

P
R

IF
Y

S
G

O
L

 B
A

N
G

O
R

 /
 B

A
N

G
O

R
 U

N
IV

E
R

S
IT

Y

A Concept-Drift Perspective on Prototype Selection and Generation

Kuncheva, Ludmila; Gunn, Iain

Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2016)

Published: 29/07/2016

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA):
Kuncheva, L., & Gunn, I. (2016). A Concept-Drift Perspective on Prototype Selection and
Generation. In Proceedings of the International Joint Conference on Neural Networks (IJCNN
2016) (pp. 16-23).

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or
other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal
requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private
study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to
the work immediately and investigate your claim.

 09. Oct. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bangor University Research Portal

https://core.ac.uk/display/186465072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.bangor.ac.uk/portal/en/researchoutputs/a-conceptdrift-perspective-on-prototype-selection-and-generation(0e88769a-d71d-4213-8bcf-749f219819e4).html
https://research.bangor.ac.uk/portal/en/researchers/ludmila-kuncheva(f4065913-f912-4245-b88e-2b17556e8743).html
https://research.bangor.ac.uk/portal/en/researchoutputs/a-conceptdrift-perspective-on-prototype-selection-and-generation(0e88769a-d71d-4213-8bcf-749f219819e4).html
https://research.bangor.ac.uk/portal/en/researchoutputs/a-conceptdrift-perspective-on-prototype-selection-and-generation(0e88769a-d71d-4213-8bcf-749f219819e4).html

A Concept-Drift Perspective on Prototype Selection
and Generation

Ludmila I. Kuncheva
School of Computer Science

Bangor University
Bangor, Gwynedd, UNITED KINGDOM

Email: l.i.kuncheva@bangor.ac.uk

Iain A. D. Gunn
School of Computer Science

Bangor University
Bangor, Gwynedd, UNITED KINGDOM

Email: i.gunn@bangor.ac.uk

Abstract—This study brings together systematised views of two
related areas: data editing for the nearest neighbour classifier and
adaptive learning in the presence of concept drift. The growing
number of studies in the intersection of these areas warrants a
closer look. We revise and update the taxonomies of the two areas
proposed in the literature and argue that they are not sufficiently
discriminative with respect to methods for prototype selection and
prototype generation in the presence of concept drift. We proceed
to create a bespoke taxonomy of these methods and illustrate it
with ten examples from the literature. The new taxonomy can
serve as a road-map for researching the intersection area and
inform the development of new methods.

I. INTRODUCTION

In their book [1], Devroye et al. open the chapter on nearest
neighbour rules with one of the most important messages
in pattern recognition: “Simple rules survive.” Indeed, the
nearest neighbour family of classification methods proposed
in 1951 [2], [3] rival today’s state-of-the-art classifiers in
accuracy and elegance. According to the k-nearest neighbour
classifier, an object x ∈ Rd is assigned to the class most
represented among its k nearest neighbours from a given
reference set S with N objects.1 A notable example is 1-nn,
the nearest neighbour classifier.

Reduction of the computational demands of k-nn without
sacrificing much accuracy is often sought through reducing
the size of the reference set S. Starting with the classical
condensing [4] and editing [5] algorithms, a wealth of data
editing approaches and methods have been proposed and
periodically summarised in insightful surveys [6]–[10].

Recently, there has been development of “online” or “strea-
ming” versions of the nearest neighbour methods. As data
streams by their nature cannot be stored in full, data editing is
implied. Also among the challenges of modern data is its non-
stationary behaviour, termed also “changing environments”,
“concept drift” or “concept shift” [11]. The large body of
literature addressing this challenge has invited a collection of
timely and comprehensive surveys [12]–[14].

The aim of this study is to explore the types of edited
nearest-neighbour classifiers used in the context of concept
drift. We discuss possible classifications of such algorithms

1The terms object, instance, and example will be used interchangeably
throughout this paper.

in terms of existing taxonomies which have been developed,
separately, for prototype methods and for adaptive learning.
While the taxonomic diagrams we give for these two areas
have new layouts, their content and level of detail are largely
drawn from the existing literature. We are interested in mar-
rying the two areas with a view to systematise the methods
for data editing in the presence of concept drift. This will
help explore the possibilities for creating new, more efficient
and accurate methods in this group. To this end, we give a
novel taxonomy showing the lines on which a fusion of the
taxonomic concepts of the two areas might proceed.

The rest of the paper is organised as follows. Section II
builds upon the recent taxonomies of prototype / instance
selection and generation. Learning in the presence of concept
drift is discussed briefly in Section III, highlighting the nearest
neighbour involvement. Section IV presents our new taxonomy
of nearest neighbour methods for data with concept drift,
illustrated with a sample of such methods from past and
recent literature. Our Conclusion section contains remarks
about future developments of the proposed taxonomy.

II. PROTOTYPE/INSTANCE SELECTION AND GENERATION
FOR THE NEAREST NEIGHBOUR CLASSIFIER

Due to its simplicity and accuracy, the k-nearest neighbour
classifier is scored among the top ten algorithms in data
mining [15]. The purpose of editing is to replace the reference
set S with a smaller set of what will be called “prototypes”.
The meaning of “prototype” depends on the approach we
choose for the data editing: prototype selection (instance selec-
tion) [9] or prototype generation2 [10]. In prototype selection,
the reduced set of prototypes, S′ is a subset of S along with the
labels of the objects. In prototype generation, the prototypes
are allowed to be different points in the same space or to
be extended as other structures such as hyper-rectangles or
hyper-ellipses. Prototypes in the original space can be created
by relabelling, merging or re-positioning members of an initial
subset of S or can be obtained as cluster centres.

Although prototype selection and prototype generation are
often treated as separate research areas [9], [10], for the

2Synonyms of prototype generation in the literature are prototype construc-
tion, extraction, reduction and replacement

Data Editing for 1-nn
Prototype
generation

Prototype
selection

Determine a
subset of the
original set

Select and relabel original prototypes

Merge prototypes /select cluster
centroids

Reposition prototypes

Not points in the
original space

Hyper-rectangles (if-then-rules)

Hyper-ellipses

CARDINALITY

DIRECTION

In
cr

em
en

ta
l

D
ec

re
m

en
ta

l

Ba
tc

h

WRAPPER

Classification accuracy

FILTER

On the training set
or on a separate setClassification accuracy

with a penalty for the
number of prototypes

Close to
prototypes
from the
same class.

Misclassified by the
nearest prototype(s)
from the current set

Contributes
to class
coverage

Close to a
classification
boundary

Mode of class-
conditional or
unconditional
distribution

M
ix

ed

Evaluated by a
bespoke
“usefulness”
criterion

Points in the
original space

CRITERION

APPROACH

Fixed

Variable

Geometry/distribution-based Local error-based

Condensing
(competence preservation)

Error-based editing
(competence enhancement)

Hybrid

Fig. 1. A taxonomy of methods for prototype selection and prototype generation. The nodes in boxes show properties that should be specified, and their
values are chosen among the leaves of the respective sub-tree.

purposes of our study, we will join them and look at their
common properties. One overlap between these areas is that in-
stance selection algorithms have been found to be beneficial in
initialising prototype generation algorithms such as LVQ [16].
Both approaches are suitable for dealing with streaming data
and concept drift.

Taking inspiration from the published surveys, Figure 1
offers our view of a possible taxonomy for prototype selection
and generation methods. The nodes in boxes show properties
that should be specified, and their values are chosen among
the leaves of the respective sub-tree. These properties may or
may not prove to be transferable to classification of prototype
selection / generation methods for concept drift.

Our “Direction” and “Criterion” categories correspond to
the “Direction” and “Evaluation” categories of Garcı́a et
al. [9]. “Direction” addresses the question of whether the
prototype set is formed by successive additions to the empty
set, by successive deletions from the whole training data, or
by some mixed process in which the number of prototypes
may vary up or down. A batch method is a deletion-based
method in which each instance is assessed for removal before
any of them is removed. “Criterion” refers to the method
by which the algorithm evaluates a potential prototype set.

Our category “Cardinality” concerns whether the number of
prototypes may take different values, or is an input parameter
of the algorithm [17].3

The “Approach” distinction between generation and se-
lection has already been discussed. The different prototype
generation approaches listed are self-explanatory. The differ-
ent prototype selection approaches listed reflect a traditional
distinction in prototype selection methods between condensing
and editing methods, where “editing” was used in a more
specific sense than is now common. Historically, the two
streams of methods grew respectively out of Hart’s condensing
nearest neighbour and Wilson’s edited nearest neighbour. The
condensing stream aims at producing the smallest possible
reference set whose resubstitution error is zero (called a con-
sistent reference set). This group tends to preserve boundary
objects. The editing group evolved on the philosophy that the
boundary objects may contain noise and keeping them may
do more harm than good; broadly speaking, these methods
work by removing points which are misclassified according to
their neighbours. Soon it was established that neither group

3In [9] a fixed number of prototypes was considered to be a possibility in
the “Direction” category, “Fixed” methods being assumed to be a subset of
“Mixed” methods.

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Te
st

in
g

er
ro

r

Proportion retained

Batch
Decremental
Incremental
Mixed
1−nn

(a) Methods labelled according to the “Direction” category.

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Te
st

in
g

er
ro

r

Proportion retained

Filter
Wrapper
1−nn

(b) Methods labelled according to the “Criterion” category.

Fig. 2. Scatterplots of 42 prototype selection methods, showing experimental results from [9]. Each point is the average across 39 data sets. The mixed
strategy, associated with the wrapper criterion, is better than the incremental, decremental, or batch strategies, associated with filter methods.

alone was successful enough, and the hybrid methods came
into focus. We have retained this traditional distinction among
prototype selection methods in Figure 1, although we believe
the distinction is less useful for modern algorithms, especially
for the case of streaming data subject to concept drift.

As an example of how this taxonomy works, consider Wil-
son’s method (sometimes called the Edited Nearest Neighbour
algorithm [7]). First, a leave-one-out k-nn (usually k = 3)
is run on the whole set S and the misclassified objects are
marked for deletion. The marked objects are removed, and
the remaining ones are returned as the reduced reference set
S′.

The representation of Wilson’s method within the proposed
taxonomy is as follows:

• APPROACH: Prototype selection; Editing
• CARDINALITY: Variable (The number of prototypes is an
output parameter)
• DIRECTION: Batch (Objects removed simultaneously)
• CRITERION: Filter; Remove misclassified

Of course, there are aspects of prototype selection / genera-
tion which are left out of this taxonomy. Examples of these as-
pects are whether the methods have been biologically inspired
(genetic algorithms [18]–[20], immune-based algorithms [21],
ant colonies [22]), combined with feature selection [23]–[26]
addressing the scalability of the problem [27]–[29] or striving
for interpretability [30].

We will now evaluate the relative merit of some of the
categories for the prototype selection approach using the
comparative experiments on a large collection of data sets
reported by Garcı́a et al. [9]. Figure 2a demonstrates the
advantage of the mixed strategy in the “Direction” category
over incremental, decremental and batch strategies. The figure
shows a scatterplot of 42 prototype selection methods. Each
point is the average over 39 small data sets (number of points
less than 2000), which were partitioned using the ten-fold
cross-validation procedure [9]. The testing classification error
is plotted against the prototype retention rate. The closer to the

bottom left corner of the plot, the better the method. Similarly,
the plot in Figure 2b shows the advantage of wrapper over filter
methods. Of course, this advantage comes at a computational
price.

We plot only the small-data-set results from [9] because
selecting from a small set will be a typical task when prototype
selection is used for streaming data in the presence of concept
drift: the prototype set will have to be selected from a small
window of data after a distribution change has been detected.
Indeed, the very purpose of writing a streaming algorithm is
to avoid applying the offline algorithm to a large data set.

III. LEARNING IN THE PRESENCE OF CONCEPT DRIFT

Consider streaming data such that:
• One data point x ∈ Rd is received at time t.
• The class label of the point is not available at time t. The

point is labelled by the classifier.
• The true label is revealed.

Receiving a batch of N points X ⊂ Rd at time t is an
extension of this model where the time interval is set in such a
way that the labels of the incoming points are only available at
time t+N , after the N points in the batch have been labelled.

“Concept drift” is the generally accepted term for change in
the probability distributions related to the problem. Sometimes
this change includes appearance of new classes and collapsing
of old ones. We are interested in concept drift to the extent
that it affects adversely the performance of the classifier and
requires action. Therefore, the occasional outlier or a short
abnormal event should be treated as noise and ignored.

Concept drift is sometimes described as either “real” or
“virtual”. Real concept drift is a change in the posterior prob-
ability distributions p(y|x), where y is the class label variable.
Such change comes about when the labelling of the data
changes while the underlying unconditional distribution p(x)
remains the same. An example is a change in user’s preference.
Suppose that the classifier is filtering spam from non-spam e-
mail for a user called Bob. At some time moment Bob decides

Delete oldest objects

Fixed size

MEMORY

Change detection

Variable size

Delete irrelevant objects

Delete by a decay function
(time and relevance)

ADAPTATION
STRATEGY

Evolving
(Passive

approach)

Triggered
by change

(Active
approach)

MODEL
MANAGEMENT

Single
classifier

Ensemble

Other

ADAPTIVE LEARNING
Window-based

Forgetting-
based

Delete poorly-
performing objects

Delete a random sample

Performance
-based

Time
-based

DATA
MANAGEMENT

WindowSingle
point

Fig. 3. A taxonomy of methods for adaptive learning. The nodes in boxes show properties that should be specified, and their values are chosen among the
leaves of the respective sub-tree. The Change Detection box is included to represent a potentially large taxonomy of its own.

to buy a house, and with this, his e-mail preferences change
towards receiving more news and ads about the house market.
The e-mail flow distribution (p(x)) does not change but the
posterior probabilities do. A message, say z, about a new house
in Bob’s preferred location and price region would have had
a large value of P (y = spam|z) before but should have a
small value now. Virtual concept drift, on the other hand, is
a change in p(x), which will likely lead to change in p(y|x)
anyway. The type of concept drift informs the choice of a
change detection method.

Figure 3 shows a taxonomy of the adaptive learning methods
drawing upon the taxonomies and mind maps in older and
more recent surveys [12]–[14], [31].

The two adaptation strategies are “Evolving” (passive) and
“Triggered by change” (active). According to the evolving
strategy, the classifier is constantly updated regardless of
whether or not concept drift is present. This strategy will
eventually adapt the classifier to the new distribution but
the process may not be efficient. In the active approach, the
classifier is kept unchanged until a change has been detected,
upon which a retraining procedure is carried out. Combinations
of the two approaches have been explored as well [32].

The “Model management” category distinguishes between
single and ensemble classifiers and “Data Management” di-
vides the approaches into Single Examples and Windows,
according to whether only the most recent point or a sliding
window of the most recent points is available for learning [12].
Single-example Data Management is “online learning”, in
which only the most recent data point is available for learning.

In the data-editing taxonomy, Figure 1, most of the real
diversity between algorithmic approaches fell under the single
category of “Filter”, and there is a similar problem with
this adaptive-learning taxonomy: the variety of the adaptive
learning methods is mostly owed to the “Memory” category.

We should note that the forgetting-based alternatives are not
mutually exclusive.

As an example, consider the simple (impractical as it may
be) instance-based learning algorithm IB2 [33]. An incoming
object at time t is classified first, and then added to the
reference set if the reference set misclassifies it, before time
t + 1. According to our taxonomy, the description of this
method is as follows:
• ADAPTATION STRATEGY: Evolving (Passive approach)
• MODEL MANAGEMENT: Single classifier (1-nn)
• DATA MANAGEMENT: Window
• MEMORY.Window-based: Variable size.
The evident redundancy in describing both the Data man-

agement and Memory techniques as a “Window” indicates an
area where the existing taxonomy might be improved for use
with nearest-neighbour classifiers: for lazy learners, there is
no distinction between “Memory” and “Data management” in
the sense which the current taxonomy uses.

IV. PROTOTYPE SELECTION AND GENERATION FOR
STREAMING DATA WITH CONCEPT DRIFT

Most of the established data editing methods do not ad-
dress explicitly the problem of streaming data or streaming
data and concept drift. “Streaming” implies that the data
being received cannot be stored indefinitely. This requires that
nearest neighbour methods for streaming data are necessarily
data editing methods. Time-consuming iterative algorithms for
prototype selection may be too computationally expensive for
the streaming case.

This section reviews some existing editing k-nn methods for
streaming data. We consider this to be a collection of example
approaches and methods, and do not claim a comprehensive
coverage of the area. We will argue that the two taxonomies in
Figures 1 and 3 do not offer sufficient fidelity to discriminate

TABLE I
PROTOTYPE SELECTION METHODS FOR STREAMING DATA WITH CONCEPT DRIFT

Method name and reference Data editing Adaptive Learning
Instance-Based Learning Approach: Prototype selection; Hybrid Adaptation strategy: Evolving

IB3 [33] Cardinality: Variable Model management: Single classifier
Direction: Mixed Data management: Single point
Criterion: Filter; Usefulness Memory.Forgetting: Delete poorly-predicting objects

Instance-Based Learning Approach: Prototype selection; Editing Adaptation strategy: Mixed∗

on Data Streams Cardinality: Variable Model management: Single classifier
INL-DS [34] Direction: Mixed Data management: Single point

Criterion: Filter; Usefulness Memory.Forgetting: Delete old/poorly-predicting/sample

IBLStreams [35] Approach: Prototype selection; Editing Adaptation strategy: Mixed∗

Cardinality: Variable Model management: Single classifier
Direction: Mixed Data management: Single point
Criterion: Filter: Usefulness Memory.Forgetting: Delete old/poorly-predicting/sample

COMPOSE [36] Approach: Prototype selection; Editing Adaptation strategy: Evolving
Cardinality: Variable Model management: Single classifier
Direction: Mixed Data management: Single point
Criterion: Filter; Close to same class Memory.Forgetting: Delete objects far from class centres

Prediction Error Approach: Prototype selection; Hybrid Adaptation strategy: Evolving
Context Switching Cardinality: Variable Model management: Single classifier

PECS [37] Direction: Mixed Data management: Single point
Criterion: Filter; Usefulness Memory.Forgetting: Delete poorly-predicting objects

SyncStream [38] Approach: Mixed selection and generation Adaptation strategy: Mixed∗

Cardinality: Variable Model management: Single classifier
Direction: Mixed Data management: Window
Criterion: Filter; Usefulness Memory: old concepts deleted; poorly-predicting objects deleted

Adaptive NN Classification Approach: Prototype generation Adaptation strategy: Evolving
Algorithm for Data-streams Cardinality: Fixed Model management: Ensemble

ANNCAD [39] Criterion: N/A (prototype locations fixed) Data management: Single point
Memory.Forgetting: Decay function

Learning Vector Quantization Approach: Prototype generation Adaptation strategy: Evolving
LVQ [40] Cardinality: Fixed Model management: Single classifier

Criterion: N/A Data management: Single point
Memory: N/A

Email Classification Approach: Prototype selection; Hybrid Adaptation strategy: Evolving
Using Examples Cardinality: Variable Model management: Single classifier

ECUE [41] Direction: Mixed Data management: Single point
Criterion: Filter; Usefulness Memory.Forgetting: Delete poorly-performing and irrelevant

SpamHunting [42] Approach: Prototype selection; Hybrid Adaptation strategy: Evolving
Cardinality: Fixed or Variable Model management: Single classifier
Direction: Mixed Data management: Single point
Criterion: Filter; Oldest removed Memory.Window: Fixed or Variable

Algorithm of Lu et al. Approach: Prototype selection; Hybrid Adaptation strategy: Mixed∗

[32] Cardinality: Variable Model management: Single classifier
Direction: Mixed Data management: Single point
Criterion: Filter; Usefulness Memory.Forgetting: Other

Notes

∗ Evolving and change-detection based

between the prototype methods for adaptive learning, and
hence propose a new taxonomy.

Historically, Aha et al.’s Instance-Based Learning Algorithm
IB3 was the first prototype selection technique capable of
handling concept drift [33]. At nearly the same time, Kohonen
developed the Learning Vector Quantization technique [40], a
seminal example of prototype generation.

ANNCAD [39] is not presented as a prototype method, but
the approach of discretising the feature space is equivalent to
using the centre of each hyper-rectangular cell of the discreti-
sation as a generated prototype. Note, though, that ANNCAD
does not perform a true nearest-neighbour classification: to
reduce computational demands, only those neighbours are
queried which are also nearby branches in the tree structure
which describes the various resolutions of the discretisation.

PECS [37] takes a similar approach to IB3. The main
differences, apart from the statistical methods, are that PECS
immediately includes all new examples in the prototype set,
and that it never truly deletes examples, only inactivates them
(PECS is therefore not strictly a streaming algorithm, although
it can handle concept drift).

More recent approaches, especially those from the “Case-
Based Reasoning” community [41], [42], [32], but also others
such as COMPOSE [36], have been presented in the form of
“systems” or “frameworks” rather than algorithms, posing a
further challenge to taxonomic studies.

Table I shows our collection of data editing methods suit-
able for streaming data with concept drift along with their
classification according to the two proposed taxonomies. This
table shows a great deal of repetition from the description of
one algorithm to another. We argue this is indicative that the
current taxonomies – for general prototype methods on the
one hand, and general adaptive learning methods on the other
hand – are inadequate to categorise the emerging family of
prototype methods for adaptive learning.

There are some a priori reasons why this might be so.
For example, an algorithm for incremental data editing for
static data, which takes a strictly decremental or incremental
direction when forming its prototype set, cannot be applied
without modification to streaming data; the set would tend
either towards emptiness or to unbounded growth. So we see
that all entries in table I either have “mixed” direction, or
a prototype set of fixed cardinality. Similarly, the “wrapper”
criterion for evaluating a prototype set is impossible for the
streaming case, since it requires the evaluation of the entire
training set [9]. So all algorithms in the table for which
prototypes are evaluated use some method which must, in the
existing taxonomy, be unhelpfully described as a “filter” in
every case.

In a future taxonomy, it would be most desirable for meth-
ods with variable-cardinality prototype sets to have a more
nuanced description of how this set is evolved. In particular,
for the streaming case, there are likely to be different rules
for adding new prototypes to the set and removing old ones
from it. Some algorithms might add all new examples to
the set to start with, while others might only add those

misclassified by the existing set. Prototypes are often removed
on the grounds of poor predictive performance. This is a very
different perspective from the non-streaming case, where the
issue was thought of as an evaluation of a potential prototype
set, not as how best to incrementally evolve such a set.

This issue of describing the evolution of the prototype set
gives rise to an equivalent problem in the “Adaptive Learning”
taxonomy. Few algorithms are so naı̈ve as to use a simple
window for their adaptation; table I therefore lists many
algorithms as having a “forgetting mechanism”; but it is the
distinctions between these mechanisms which are needed to
describe the prototype methods.

Based on these lines of thinking, our suggestion towards the
development of a taxonomy for prototype methods for adaptive
learning is shown in Figure 4.

In this taxonomy, we have removed the explicit “Cardinal-
ity” attribute, because we find that algorithms based on proto-
type selection strongly tend to have variable cardinality. From
the sub-categories of the “Variable” cardinality in Figure 1,
only “Mixed” is suitable for streaming data editing because
the prototype set cardinality must be kept bounded while the
set is updated indefinitely.

The “Data Management” category in the adaptive learning
taxonomy made a distinction between the availability of a
single data point and a sliding window of such points. As
this is not useful for lazy learners, this category has been re-
purposed in the new taxonomy to make a distinction between
algorithms which operate in a truly online manner on a single
new data point at a time, and those for which the data stream
is regarded as arriving in batches. This latter distinction is
separate from the issue of which prototypes are “remembered”
and for how long, unlike the former distinction.

The “Adaptation strategy” question from the Adaptive
Learning taxonomy has been rephrased as a question of
“Change detection”. This is because a prototype method
which continues to evolve its prototype set in response to an
incoming data stream must thereby necessarily adapt passively
to any concept drift in the stream. This is the reason for all
the “mixed” adaptation strategies in table I: the distinction
between passive and active change adaptation is a false di-
chotomy in the case of prototype methods.

The Condensing/Error-Editing distinction, which is a his-
torical feature of the prototype selection methods, is also less
important for the case of streaming data. Hybrid methods
overshadow both individual categories. For the offline case,
such hybrid methods were often the result of applying a
wrapper approach where the overall accuracy of the classifier
guides the construction of the prototype set. In the context
of streaming data, the wrapper approach would be time-
consuming and applicable only to batches of data. This has
invited two-stage approaches which are explicitly composed of
an error-editing stage first (called also “competence enhance-
ment”) followed by a condensing stage (called also “compe-
tence preservation”) [32], [41]. Both stages use filter criteria.
In our taxonomy, we do not distinguish explicitly between
condensing/editing and hybrid methods. Instead, we consider

DATA
MANAGEMENT

Online

PROTOTYPE METHODS FOR
ADAPTIVE LEARNING

CHANGE DETECTION

Yes
Updates upon

change
(active

approach) Prototype
generation

Prototype
selection

APPROACH

PROTOTYPE
ADDITION

PROTOTYPE
REMOVAL

No
Evolutionary

updates
(passive

approach)

1. Add all new
examples

2. Add if misclassified
by the existing set

1. Delete poorly predicting
prototypes (low competence)

3. Delete a random sample

2. Reposition1. Relabel

2. Delete oldest prototypes

4. Delete by a geometric
criterion

Batch

3. Add by a
competence criterion

CLASSIFIER
Single

Ensemble

3. Merge/select
cluster centres

Fig. 4. A taxonomy of prototype methods for adaptive learning. The nodes in boxes show properties that should be specified, and their values are chosen
among the leaves of the respective sub-tree.

specific mechanisms by which individual prototypes might be
added to, removed from, or evolved within the prototype set.
We believe this is a more natural way of considering the
composition of the prototype set, given that in the streaming
case the prototype set must continue to be evolved indefinitely.
We believe also that the “Prototype addition” and “Prototype
removal” categories offer great adaptability for new methods: a
wealth of future algorithms might be described by appropriate
new labels in these categories.

Table II shows proposed classification under the new tax-
onomy of the methods presented in Table I. Compared with
table I, much less repetition between descriptions of algorithms
is seen in table II. The only instance of strong repetition is
between the descriptions of INL-DS and IBLStreams, which
are genuinely very closely-related algorithms. This may indi-
cate that our proposed taxonomy discriminates better among
these algorithms than the existing alternatives.

V. CONCLUSION

Key aspects of the existing taxonomies are inadequate to
describe nearest-neighbour algorithms for streaming data sub-
ject to concept drift. In particular, the old distinctions between
editing/condensing/hybrid prototype-selection methods, and
between wrapper or filter evaluation mechanisms, are clearly
unsuitable for streaming algorithms and must be replaced. The
same holds for the incremental/decremental/mixed/batch cat-
egorisation of data editing methods. Only the mixed strategy
(containing both incremental and decremental parts) is suitable
for streaming data. On the other hand, the adaptive learning
field is not specifically focused on prototype methods. There-

TABLE II
PROTOTYPE SELECTION METHODS FOR STREAMING DATA WITH CONCEPT

DRIFT REPRESENTED WITHIN THE TAXONOMY IN FIGURE 4.

Approach Data

Method Change PG PS manage- Classifier

detection + − ment

IB3 N 2 1 O S

INL-DS Y 1 1, 3 O S

IBLStreams Y 1 1, 3 O S

COMPOSE N 1 4 B S

PECS N 1 1 O S

SyncStream Y 3 1 1 O S

ANNCAD N 1 O E

LVQ N 2 O S

ECUE N 3 1 B S

SpamHunting N 1 2 O S

Lu et al. Y 3 1 B S

Notes:
PG : Prototype generation: (1) Relabel; (2) Reposition; (3) Merge or select
cluster centres.
PS (+) : Prototype selection (Prototype Addition): (1) Add all; (2) Add
misclassified; (3) Add by a competence criterion.
PS (−) : Prototype selection (Prototype Removal): (1) Delete poorly predict-
ing; (2) Delete oldest; (3) Delete a random sample; (4) Delete by a geometric
criterion.
O/B : Online / Batch
S/E : Single classifier / Ensemble

fore, taking inspiration from both fields, we have proposed
a taxonomy which can describe the mechanisms by which
prototype sets are evolved in streaming algorithms.

Future work includes carrying out a comprehensive review
of the existing data editing methods for streaming data, and
refining the taxonomy accordingly. An experimental evaluation
on simulated and real data with different types of concept drift
may shed light on the relative merits of the different categories
and approaches.

ACKNOWLEDGMENT

This work was done under project PR-2015-188 funded by
The Leverhulme Trust, UK.

REFERENCES

[1] L. Devroye, L. Györfi, and G. Lugosi, A probabilistic theory of pattern
recognition. New York: Springer-Verlag, 1996.

[2] E. Fix and J. L. Hodges Jr, “Discriminatory analysis-nonparametric
discrimination: consistency properties,” DTIC Document, Tech. Rep.,
1951.

[3] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,”
Information Theory, IEEE Transactions on, vol. 13, no. 1, pp. 21–27,
1967.

[4] P. Hart, “The condensed nearest neighbor rule,” IEEE Transactions on
Information Theory, vol. 16, pp. 515–516, 1968.

[5] D. Wilson, “Asymptotic properties of nearest neighbor rules using edited
data,” IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-
2, pp. 408–421, 1972.

[6] B. V. Dasarathy, Nearest Neighbor (NN) Norms: NN Pattern Classifi-
cation Techniques. Los Alamitos, California: IEEE Computer Society
Press, 1990.

[7] D. R. Wilson and T. R. Martinez, “Reduction techniques for instance-
based learning algorithms,” Machine learning, vol. 38, no. 3, pp. 257–
286, 2000.

[8] H. Brighton and C. Mellish, “Advances in instance selection for instance-
based learning algorithms,” Data mining and knowledge discovery,
vol. 6, no. 2, pp. 153–172, 2002.

[9] S. Garcia, J. Derrac, J. R. Cano, and F. Herrera, “Prototype selection for
nearest neighbor classification: Taxonomy and empirical study,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 34, no. 3,
pp. 417–435, 2012.

[10] I. Triguero, J. Derrac, S. Garcia, and F. Herrera, “A taxonomy and experi-
mental study on prototype generation for nearest neighbor classification,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 42, no. 1, pp. 86–100, 2012.

[11] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodrı́guez, N. V. Chawla, and
F. Herrera, “A unifying view on dataset shift in classification,” Pattern
Recognition, vol. 45, no. 1, pp. 521–530, 2012.

[12] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 44, 2014.

[13] G. Ditzler, M. Roveri, C. Alippi, and R. Polikar, “Learning in non-
stationary environments: A survey,” IEEE Computational Intelligence
Magazine, vol. 10, no. 4, pp. 12–25, 2015.

[14] I. Žliobaitė, “Learning under concept drift: an overview,” arXiv preprint
arXiv:1010.4784, 2010.

[15] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge
and Information Systems, vol. 14, no. 1, pp. 1–37, 2008.

[16] F. J. Ferri, “Combining adaptive vector quantization and prototype selec-
tion techniques to improve nearest neighbour classifiers,” Kybernetika,
vol. 34, no. 4, pp. 405–410, 1998.

[17] S. Ferrandiz and M. Boullé, “Bayesian instance selection for the nearest
neighbor rule,” Machine learning, vol. 81, no. 3, pp. 229–256, 2010.

[18] J. R. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms
as instance selection for data reduction in kdd: an experimental study,”
Evolutionary Computation, IEEE Transactions on, vol. 7, no. 6, pp.
561–575, 2003.

[19] Z.-Y. Chen, C.-F. Tsai, W. Eberle, W.-C. Lin, and S.-W. Ke, “Instance
selection by genetic-based biological algorithm,” Soft Computing, pp.
1–14, 2015.

[20] T. Nakashima and H. Ishibuchi, “Ga-based approaches for finding the
minimum reference set for nearest neighbor classification,” in Evo-
lutionary Computation Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE International Conference
on. IEEE, 1998, pp. 709–714.

[21] G. P. Figueredo, N. F. F. Ebecken, D. A. Augusto, and H. J. Barbosa,
“An immune-inspired instance selection mechanism for supervised clas-
sification,” Memetic Computing, vol. 4, no. 2, pp. 135–147, 2012.

[22] A. Miloud-Aouidate and A. R. Baba-Ali, “Ant colony prototype re-
duction algorithm for knn classification,” in Computational Science
and Engineering (CSE), 2012 IEEE 15th International Conference on.
IEEE, 2012, pp. 289–294.

[23] L. Kuncheva, “Editing for the k-nearest neighbors rule by a genetic
algorithm,” vol. 16, pp. 809–814, 1995.

[24] J. Derrac, I. Triguero, S. Garcı́a, and F. Herrera, “Integrating instance
selection, instance weighting, and feature weighting for nearest neighbor
classifiers by coevolutionary algorithms,” Systems, Man, and Cybernet-
ics, Part B: Cybernetics, IEEE Transactions on, vol. 42, no. 5, pp. 1383–
1397, 2012.

[25] C.-F. Tsai, W. Eberle, and C.-Y. Chu, “Genetic algorithms in feature
and instance selection,” Knowledge-Based Systems, vol. 39, pp. 240–
247, 2013.

[26] N. Garcı́a-Pedrajas, A. de Haro-Garcı́a, and J. Pérez-Rodrı́guez, “A
scalable approach to simultaneous evolutionary instance and feature
selection,” Information Sciences, vol. 228, pp. 150–174, 2013.

[27] I. Triguero, D. Peralta, J. Bacardit, S. Garcı́a, and F. Herrera, “Mrpr: A
mapreduce solution for prototype reduction in big data classification,”
Neurocomputing, vol. 150, pp. 331–345, 2015.

[28] J. Calvo-Zaragoza, J. J. Valero-Mas, and J. R. Rico-Juan, “Improving
knn multi-label classification in prototype selection scenarios using class
proposals,” Pattern Recognition, vol. 48, no. 5, pp. 1608–1622, 2015.

[29] A. de Haro-Garcı́a and N. Garcı́a-Pedrajas, “A divide-and-conquer
recursive approach for scaling up instance selection algorithms,” Data
Mining and Knowledge Discovery, vol. 18, no. 3, pp. 392–418, 2009.

[30] J. Bien and R. Tibshirani, “Prototype selection for interpretable classi-
fication,” The Annals of Applied Statistics, pp. 2403–2424, 2011.

[31] M. Maloof and R. Michalski, “Incremental learning with partial instance
memory,” Artificial intelligence, vol. 154, no. 1, pp. 95–126, 2004.

[32] N. Lu, J. Lu, G. Zhang, and R. L. de Mantaras, “A concept drift-tolerant
case-base editing technique,” Artificial Intelligence, vol. 230, pp. 108–
133, 2016.

[33] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning
algorithms,” Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[34] J. Beringer and E. Hüllermeier, “Efficient instance-based learning on
data streams,” Intelligent Data Analysis, vol. 11, no. 6, pp. 627–650,
2007.

[35] A. Shaker and E. Hüllermeier, “IBLStreams: a system for instance-based
classification and regression on data streams,” Evolving Systems, vol. 3,
no. 4, pp. 235–249, 2012.

[36] K. B. Dyer, R. Capo, and R. Polikar, “COMPOSE: A semisupervised
learning framework for initially labeled nonstationary streaming data,”
Neural Networks and Learning Systems, IEEE Transactions on, vol. 25,
no. 1, pp. 12–26, 2014.

[37] M. Salganicoff, “Tolerating concept and sampling shift in lazy learning
using prediction error context switching,” Artificial Intelligence Review,
vol. 11, no. 1-5, pp. 133–155, 1997.

[38] J. Shao, Z. Ahmadi, and S. Kramer, “Prototype-based learning on
concept-drifting data streams,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2014, pp. 412–421.

[39] Y.-N. Law and C. Zaniolo, “An adaptive nearest neighbor classification
algorithm for data streams,” in Knowledge Discovery in Databases:
PKDD 2005. Springer, 2005, pp. 108–120.

[40] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[41] S. J. Delany, P. Cunningham, A. Tsymbal, and L. Coyle, “A case-based
technique for tracking concept drift in spam filtering,” vol. 18, pp. 187–
195, 2005.

[42] F. Fdez-Riverola, E. Iglesias, F. Dı́az, J. Méndez, and J. Corchado,
“Applying lazy learning algorithms to tackle concept drift in spam
filtering,” Expert Systems with Applications, vol. 33, pp. 36–48, 2007.

