 2x up-sampling, is followed by 3 distinct filter stages of; transmitter shaping filter s1(t), the entire physical 

channel h(t) and the receiver matching filter m2(t) and ends with 2x down-sampling. Here it is the physical channel 

h(t) that generates the CCI leakage from ch1 (cosine) to ch2 (sine) which cannot be removed by the sine-channel 

selective matched filter on ch2. The interference estimation function for ch1 to ch2 is therefore as shown in Fig. 

2(b). The corresponding ch2 to ch1 interference estimation function is shown in Fig. 2(c).  

3.  Experimental system setup 

 
 

The experimental system setup is shown in Fig.3. The transmitter is implemented in real-time using an FPGA and 

DAC operating at 2GS/s [3]. An IMDD optical link is employed with an EML as an optical intensity modulator, a 

fiber link of 26km SSMF and a direct-detect photodetector consisting of integrated PIN and TIA. The key 

parameters of the OFDM signals on each channel and the optical link are given in Table 1. The receiver is 

implemented with a digital storage oscilloscope (DSO) which captures a sequence of digital samples and applies 

offline DSP using MATLAB. The DSO captures samples at 25GS/s which are resampled to 2GS/s in the first stage 

of the offline DSP. As performance is sensitive to the receiver sampling timing offset, the optimum timing offset is 

determined when resampling from 25 to 2GS/s. The offline DSP then performs all the receiver DSP functions as 

illustrated in Fig. 1 and 2, and is modified appropriately for the desired number of CCIC iterations. All digital filters 

in both the real-time transmitter and offline receiver are implemented as 32-tap FIR filters [3]. 

Fig 1. Two-channel DFMA-PON system carrying OFDM signals on each channel. 

Fig 2. (a) 2 stage Cross-Channel Interference Cancellation function.  Interference estimation functions: (b) Ch1 to Ch2 and (c) Ch2 to Ch1 

Fig 3. Experimental system setup for point-to-point 2 channel system with transmission over 26km SSMF 



Table I 
Parameter Value Parameter Value 

Total number of IFFT/FFT points 32 Oscilloscope sample rate [re-sampled rate] 25GS/s  [2GS/s] 

Data carrying subcarriers 13 per channel# Raw data rate per channel [aggregate] 1.625Gb/s [3.25Gb/s] 

n-th subcarrier frequency n×31.25MHz EML wavelength  / output power 1550nm  / 2.5dBm 

Modulation format on all subcarriers 16-QAM EML laser bias current 125mA 

OFDM symbol rate 25MHz 3-dB EML modulation bandwidth 10GHz 

Cyclic prefix 25% EAM bias voltage / driving voltage -0.7V /  2Vpp 

DAC sample rate 2GS/s PIN detector bandwidth / sensitivity 12.4GHz / -19dBm* 

DAC resolution 8 bits   
          # Subcarriers 1 and 2 are dropped               * Corresponding to 10 Gb/s NRZ data at a BER of 1.0 × 10−9     

4.  Experimental results  

Fig. 4 (a) and (b) show the measured subcarrier BERs versus subcarrier index for channel 1 and channel 2, 

respectively, and their corresponding total channel BERs versus received optical power are also presented in Fig. 5 

(a) and (b). In all these figures, BER performances are plotted for the cases of no CCIC and including the CCIC 

technique with one iteration and two iterations. It is evident that, when no CCIC is applied, the system frequency 

response roll-off of ~11dB [3] results in unacceptably high subcarrier and total channel BERs. To the sharp contrary, 

the BER performances after only one CCIC iteration are seen to be drastically improved by a factor as high as 1000, 

and the transmission system can now meet the typical hard-FEC limit. As a direct result of the proposed CCIC 

technique’s powerfulness, the second CCIC iteration is not necessary, as shown in Fig.4 and Fig.5. This indicates 

that the CCIC technique has a very fast iteration speed. In addition, from these figures it can also be seen that the 

CCIC technique is almost equally effective for various subcarriers experiencing a frequency response roll-off 

difference as large as 11dB, and also is effective for a received optical power variation range as large as 4dB.     

                          

 

        
 

4. Conclusions 

A DSP-based, initial condition-free and fast convergence CCIC technique has been proposed and experimentally 

demonstrated, which is shown to be a highly effective in mitigating the CCI effect. Experimental results have shown 

that one CCIC iteration is capable of improving BER performances by up to 1000 times in IMDD DFMA-PONs. 
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Fig 4. BER vs subcarrier index for transmission over 26km SSMF. (a) Channel 1 (b) Channel 2. 

Blue: Without CCIC, Red: 1st CCIC iteration, Green: 2nd CCIC iteration 

Fig 5. BER vs. received optical power for transmission over 26km SSMF. (a) Channel 1 (b) Channel 2. 

Blue: Without CCIC, Red: 1st CCIC iteration, Green: 2nd CCIC iteration 


