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Summary 12 

This study investigated the effects of long-term incubation to near-future combined warming 13 

(+2 °C) and ocean acidification (-0.3 and -0.5 pH units) stressors, relative to current 14 

conditions (-0.3 °C and pH 8.0), on the energetics of food processing in the Antarctic sea 15 

urchin, Sterechinus neumayeri. After an extended incubation of 40 months, energy absorbed, 16 

energy lost through respiration and lost as waste were monitored through two feeding cycles. 17 

Growth parameters (mass of somatic and gonad tissues and the CHN content of gonad) were 18 

also measured. There were no significant effects of combined ocean acidification (OA) and 19 

temperature stressors on the growth of somatic or reproductive tissue. Despite more food 20 

being consumed in the low temperature control, once food processing and maintenance costs 21 

were subtracted, there were no significant effects of treatment on the scope for growth. The 22 

biggest significant differences were between food consumed during the two feeding cycles. 23 

More food was consumed by the low temperature (0°C) control animals, indicating a 24 

potential effect of the changed conditions on digestive efficiency. Also in November, more 25 

food was consumed, with a higher absorption efficiency which resulted in a higher scope for 26 

growth in November than September, which may reflect increased energetic needs associated 27 

with a switch to summer physiology. The effect of endogenous seasonal cycles and 28 

environmental variability on organism capacity is discussed. 29 

 30 

Key-words carbonate saturation; climate change; echinoderm; energetics; ocean 31 

acidification; physiology; resilience 32 

 33 
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Introduction 34 

To predict future patterns of biodiversity it is essential to understand the mechanisms that will 35 

determine organism vulnerability. Of the physical factors affecting ectotherms, temperature is 36 

one of the most extensively studied and global patterns of thermal tolerance have improved 37 

our understanding of how environment correlates with physiological capacities (Gaston et al. 38 

2009; Sunday, Bates & Dulvy 2011; Peck et al. 2014). Warming oceans increase the body 39 

temperature of marine ectotherms, which alters the rates of all organism biochemical 40 

reactions (Hochachka & Somero 2002). The vulnerability of organisms to warming therefore 41 

depends on the characteristics of their thermal tolerance windows and both their 42 

physiological plasticity and adaptive capacity to alter these windows (Angilletta 2009; 43 

Somero 2012). Whilst the distributions of many marine species are shifting in response to the 44 

rate of environmental warming (Appelhans et al. 2014), the effects of temperature do not 45 

work in isolation. Within the marine environment the interacting effects of increasing 46 

temperature and ocean acidification are predicted to be two of the key factors driving range 47 

shifts (Pörtner 2012). 48 

 49 

Ocean acidification is likely to have wide ranging effects on marine invertebrates, 50 

particularly those with calcified skeletons. The absorption of anthropogenic carbon dioxide 51 

into shallow seas is leading to a reduction in carbonate mineral saturation states, particularly 52 

aragonite (McNeil & Matear 2008; Fabry et al. 2009). This could either result in altered 53 

skeletal structure (Bray, Pancucci-Papadopulou & Hall-Spencer 2014), potentially altering 54 

predator prey interactions (Watson et al. 2012), or, if skeletal structure is maintained, the 55 

costs of producing skeleton may increase (Wood, Spicer & Widdicombe 2008). Ocean 56 

acidification may also alter the balance of metabolic costs, as extra energy is required to 57 
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maintain the homeostasis of inner body fluids against hypercapnia (internal CO2) and acidosis 58 

(reduction of internal pH; Wood 1993; Pörtner, Bock & Reipschlager 2000; Melzner et al. 59 

2009; Spicer et al. 2011). However, more subtle changes have been identified, which would 60 

not necessarily be predicted by the effects of calcium ion concentration on skeletal structure, 61 

such as the ability to detect prey, aerobic scope and behaviour (Munday, Crawley & Nilsson 62 

2009; Munday et al. 2009; Dixson, Munday & Jones 2010). 63 

 64 

The shallow seas around the Antarctic Peninsula have one of the least variable thermal 65 

regimes on the planet, with a 3-4 °C annual sea surface temperature range (Peck, Convey & 66 

Barnes 2006). Consequently, many Antarctic marine species are stenothermal, with generally 67 

poor capacities to cope with elevated temperatures (Pörtner, Peck & Somero 2007). 68 

Acclimation is known to take longer in Antarctic marine invertebrates (Morley et al. 2011; 69 

Peck et al. 2014) and their slow generation times and lower fecundity are expected to reduce 70 

the capacity for adaptive change (Somero 2010; Peck 2011; Peck et al. 2014). Carbon dioxide 71 

is more soluble in cold waters (Guinotte & Fabry 2008) and so high latitude oceans are also 72 

expected to be amongst the first to become under-saturated with respect to calcite and 73 

aragonite (McNeil & Matear 2008). The effects of temperature and ocean acidification are 74 

therefore expected to have greater effects on Polar shallow water communities than at lower 75 

latitudes (Hofmann et al. 2010). Recent studies have, however, shown that aragonite 76 

saturation state varies markedly, between 0.8 and 3.9 off the Western Antarctic Peninsula 77 

(WAP; Bjork et al. 2014; Collard et al. 2015). This high natural variability may result in 78 

species from the WAP having the physiological capacity to cope with variation in carbonate 79 

saturation state. 80 

 81 
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The Antarctic sea urchin, Sterechinus neumayeri, is an important component of shallow water 82 

ecosystems throughout the Southern Ocean (Fabry et al. 2009). S. neumayeri are omnivorous, 83 

benthic pioneer species, occurring in high densities in recent iceberg scours, where a large 84 

portion of their diet comes from scavenging on dead organisms. Any major effect of future 85 

conditions on this keystone species could lead to dramatic shifts in Antarctic benthic food 86 

webs. Due to the high Magnesium calcite composition of echinoid skeletons they are a 87 

taxonomic group which was predicted to be particularly susceptible to the effects of ocean 88 

acidification (Sewell & Hofmann 2011), although recent studies have shown that some 89 

echinoids are quite resilient (Wittmann & Pörtner 2013; Collard et al. 2015; Suckling et al. 90 

2015). Studies are therefore required to determine the capacity of S. neumayeri to future 91 

temperature and ocean acidification allowing predictions to estimate their future role as a 92 

key-stone species in shallow Southern Ocean. In our previous investigations of the same S. 93 

neumayeri used in this current study, whilst reproduction and larval development were 94 

partially acclimated, adult somatic, skeletal growth and reproduction were fully acclimated to 95 

altered conditions after 8 months (Suckling et al. 2015). In our previous study, S. neumayeri 96 

were fed ad libitum and food consumption was not recorded (Suckling et al. 2015). The aim 97 

of the current project was therefore to determine if there were subtle changes in the energetics 98 

of the same adult Antarctic urchins, Sterechinus neumayeri, after a further 16 months 99 

incubation (40 months in total) to a combination of elevated temperature and pCO2 100 

treatments, which would not have been detected using techniques in our previous study 101 

(Suckling et al. 2015). Specifically, food consumption and the energetic costs of maintenance 102 

and food processing were investigated to examine if acclimation to predicted future 103 

conditions resulted in any changes in the energy budget, which could influence the scope for 104 

growth and long-term resilience to altered environmental conditions. 105 

 106 
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Material and methods 107 

Animal collection and incubation 108 

 109 

Adult Sterechinus neumayeri were collected by SCUBA divers in the austral summer of 110 

2008-2009 from 5-10 m depth at South Cove, Ryder Bay, Antarctic Peninsula (67°34’ S, 111 

68°08’ W). Environmental conditions in Ryder Bay at 5-10m depth consist of seawater 112 

temperatures that range from -1.8 to +2.0 °C, however, temperatures rarely exceed +0.5 °C 113 

and salinity remains between 32.5-34.5 (Venables, Clarke & Meredith 2013). The animals 114 

were transported to the UK and held in the British Antarctic Survey 0 °C re-circulating 115 

aquarium in Cambridge for approximately 2 months before being introduced to the re-116 

circulating CO2 microcosm system (adapted from Widdicombe and Needham (2007) and 117 

fully detailed in Suckling et al. (2015)). Seawater was transported to Cambridge from the 118 

North Sea which had an aragonite saturation state (0.75) slightly lower than the 0.8 to >3 119 

range, but a pH of 8.0 which is within the range of typical values (7.6 to 8.3), for the Western 120 

Antarctic Peninsula (Collard et al. 2015; Hauri et al. 2015). The treatments used in this study 121 

were based on the IPCC ‘business-as-usual’ scenario with the forecasted reduction of 0.3 to 122 

0.5 pH units in oceanic surface waters by the year 2100 (Barbarino & Lourenco 2009) and a 123 

predicted rise in surface sea temperature of 2.0 °C. The four treatment combinations were: 1) 124 

Low temperature control, present day temperature (-0.3 °C) and pH (pH 8.0); 2) High 125 

temperature control, elevated temperature (2 °C) and current pH (pH 8.0); 3) -0.3 pH, 126 

elevated temperatures (2 °C) and moderate acidification (pH 7.8) and 4) -0.5 pH, elevated 127 

temperature (2 °C) and high acidification (pH 7.5). Urchins were incubated in microcosms 128 

under the 4 treatment conditions for 40 months (beginning June 2009). 129 

 130 
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In the two microcosms with reduced pH treatments (200 L), UV disinfection and 50 μm 131 

filtered seawater was delivered to 80L closed cylindrical mixing tanks. CO2 gas (British 132 

Oxygen Company) was introduced via a ceramic diffuser using an Aquamedic pH controlled 133 

computer and electrode system and mixed with seawater by an Aquamedic ocean runner 134 

power head 2000. Treated seawater was gravity fed to each experimental tank at a rate of 135 

0.56 ± 0.03 L min-1. The pH control mesocosm had a similar header tank, without a pH 136 

computer controller, but with an Aquamedic ocean runner power head 2000. The low 137 

temperature control animals were kept in a recirculating aquarium facility with identical pre-138 

treatment of water. 139 

 140 

Seawater pH was initially at control levels in all tanks, with the urchins acclimated to these 141 

tank conditions for 14 days prior to starting the incubations. The pH of the sea water in 142 

selected tanks was then gradually decreased in equal twice daily increments over a period of 143 

3 days until the desired pH target was achieved. 144 

 145 

Water chemistry 146 

 147 

Temperature was recorded daily for all treatments (ºC; Digital Testo 106) and the room 148 

temperature adjusted as required. Once weekly temperature, salinity (Tropical Marine Centre 149 

V2 Handheld refractometer), pHNIST (temperature compensated; HANNA bench top meter 150 

pH/ORP 115 v pH21-01) and TCO2 (mmol L-1; Ciba Corning TCO2 Analyzer 965, Olympic 151 

Analytical, UK) were measured and recorded. The TCO2 analyzer was calibrated with 2 g L-1 152 

CO2 standard prior to measurements. Aquamedic pH probes were calibrated twice weekly 153 

with NIST certified pH buffer solutions and CO2 gas flow into the header tank was adjusted 154 
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accordingly. Seawater samples were also analysed for phosphate and silicate levels according 155 

to Nickell et al. (2003). 156 

 157 

Seawater quality in randomly selected individual urchin containers was assessed every 2-3 158 

days using Nutrafin Aquarium test kits. Ammonia, nitrite and nitrates were maintained well 159 

below 0.4, 0.2 and 5 mg L respectively by a combination of biological filtration, protein 160 

skimming and partial seawater exchanges (approximately 5-15% every 2-3 days) to prevent 161 

toxicity from metabolic by-products. A 12:12h light dark cycle was maintained throughout. 162 

 163 

Physiological Measurements 164 

The urchins used in the current study were reared in the same incubation system for a further 165 

16 months (in addition to the previous 24 months; Suckling et al. 2015) before being used for 166 

trials to measure the energetics of feeding and growth in September and November. This 167 

coincided with the summer period when energy is partitioned towards maturing gonads in the 168 

wild (Brockington & Peck 2001). For each feeding trial, nine or ten S. neumayeri were 169 

chosen randomly from each treatment. Within each microcosm, specimens were separated by 170 

placing them in individually labelled 300 cm3 containers. Each container had a coarse mesh 171 

lid that allowed free exchange of water within each microcosm, but retained the urchin and 172 

any food or faeces. To measure individual energy budgets, energy absorbed from food was 173 

calculated from the quantity of food consumed and the organic mass of faeces produced. The 174 

energy lost through maintenance and food processing was calculated from measurements of 175 

oxygen consumption and ammonia and urea (nitrogenous waste) production, both before and 176 

six days after feeding. 177 

 178 
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For the 40 month incubation period, S. neumayeri were fed every two weeks (Suckling et al. 179 

2015) but trials showed that faecal production, and elevated waste production, continued for 180 

longer than two weeks, up to 18 days (pers obs). To ensure a full food processing cycle was 181 

measured during the experimental period (September to November), from August, S. 182 

neumayeri were therefore fed every 3 weeks. S. neumayeri were fed individually with an 183 

excess of fish fillets, Polachius virens, (0.48 ± 0.03 g wet mass, 4% of mean wet body mass) 184 

and allowed to feed for 48 hours before uneaten food was collected and weighed. A high 185 

protein diet is representative of the broad diet in the field whilst importantly providing an 186 

easily quantifiable ration. The water uptake, and concomitant increase in weight of uneaten 187 

food, was measured through trials in the same microcosms. Faeces were collected every 2 188 

days and dried until faecal production had stopped. Total faecal dry mass (dried at 60 °C to 189 

constant mass) and ash free dry mass (AFDM), calculated by subtraction following ignition 190 

for 24 hours at 475 °C, were then determined. 191 

 192 

To measure routine and feeding respiratory costs, oxygen consumption was measured before 193 

and 6 days post-feeding (defined as pre and post feeding) using closed cell respirometry ( 194 

following, Obermüller et al. (2010). The night before experiments S. neumayeri were 195 

transferred from their individual containers into respirometers with mesh lids. Before they 196 

were closed, respirometers were flushed with seawater from the experimental system, 197 

ensuring that any faeces were removed. Respirometers were matched to the size of S. 198 

neumayeri so that a 10-20% reduction in oxygen was recorded in 3-5 hours, and experiments 199 

were stopped before oxygen concentration fell below 80% of saturation values. Oxygen 200 

concentration was measured using a Fibox-3 fibre optic oxygen sensor using an individually 201 

calibrated oxygen sensitive foil glued into each respirometer (Morley et al. 2007). Two or 202 
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three blanks were run simultaneously to measure background changes in oxygen 203 

concentration. The volume of each urchin was measured using Archimedes principle and the 204 

volume of water in each respirometer calculated by subtraction. 205 

 206 

At the end of respirometry measurement, the energy lost through nitrogenous waste 207 

production was estimated by measuring ammonia and urea in the water in each respirometer. 208 

Ammonia concentration in the chamber water was measured with a Turner Designs TD-700 209 

fluorometer, fitted with a near UV mercury vapour lamp and a 310-390 nm excitation filter, 210 

following the ortho-phthaldialdehyde (OPA) method of (Holmes et al. 1999). Samples were 211 

analysed in triplicate and calibration was by standard dilution (four concentrations in 212 

triplicate). The remaining seawater was frozen at -80 °C and urea concentration was 213 

measured with a Lachat Quikchem 8500 flow injection auto-analyser at the Scottish 214 

Association for Marine Science using the Lachat Method 10-206-00-1-A for determination of 215 

urea in waters by flow injection analysis colorimetry. However, urea concentration in 216 

samples was not significantly different from background levels (blank) in 12 of the 16 217 

treatment-month-feeding combinations (Z-tests) confirming that S. neumayeri is largely 218 

ammonotelic. Urea production was, therefore, excluded from further analysis. 219 

 220 

The results from these measurements of oxygen consumption and nitrogen production were 221 

used to calculate the atomic O:N ratio. O:N ratios vary from around 3 for protein only 222 

catabolism to over 100 for diets dominated by lipids and carbohydrates (Mayzaud & Conover 223 

1988). The change in O:N ratio before and after feeding therefore indicates how metabolic 224 

substrate use varied through the period of feeding. 225 
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 226 

Calculation of energy budget 227 

 228 

Energy available for growth was assessed by converting the physiological measurements into 229 

energy equivalents, expressed in J individual-1 h-1. The energy budget modified from Winberg 230 

(1960) partitioned the energy consumed from food (C) into: respiratory costs (R), waste 231 

production (U) as ammonia or faeces (F) and the scope for growth (SfG): 232 

 233 

C = R + U + F + SfG 234 

 235 

The energy of the consumed food (C) was calculated using the supplier’s (Waitrose) 236 

nutritional information. Each 100 g (wet mass) of food contained 340 kJ of energy which was 237 

largely in the form of protein (19.3 g of protein, 0.3 g of fat and 0 g of carbohydrate). 238 

 239 

The time course of SDA has been calculated for several Antarctic marine invertebrates (2 to 240 

13 days; Peck 1998; Robertson et al. 2001; Peck et al. 2008) but not S. neumayeri, so data 241 

from another marine invertebrate, which also has a largely protein based metabolism, Nacella 242 

concinna, was used (Fraser, Clarke & Peck 2002).  The peak of SDA of N. concinna at 0°C 243 

occurred between days 5 to 7 and so the oxygen consumption on day 6 was calculated to be 244 

1.6 times the average daily elevation in oxygen consumption through the duration of the SDA 245 

(Peck & Veal 2001). Therefore, to estimate the respiratory cost of processing food through 246 

the whole S. neumayeri SDA, the value for the peak SDA, measured at 6 days post feeding 247 
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was divided by 1.6 to estimate the average daily increase in standard metabolic rate and 248 

nitrogen waste production. 249 

 250 

As the food was largely protein and nitrogenous waste production of S. neumayeri is 251 

predominantly in the form of ammonia (Brockington & Peck 2001), a literature value of 252 

0.484 J µmolO2
-1 was used to convert oxygen consumption into an energy cost (Elliott & 253 

Davison 1975). The energy loss through ammonia (U) were also calculated using literature 254 

energy conversion factors of 0.348 J µmol-1 (Elliott & Davison 1975). 255 

 256 

Absorbed energy (A) was calculated from the proportion of the consumed AFDM (MC) that 257 

was retained and not egested as faecal AFDM (MF): 258 

 259 

A = ((MC - MF)/ MC) * C 260 

 261 

The scope for growth was calculated as: 262 

SfG = A - (R + U) 263 

 264 

Growth 265 

At the end of experiments in both September and November, S. neumayeri volume was 266 

measured, urchins were then dissected and wet mass, dry mass and AFDM of gonad (G) and 267 



13 

 

the rest (S; mainly skeleton) of each animal were measured. Measurement of dry and ash 268 

mass followed the same protocol as described above for faeces. From these masses Gonad 269 

Somatic Index (%) was calculated as: 270 

 271 

GSI = G/(G+S) x 100 272 

 273 

Prior to drying, a small piece of gonad was weighed, dried and the total carbon, hydrogen and 274 

nitrogen contents were measured in a CHN analyser Model CE 440 (Exeter Analytical, Inc., 275 

Massachusetts, USA). Each run was calibrated with acetanilide standards. From the CHN 276 

data C:N and C:H ratios were calculated. 277 

 278 

Statistics 279 

Data were tested for normality with Anderson-Darling tests. Non-normal data were box cox 280 

transformed to achieve normality before the fixed effect of treatment and the random effects 281 

(to account for repeated measures) of both feeding and month were tested with ANOVA. 282 

When a factor had a significant effect, post hoc Tukey tests were used. When a factor was 283 

still non-normally distributed, even after transformation, differences were analysed using 284 

non-parametric Kruskal Wallis tests. 285 

 286 

Results 287 

Water chemistry 288 
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In each system, once treatment conditions had been reached, water chemistry in the urchin 289 

tanks was very stable through the 40 month duration of experiments (Table 1). 290 

 291 

Energetics 292 

S. neumayeri consumed more than twice as much food (105% more) in November than 293 

September (ANOVA: F(1,64) = 35.7, P < 0.01) and in both months more food was consumed 294 

in the low temperature control than pH treatments (20-30% more consumed; ANOVA, F(3,64) 295 

= 6.6, P < 0.01; Tukey tests, pH -0.3, T = 3.7 and pH, -0.5 T = 4.1, P < 0.01; Table 2). The 296 

absorption efficiency of organic matter from food was also lower in September than 297 

November (F(1,64) = 40.8, P > 0.01; Table 2). More energy was therefore absorbed (A) from 298 

food in November than September 2012 (F(1,64) = 35.0, P < 0.01; Fig. 1) and low temperature 299 

control individuals absorbed significantly more energy than both pH treatments (F(3,64) = 5.8, 300 

P < 0.01; pH -0.3, T = 3.5 and pH -0.5, T = 3.7, P < 0.01). 301 

 302 

There was no significant difference in oxygen consumption, between months (F(1,139) = 1.2, P 303 

= 0.27; Fig. 2) but there was a significant difference between treatments (F(3,139) = 3.8, P = 304 

0.01). The interaction between month and treatment was just non-significant (F(3,139) = 2.6, P 305 

= 0.06), so overall, lower oxygen consumption was observed in the low temperature control 306 

compared to the high temperature control (T = 2.6, P < 0.05) and the -0.3 pH treatment (T = 307 

3.0, P < 0.05). Metabolic rate increased post feeding (F(1,139) = 6.3, P = 0.01), resulting in an 308 

increase in energy costs as food was processed and assimilated. 309 

 310 
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Ammonia excretion increased post feeding (Kruskal Wallis test: H = 12.7, P < 0.01; Fig. 3) 311 

but there was no significant difference in the magnitude of this increase between months (H = 312 

0.1, P = 0.8; Fig. 1c) or treatments (H = 2.2, P = 0.54). The O:N ratio was generally between 313 

2 and 4, indicating that the metabolic substrate was almost exclusively protein (Fig. 4). There 314 

was no effect of treatment (H = 6.7, P = 0.08) or month (H = 1.0, P = 0.31). There was also 315 

no significant difference in the change in O:N ratio post feeding between months (H = 0.0, P 316 

= 0.94; Fig. 4) or between treatments (H = 2.4, P = 0.49). 317 

 318 

Whilst the scope for growth (SfG) was significantly lower in September than November (H = 319 

15.5, P < 0.01; Fig. 4) there was no significant difference between treatments (H = 5.3, P = 320 

0.15), although the general trend mirrored that of energy gain from food. 321 

 322 

Composition 323 

There was no significant difference in the organic mass (AFDM) of test (month, F(1,69) = 1.9, 324 

P = 0.18; treatment F(3,69) = 2.2, P = 0.10), gonad (month, F(1,69) = 0.2, P = 0.70; treatment 325 

F(3,69) = 1.2, P = 0.32), gonad somatic index (month, F(1,69) = 1.0, P = 0.33; treatment F(3,69) = 326 

0.7, P = 0.57) or gonad C:N ratio between months or between treatments (Table 3). There 327 

was a small, but significant difference in gonad C:H ratio between treatments (H = 14.4, P < 328 

0.01) but not between months (H = 0.35, P = 0.55). Gonads in the low temperature control 329 

had the lowest C:H ratio compared to higher temperatures. 330 

 331 

Discussion 332 
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Growth and energetics 333 

This study describes the longest incubation to date of an Antarctic marine invertebrate to the 334 

combined stressors of temperature and ocean acidification and significantly extends the 335 

published time series  (Suckling et al. 2015). After forty months exposure, there was little effect 336 

of the treatment conditions on adult Sterechinus neumayeri somatic and reproductive tissue 337 

mass, elemental composition or scope for growth. However there was a significant effect on 338 

oxygen consumption and energetics, with lower metabolic rates and energy absorption in the 339 

individuals subjected to elevated temperature. S. neumayeri held at +2°C had an elevated 340 

metabolic rate, as expected, due to the rate increasing effect that temperature has on 341 

biochemical reactions (Clarke 1983; Hochachka & Somero 2002). Indeed the data are very 342 

similar to our previous study where metabolic rates of S. neumayeri was initially elevated in 343 

response to incubation at +2°C with combined OA stressors, but any difference became non-344 

significant after 8 months of incubation (Suckling et al. 2015).  Average metabolic rates after 345 

40 months at 2 °C were between 2 and 3 μmol O2 h
-1 g AFDM-1 which is slightly above summer 346 

values measured in the wild (Brockington & Peck 2001), where temperatures are above zero, 347 

but rarely reach 2°C (Venables, Clarke & Meredith 2013). What is surprising, however, is that 348 

the animals at high temperature consumed less food and also absorbed less energy (Fig. 1,Table 349 

2). With their elevated metabolic rates, compared to the animals kept at 0°C, they would be 350 

expected to consume more food to fuel their elevated metabolism, which was clearly not the 351 

case for S. neumayeri. The effects of temperature on feeding rate and energy absorption vary 352 

between urchin species (Hill & Lawrence 2006; Zhao et al. 2015). For example, 353 

Strongylocentrotus intermedius consumed less food at higher temperatures which led to a 354 

reduction in gonad production (Zhao et al. 2015). Under increased warming, the metabolic 355 

rates of many ectotherms are expected to increase at greater rates than consumption which 356 
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could in turn lead to a reduction in ingestion efficiency, ultimately resulting in energy deficits 357 

(Lemoine & Burkepile 2012). How an increase in temperature will effect energy budgets will 358 

depend on the thermal reaction norms of biochemical pathways and the proximity of the 359 

elevated temperature to the upper boundary of their thermal window (Angilletta 2009). After 360 

40 months in this study, there was, however, no significant difference in animal size, 361 

reproductive allocation, or skeletal mass between the different treatments and all individuals 362 

were still burning protein as their main food source (Fig. 4). S.neumayeri, of the size used here 363 

(with test diameters above 20mm), grow very slowly, are difficult to age (Brey et al. 1995; 364 

Brockington & Peck 2001) and therefore any difference in growth rate may be difficult to 365 

detect.  It has been estimated that in S. neumayeri only 5% of food is allocated to growth, with 366 

the remaining 95% going towards reproduction (Brey et al. 1995), thus any reduction in 367 

nutrition would be expected to affect reproduction first. However, more subtle effect of 368 

temperature may lead to differences in energy allocation, some of which may have been missed 369 

in the current study. 370 

 371 

 372 

Two recent studies on echinoderms, albeit on larvae, demonstrated the potential effects of 373 

altered pH on the digestive system; with smaller stomachs and reduced feeding performance in 374 

the sand dollar Dendraster excentricus (Chan, Gruenbaum & O'Donnell 2011) and larger 375 

stomachs and increased energetic requirements in the urchin Stronglycentrotus droebachiensis 376 

(Dorey et al. 2013).  The importance of feeding and food processing has also been demonstrated 377 

in adult urchins. Individuals that were feeding were able to partially compensate extracellular 378 

pH while individuals with empty digestive systems were suffering severe metabolic acidosis 379 

(Stumpp et al. 2012). With reported effects of ocean acidification on energy allocation (Pan, 380 
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Applebaum & Manahan 2015) and feeding behaviour (Barry et al. 2014) an increasing number 381 

of studies are reporting an interaction between OA stressors and nutritional status (Sandjensen 382 

& Pedersen 1994; Melzner et al. 2011; Pan, Applebaum & Manahan 2015). Hence there is a 383 

priori evidence that altered environmental conditions, especially low pH, can affect the 384 

energetics of food processing. Which mechanism is most likely to underlie the physiological 385 

effects of treatment, particularly the effect of temperature, is impossible to determine without 386 

further study. 387 

 388 

Bigger differences were found in this study between the two sample months, September and 389 

November, than between treatments. In November, consumption of food and absorption of 390 

energy were higher, leading to a higher SfG in all treatments. November is the start of the 391 

austral summer, the time of peak spawning of S. neumeyeri on the WAP (Pörtner, Bock & 392 

Reipschlager 2000) and when spawning in the laboratory was most successful (Suckling et al. 393 

2015). The presence of seasonal cycle, in spite of S. neumayeri being kept in constant 394 

temperature and photoperiod conditions for more than 40 months shows that these endogenous 395 

rhythms are deeply entrained within this species. 396 

 397 

Implications for the benthic ecosystem 398 

 399 

This long term study has shown that the Antarctic sea urchin, Sterechinus neumayeri, is 400 

relatively robust to the effects of near future ocean acidification. The results of the current study 401 

show that temperature had a greater effect on the acclimated physiology of S. neumayeri than 402 

low seawater pH, although there was an indication of an interactive effect, as is being found in 403 
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an increasing number of studies of marine ectotherms (Schram et al. 2014; Feidantsis et al. 404 

2015). Recent studies have found that some echinoid taxa have a relatively high capacity to 405 

buffer the pH of internal fluids against OA stressors (Sandjensen & Pedersen 1994; Stumpp et 406 

al. 2012; Collard et al. 2015). This appears to be in part due to their ability to accumulate 407 

bicarbonate in the coelomic fluid to reduce the impact of acidosis (Stumpp et al. 2012). S. 408 

droebachiensis studied by Stumpp et al. (2012) live in a region that has high seasonal variation 409 

in seawater pCO2 and organism physiological plasticity and resilience are expected to correlate 410 

with experienced environmental variation (Gaston et al. 2009). The Western Antarctic 411 

Peninsula has a stable thermal environment (Venables, Clarke & Meredith 2013) but large 412 

variations in pH have been recorded in shallow coastal waters, between pH 7.6 and 8.3 (Bjork 413 

et al. 2014; Collard et al. 2015) which may be correlated with the capacity of S. neumayeri to 414 

cope with changes in ocean acidification whilst being more sensitive to small changes in 415 

temperature. 416 

 417 

The focus of recent laboratory studies towards longer term ocean acidification incubations, 418 

particularly for cold water species that have incubated adults for a full reproductive cycle and 419 

across multiple generations is providing us with a clearer picture of the capacity of echinoderms 420 

to cope with predicted future environmental conditions (Stumpp et al. 2012; Dupont et al. 421 

2013; Suckling et al. 2015). As more detailed environmental manipulations are conducted, it 422 

is becoming apparent that the subtlety of response is increasingly complex (Munday et al. 2009; 423 

Kroeker, Micheli & Gambi 2013; Heuer & Grosell 2014). The differences in food consumption 424 

and energetics of food processing found in S. neumayeri, in the current study, require further 425 

studies that combine different ration sizes along with multiple environmental stressors, in order 426 

to disentangle the mismatch between food consumption and the energetics of food processing. 427 
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However, studies to date show that S. neumayeri is robust to the impact of near future ocean 428 

acidification and may actually benefit from a small rise in environmental temperature (Table 429 

4). As S. neumayeri are an abundant, keystone, Southern Ocean species, at depths shallower 430 

than 20 m, any change in food consumption or conversion efficiency of energy into body 431 

tissues could cause a major shift in energy flow through the shallow water ecosystem. 432 

 433 
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Figure Legends 632 

Figure 1. The energy absorbed from food. All values are in Joules per hour per g ash free dry 633 

mass. Treatments are: Low temperature control = -0.3 °C, pH 8.0; High temperature control 634 

= 2 °C, pH 8.0; pH -0.3 = 2 °C, pH 7.8; pH -0.5 = 2 °C, pH 7.5. Filled bars = September, 635 

open bars = November. ** indicates a significant difference in the energy absorbed between 636 

months (F(1,64) = 35.0, P < 0.01). Different letters indicate that low temperature controls 637 

absorbed significantly less energy than other treatments (ANOVA F(3,64) = 5.8, P < 0.01; 638 

Tukey tests, pH -0.3, T = 3.5 and pH -0.5, T = 3.7, P < 0.01). Mean (±SE). 639 

 640 

Figure 2. Oxygen consumption of S. neumayeri, pre and 6 days post feeding, in September 641 

and November. Treatments are: Low temperature control = -0.3°C, pH 8.0; High temperature 642 

control = 2 °C, pH 8.0; pH -0.3 = 2 °C, pH 7.8; pH -0.5 = 2 °C, pH 7.5. A, indicates that low 643 

temperature controls consumed less oxygen than high temperature control and pH -0.3 644 

treatments (ANOVA, F(3,139) = 3.8, P = 0.01; High temperature control, T = 2.6, P < 0.05; pH 645 

-0.3 treatment, T = 3.0, P < 0.05). * indicates that there was a significant increase in oxygen 646 

consumption post feeding (ANOVA, F(1,139) = 6.3, P < 0.05). Mean (±SE). 647 

 648 

Figure 3. Ammonia production of S. neumayeri in September and November before and 6 649 

days after feeding. Treatments are: Low temperature control = -0.3 °C, pH 8.0; High 650 

temperature control = 2 °C, pH 8.0; pH -0.3 = 2 °C, pH 7.8; pH -0.5 = 2 °C, pH 7.5. ** 651 

indicates a significant difference between pre and post feeding (Kruskal Wallis test: H = 12.7, 652 

P < 0.01). 653 
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Fig. 4. Atomic O:N ratio for S. neumayeri in September (top panel) and November (bottom 654 

panel) before and 6 days after feeding. Treatments are: Tcur = -0.3 °C, pH 7.8; pHcur = 2 °C, 655 

pH 8.1; pH-0.3 = 2 °C, pH 7.8; pH-0.5 = 2 °C, pH 7.5. * indicates a significant difference 656 

between pre and post feeding. 657 

 658 

Figure 5. The scope for growth in September (filled bars) and November (open bars). ** 659 

indicates a significant difference between months (H = 5.3, P < 0.01). Low temperature 660 

control = -0.3 °C, pH 8.0; High temperature control = 2 °C, pH 8.0; pH -0.3 = 2 °C, pH 7.8; 661 

pH -0.5 = 2 °C, pH 7.5. Mean (±SE). 662 
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Fig. 5 706 



Seawater parameter 

Low 

temperature 

control 

High 

temperature 

Control  

-0.3 pH -0.5 pH 

Alkalinity 1733 ± 25 1851 ± 37 1753 ± 40 1805 ± 34 

pCO2 (μatm) 417 ± 15 420 ± 13 834 ± 39 1361 ± 36 

pH NIST 7.98 ± 0.02 8.00 ± 0.01 7.72 ± 0.01 7.52 ± 0.01 

Ω calcite  1.20 ± 0.10 1.50 ± 0.03 0.76 ± 0.02 0.51 ± 0.02 

Ω aragonite  0.75 ± 0.06 0.9 ± 0.02 0.48 ± 0.01 0.32 ± 0.01 

Temperature (°C) -0.3 ± 0.0 1.7 ± 0.1 1.9 ± 0.1 2.2 ± 0.1 

Salinity (psu) 35 ± 0.2 35 ± 0.2 35 ± 0.2 35 ± 0.1 

 

Table 1: Mean (± SE) water parameters in the adult Sterechinus neumayeri microcosm over 

the course of the experiment following the format of Barry et al., (2010). Values for pCO2, Ω 

calcite, Ω aragonite and total alkalinity were modelled from CO2SYS (Lewis & Wallace 

1988) with refitted constants (Mehrbach et al. 1973; Dickson & Millero 1987). 



 

Parameter  Low 

temperature 

control 

High 

temperature 

control 

pH -0.3 pH -0.5 

Aeff Sept 0.77 ± 

0.06a 

0.71 ± 

0.05a 

0.66 ± 

0.06a 

0.55 ± 

0.08a 

 Nov 0.87 ± 

0.02b 

0.91 ± 

0.02b  

0.87 ± 

0.02b 

0.91 ± 

0.03b 

C Sept 2.4 ± 0.5a 1.3 ± 0.2ab 1.0 ± 0.3b 1.0 ± 0.2b 

 Nov 4.8 ± 1.1c 3.1 ± 0.5cd 2.7 ± 0.3d 2.2 ± 0.5d 

 

Table 2: Absorption efficiency (Aeff) and energy consumed (C, J.h-1gAFDM-1), in September 

and November. Treatments are: Low temperature control = -0.3 °C, pH 8.0; High 

temperature control = 1.7 °C, pH 8.0; pH -0.3 = 1.9 °C, pH 7.8; pH -0.5 = 2.2 °C, pH 7.5. 

Mean ± SE. Different lower case letters indicate that absorption efficiency was lower in 

September than November (F(1,64) = 40.8, P > 0.01). Different lower case letters indicate that 

more energy was consumed in the low temperature control than other treatments (ANOVA, 

F(3,64) = 6.6, P < 0.01; Tukey tests, pH -0.3, T = 3.7 and pH -0.5, T = 4.1, P < 0.01) and was 

less in September than November (F(1,64) = 35.7, P < 0.01). 

 

  



Parameter  Low 

temperature 

control 

High 

temperature 

control 

pH -0.3 pH -0.5 

Test 

AFDM, 

mg 

Sept 734 ± 56 611 ± 72 628 ± 89 549 ± 64 

 Nov 791 ± 105 712 ± 80 703 ± 50 600 ± 68 

Gonad 

AFDM, 

mg 

Sept 629,  

510-859 

634,  

358-675  

506,  

337-746 

685,  

288-828 

 Nov 728,  

407-935 

511,  

362-871 

554,  

349-675 

589,  

345-777 

GSI Sept 48.1 ± 1.6 46.2 ± 2.5 46.2 ± 2.3 48.9 ± 3.7 

 Nov 47.2 ± 4.3 42.4 ± 3.7 43.8 ± 3.2 47.1 ± 3.7 

C:N Sept 5.4,  

5.1-5.9 

5.7,  

5.3-6.0 

5.6,  

5.2-6.0 

6.0,  

5.3-6.3 

 Nov 5.9,  

5.5-6.4 

6.1,  

5.4-6.2 

5.8,  

4.7-5.8 

6.4,  

5.3-8.0 

C:H Sept 0.52,  

0.51-0.53a 

0.53,  

0.53-0.54ab 

0.53,  

0.52-0.54bc 

0.54,  

0.53-0.54c 



 Nov 0.53,  

0.52-0.53a 

0.53,  

0.52-0.53ab 

0.54,  

0.54-0.55bc 

0.54,  

0.53-0.55c 

 

Table 3. The ash free dry mass (AFDM) of the test and gonad, the gonad somatic index 

(GSI), the carbon to nitrogen (C:N) and carbon to hydrogen (C:H) ratio in the gonad in 

September and November. Values are means ±SE or median, interquartile range (the latter is 

used where data were not normally distributed, even after transformation. Different letters 

after the interquartile range indicate significantly different C:H ratios. 

  



 

Duration of 
incubation Trait 

Control low 
temperature 

Control high 
temperature pH -0.3 pH -0.5 Ref 

6 months Egg size + - -(-) - Suckling et al. 2015 

 
Fertilization 
success = + = = Suckling et al. 2015 

 Hatching success +   - Suckling et al. 2015 

 Larval survival + +  - Suckling et al. 2015 

       

17 months Egg size - +(-) + +(+) Suckling et al. 2015 

 
Fertilization 
success  +  - Suckling et al. 2015 

 Hatching success = = = = Suckling et al. 2015 

 Larval survival - +  - Suckling et al. 2015 

       

8 to 24 
months Metabolic rate  = = = Suckling et al. 2015 

       

8 to 40 
months 
 Test growth = = = = 

Suckling et al. 2015 
Current study 

8 to 40 
months Gonad allocation = = = = 

Suckling et al. 2015 
Current Study 

       

After 40 
months Metabolic rate - + + + Current Study 

After 40 
months Food consumption + - - - Current Study 

After 40 
months 

Ammonia 
production = = = = Current Study 

After 40 
months Scope for growth = = = = Current Study 

 

Table 4. Summary of effect of combined temperature and pH treatments on S. neumayeri  
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