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Abstract  23	

Deep-sea sediments represent the largest but least known ecosystem on earth. With 24	
increasing anthropogenic pressure, it is now a matter of urgency to improve our 25	
understanding of deep-sea biodiversity. Traditional morpho-taxonomic studies 26	
suggest that the ocean floor hosts extraordinarily diverse benthic communities. 27	
However, due to both its remoteness and a lack of expert taxonomists, assessing deep-28	
sea diversity is a very challenging task. Environmental DNA (eDNA) metabarcoding 29	
offers a powerful tool to complement morpho-taxonomic studies. Here we use eDNA 30	
to assess benthic metazoan diversity in 39 deep-sea sediment samples from bathyal 31	
and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa 32	
and we identified all animal phyla commonly found in the deep-sea benthos; yet, the 33	
diversity within these phyla remains largely unknown. The large numbers of 34	
taxonomically unassigned molecular operational taxonomic units (OTUs) were not 35	
equally distributed among phyla, with nematodes and platyhelminthes being the most 36	
poorly characterized from a taxonomic perspective. While the data obtained here 37	
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reveal pronounced heterogeneity and vast amounts of unknown biodiversity in the 38	
deep sea, they also expose the difficulties in exploiting metabarcoding datasets 39	
resulting from the lack of taxonomic knowledge and appropriate reference databases. 40	
Overall, our study demonstrates the promising potential of eDNA metabarcoding to 41	
accelerate the assessment of deep-sea biodiversity for pure and applied deep-sea 42	
environmental research but also emphasises the necessity to integrate such new 43	
approaches with traditional morphology-based examination of deep-sea organisms. 44	

Introduction 45	

Prior to global industrialisation, the deep sea was protected from human influence by 46	
its remoteness. However, the impacts of human activities have increased rapidly in 47	
recent decades (Glover and Smith, 2003; Benn et al., 2010), mainly through waste 48	
disposal (e.g. Thiel, 2003; Watters et al., 2010; Miyake et al., 2011; Ramirez-Llodra 49	
et al., 2013) and the expansion of fishing and hydrocarbon extraction to bathyal 50	
depths on continental margins (e.g. Koslow et al., 2000; Roberts, 2002; Clark, 2009). 51	
The mining of metal-rich minerals in environments ranging from abyssal plains to 52	
hydrothermal vents and seamounts is a serious prospect in the fairly near future (e.g. 53	
Wedding et al., 2013; Fisher et al., 2014; Schlacher et al., 2014; Van Dover, 2014). 54	
Such combinations of different direct anthropogenic stressors will likely exacerbate 55	
multiple interacting stressors arising from climatic changes acting at a global scale 56	
(Mora et al., 2013; Jones et al., 2014), creating major threats to the largest 57	
environment on Earth (Ramirez-Llodra et al., 2011). Environmental stresses on whole 58	
ecosystems led to a loss of biodiversity observed worldwide, with consequences to 59	
ecosystem functioning (Worm et al., 2006; Hooper et al., 2012). It is, therefore, 60	
essential to acquire baseline information on deep-sea diversity in order to establish 61	
reference data reflecting near pristine or less impacted habitats. Such baseline studies 62	
are crucial to the assessment of changes in deep-sea ecosystems resulting from the 63	
increasing human activity.  64	

The World Register of Marine Species (http://www.marinespecies.org) lists 23,708 65	
metazoan species found in the deep sea (Fig. 1). Arthropods, chordates, molluscs, 66	
annelids and echinoderms dominate this inventory of deep-sea species. Although such 67	
richness is certainly an underestimate, there is no consensus on how many deep-sea 68	
species exist (Miljutin et al., 2010), in part because of uncertainty concerning their 69	
distribution patterns in a vast and chronically undersampled environment (McClain 70	
and Hardy, 2010). The lack of publicly available molecular data, with only about one 71	
fifth of the inventoried species (4918) being associated with such data in publicly 72	
accessible databases (Fig. 1), coupled with the particularly challenging taxonomic 73	
identification of meiofauna (Herman and Heip, 1988; Giere, 2008), illustrate clearly 74	
the difficulty in assessing metazoan diversity in deep-sea sediments mainly inhabited 75	
by small-sized animals (e.g., Thiel, 1975; 1983). 76	

The development of DNA barcoding has substantially improved taxonomic 77	
knowledge in some groups that are difficult to identify morphologically (Blaxter, 78	
2004). Investigation of the molecular signatures of benthic fauna in environmental 79	
samples was therefore the logical development of DNA barcoding approaches 80	
(Markmann and Tautz, 2005). In recent years, en mass sequencing of environmentally 81	
derived DNA has expanded rapidly with the availability of high-throughput 82	
sequencing technologies, commonly referred to as metabarcoding (Taberlet et al., 83	
2012b). We consider environmental DNA (eDNA) to comprise not only DNA from 84	
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living species, including their eggs and larvae, but also DNA from fragments of dead 85	
organisms, gut contents and extracellular DNA (Taberlet et al., 2012a). Since marine 86	
sediments host a tremendous diversity of eukaryotic organisms, metabarcoding is 87	
particularly useful because of its potential to explore the biodiversity of all taxa in 88	
parallel (Bik et al. (2012b). Such an approach has revealed novel biodiversity in 89	
various coastal environments (e.g. Chariton et al., 2010; Fonseca et al., 2010; Bik et 90	
al., 2012a; Lallias et al., 2014; Pawlowski et al., 2014; Cowart et al., 2015). However, 91	
despite the dynamic expansion of eDNA studies, little metabarcoding information is 92	
available for benthic diversity at bathyal and abyssal depths (Pawlowski et al., 2011). 93	
High-throughput sequencing of deep-sea sedimentary eDNA has revealed a high level 94	
of previously unknown diversity among benthic foraminifera (Lecroq et al., 2011) and 95	
other deep-sea protists (Stock et al., 2013). Moreover, the capacity of deep-sea 96	
sediments to preserve DNA (Corinaldesi et al., 2011) has allowed inferences to be 97	
drawn about the past biodiversity of planktonic and benthic eukaryotes (Lejzerowicz 98	
et al., 2013). Metabarcoding has also been used to explore biogeographic patterns of 99	
microbial eukaryotes in the deep sea (Bik et al., 2012c; Guardiola et al., 2015). Thus, 100	
in many different ways, limited studies on eDNA clearly show the strong potential of 101	
metabarcoding in deep-sea biodiversity research where samples are scarce and 102	
expensive to collect.  103	

Here, we use eDNA metabarcoding to identify gaps in our taxonomic knowledge of 104	
deep-sea biodiversity. We address this issue using en masse sampling of sediments 105	
from deep-sea environments distributed worldwide from upper bathyal (a few 106	
hundred meters depth) to abyssal (4 to 5 km below sea surface) depths. We use our 107	
global dataset to (a) test the potential of eDNA metabarcoding to assess deep-sea 108	
biodiversity and (b) identify the taxonomic breadth of hitherto unknown benthic 109	
diversity. 110	

Methods 111	

Sampling and DNA extractions 112	

Sediments were collected during various cruises worldwide, mostly at abyssal and 113	
bathyal depths (see Table S1 and Fig. 2), and stored at -80°C. The sampling methods 114	
differed depending on the cruises (multicores, box cores, grab samples). Subsamples 115	
were obtained following a standardised method from the more or less undisturbed 116	
surficial sediments collected by the sampling gear. The samples consisted of fine mud, 117	
except for the Maud Rise samples that included a larger sand fraction. Only surface 118	
sediments (approximately within the first 3 cm) were processed. For each location, 4 119	
DNA extractions were performed using MOBIO PowerMax extraction kits with less 120	
than 10 g of sediments (corresponding to a volume of between 5 and <10 ml 121	
depending on the nature of the sediments). In addition, for Northwest Pacific, Arctic, 122	
Southern Ocean and South Atlantic samples, 8 replicates of less than 1 g of sediments 123	
(roughly corresponding to 0.7 to 1 ml each) were extracted using MOBIO PowerSoil 124	
extraction kits.  125	

PCR amplification and 454 sequencing  126	

Preparation of amplicon libraries for 454 sequencing of the V1-V2 region of the 127	
nuclear small ribosomal subunit (18S) followed the protocols described previously 128	
(Fonseca et al., 2010). In order to maximise inclusion of metazoans in the primer mix, 129	
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primer R22 (Blaxter et al., 1998) was modified as follows: R22mod 130	
5’CCTGCTGCCTTCCTTRGA3’, the primer F04 was left unmodified. Compared to 131	
the original R22 primer and based on sequences of various phyla from GenBank, 132	
R22mod was shortened to remove mismatches in some groups (cnidarians, 133	
echinoderms, priapulids and kinorhynchs) and one ambiguity (R) was added to 134	
accommodate the presence of a thymidine (T) instead of a cytidine (C) at this position 135	
in brachiopods, bryozoan, kinorhynchs, rotifers and within several other groups. The 136	
PCR amplifications were performed directly using the combined 454 adaptors, link, 137	
MID (Molecular Identifier) tags and primers. MID tags were inserted only in the 138	
forward primers as sequencing was made unidirectionally and 8bp MID tags were 139	
used to distinguish between independent samples (Table S2). In order to reduce 140	
chimera artefacts created during the PCR (Fonseca et al., 2012), we reduced the PCR 141	
cycles to 23-25 cycles. The positive amplifications were identified on a 1.5% agarose 142	
gel stained with ethidium bromide. Five amplifications were performed in parallel for 143	
each core and extraction method. PCR products for each sample were pooled on a 2 % 144	
agarose gel, and then excised bands were purified using the QIAquick PCR 145	
purification kit (Qiagen). The purified products were quantified using a Bioanalyzer 146	
(Agilent) and sequenced on a 454 Roche GSFLX sequencer on either quartets, or half 147	
plates at the sequencing platform of Liverpool University.  148	

Sequence analyses 149	

Sequences were analysed using the QIIME 1.7 (Caporaso et al., 2010). Raw reads 150	
were assigned to samples based on MID tags and checked for quality using 151	
split_libraries.py. All sequences shorter than 200 bp were discarded, minimum quality 152	
score was set at 25 and maximum homopolymer run was set at 6 bp. No mismatches 153	
in primer or MID tags were tolerated. In order to reduce the potential bias introduced 154	
by intragenomic variability and sequencing errors, OTUs were clustered at 97% 155	
identities. Cluster seeds were selected as representative sequences for each OTUs 156	
using pick_rep_set.py in QIIME 1.7. Sequences were aligned using align_seqs.py and 157	
the aligned s108 SILVA database as template. Chimeric sequences were removed 158	
using identify_chimeric_seqs.py and ChimeraSlayer in QIIME 1.7 and single 159	
singletons (i.e. single sequences present in a single sample) were removed from the 160	
dataset. 161	

The 18S sequences were then compared, using the BLAST method with an E- value 162	
threshold of 1e-100, against a reference database consisting of a “customised” version 163	
of the Silva database s108 release formatted for use within the QIIME pipeline 164	
(Caporaso et al., 2010), using assign_taxonomy.py in QIIME 1.7. The E-value 165	
threshold was empirically identified following the observation that the default 166	
parameter (E-value threshold of 0.001) provided an unrealistic number of identified 167	
OTUs, which after verification were often only poorly related to the assigned taxa, 168	
even at phylum level. Several OTUs were independently compared to the GenBank 169	
database and the E-values below 1e-100 did not allow reliable identification at phylum 170	
level in many cases. As a result, we chose to use a strict E-value threshold to limit 171	
“folkloric” taxonomic assignments. The database was customised by correcting some 172	
obvious misidentification (e.g., a copepod crustacean sequence labelled as octocoral 173	
cnidarian) and adding recent deep-sea sequences obtained from public databases and 174	
individual sequencing of deep-sea organisms. All “uncultured (marine) eukaryote” or 175	
environmental samples identified above the phylum level were also removed from the 176	
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reference database. Raw 454 reads and reference database are available on the 177	
European Nucleotide Archive (Acc. No. PRJEB 13170). 178	

After taxonomic assignment, a phylogenetic tree was built with the unassigned 179	
sequences and the branch corresponding to metazoans was identified by independent 180	
blasts against the GenBank database. All the sequences forming the branch identified 181	
with confidence as metazoan were isolated and merged to the metazoan dataset with 182	
the following taxonomic assignment “Eukaryota;Metazoa; no blast hit”.  However, 183	
because of the conservative approach chosen, and based on the limited phylogenetic 184	
resolution provided by the fragment analysed, the most basal metazoan OTUs (such 185	
as those assigned to sponges) may not have been included in the “metazoan branch”. 186	
The decision to restrict the analyses to metazoans reflects the fact that the original 187	
primers were specific to metazoans and the observation that one major group of deep-188	
sea protists, the foraminifera, was not found in our dataset, thus providing a biased 189	
estimation of deep-sea eukaryotic biodiversity.  190	

Alpha diversity was measured using the simple “observed OTU” metric in order to 191	
estimate the depth of sequencing for the sediments analyses. OTU networks, linking 192	
the OTUs to the different biogeographic provinces in which they were found, were 193	
built using make_otu_network.py in QIIME 1.7 and drawn in Cytoscape 2.7.0 194	
(Shannon et al., 2003) using the unweighted spring embedded layout. Beta diversity 195	
analyses were conducted using the unweighted UNIFRAC method (Lozupone and 196	
Knight 2005) implemented in QIIME 1.7. This method takes into account the 197	
phylogenetic information in the dataset. The unweighted approach allows the use of 198	
only qualitative data (i.e. presence/absence) and reduces bias from quantitative results. 199	
While this approach increases the importance of rare taxa, the quantitative bias 200	
potentially induced by the biomass (Bohmann et al., 2014; Hirai et al., 2015) was 201	
estimated too high considering the minimal amounts of sediments used. Unrarefied 202	
data allowed us to consider the total diversity recovered from the samples analysed. 203	
However, in order to make more objective comparisons between heterogeneous 204	
samples, Principal Coordinates Analyses of beta diversity was performed based on 205	
hundred rarefied datasets at 4488 metazoan reads per province. The same beta-206	
diversity distances matrices were used to build UPGMA trees. Bootstrap support was 207	
calculated based on the 100 rarefied datasets. Biogeographic comparisons are based 208	
on the lower bathyal and abyssal provinces described in Watling et al. (2013). 209	
According to the latter (Watling et al., 2013), the Mediterranean Sea and the North 210	
Atlantic both belong to the same bathyal province BY4. However, based on the 211	
differences in our sampling locations and data, as well as the suggestion made by 212	
Watling et al. (2013) that this province may require subdivision based on differences 213	
in environmental parameters such as temperature, we decided to treat both locations 214	
separately and refer to the bathyal Mediterranean as BY4 and the bathyal NW 215	
Atlantic as BY4b. Additionally, since Watling et al. (2013) did not divide upper 216	
bathyal regions (300-800 m depth) into provinces, we identified our upper bathyal 217	
regions by adding a “Z” to the name (i.e. BY1Z, BY9Z and BY11Z).  218	

Results 219	

Taxonomic composition 220	

After quality checking, and removal of chimera and single singletons (i.e. single reads 221	
present in a single sample, rather than reads being single in each of a few samples), 222	
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the resulting dataset contained 530976 reads (from 3819 to 97456 reads per location), 223	
38% of which could be confidently assigned to metazoans using a combination of 224	
BLAST and the phylogenetic approach (Table 1). The remaining reads were assigned 225	
to various other eukaryotic groups (e.g. Stramenopiles, Fungi). The distribution of 226	
reads within the different metazoan groups was highly variable between locations 227	
with a large dominance of annelids at nearly half of the sampling sites. Nematodes 228	
were also sequenced abundantly in several samples followed by arthropods and a 229	
large proportion of reads that could not be confidently assigned by BLAST methods 230	
to any specific phylum (Fig 3). 231	

 OTU richness data showed less variation between locations compared to abundance 232	
data (Fig 3). At a clustering threshold of 97%, metazoan OTUs represented between 233	
8.4% (S Brazil Basin, abyssal) and 34.8 % (Antarctic Peninsula) of the total 234	
eukaryotic richness for each site. Metazoan diversity was largely dominated by 235	
nematodes, which formed the most diverse group in all samples (from 25.4% to 236	
48.9%). The next most diverse phyla were arthropods (mainly copepods) and annelids, 237	
followed by platyhelminthes (Fig 3a). These four groups comprised nearly 88% of the 238	
total number of assigned OTUs. The remaining OTUs were assigned to 19 other phyla. 239	
Among the unassigned OTUs that could not be reliably recognised using BLAST with 240	
the strict E-value threshold selected here, individual BLAST of some OTUS against 241	
GenBank database suggests that they likely belong to the phyla Mesozoa and 242	
Tardigrada. Combined, the taxa inferred to be present based on our data represented 243	
almost all higher-level diversity of marine Metazoa (with the exception of a few 244	
minor phyla such as Acanthocephala, Entoprocta and Phoronida). 245	

A substantial diversity of orders and families was recovered within each of the three 246	
major phyla (nematodes, annelids, arthropods), based on BLAST data. At order level, 247	
the diversity was relatively equally distributed among nematodes, with less than a 248	
quarter of OTUs belonging to the order Enoplida (Fig. 4a). The arthropods were 249	
clearly dominated by harpacticoid copepods (68%) (Fig. 4b), while more than 50% of 250	
annelids belonged to the infraclass Scolecida or orders Spionida and Terebellida (Fig. 251	
4c). Within orders, a wide diversity of families has been observed in the three major 252	
phyla (Fig. 4a-b-c).  253	

Phylogenetic analyses of metazoan OTUs (97% identity threshold) showed the 254	
uneven distribution of unidentified OTUs (in red in fig. 5) throughout the resulting 255	
tree. Although the unknown OTUs were found in almost all taxonomic groupings, 256	
several clusters were composed mainly of unassigned OTUs. Our analyses confirmed 257	
the impressive diversity of nematodes, representing almost half of the tree (Fig. 5), 258	
although a significant part of this diversity may originate from intragenomic 259	
polymorphisms (Dell’Anno et al., 2015). Other monophyletic clusters were formed by 260	
the superphylum Deuterostomia, the phylum Gastrotricha, the class Ostracoda and the 261	
subclass Copepoda. The Copepoda comprised mainly harpacticoids as shown by a 262	
comparison between OTUs assigned to copepods and sequences of harpacticoids 263	
available in the database (Fig. S2). 264	

Several clades were formed by OTUs belonging to different taxonomic groups (Fig. 265	
5). The annelids grouped with the molluscs, the kinorhynchs grouped with mites and 266	
potential tardigrades while the echinoderms clustered with hemichordates and 267	
chordates forming a deuterostome clade. Within deuterostomes, detailed observation 268	
showed that echinoderms, hemichordates, vertebrates and tunicates formed 269	
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independent sub-clusters with tunicates appearing clearly distinct at the base of this 270	
group (data not shown).  Early metazoans (sponges, placozoans and cnidarians) also 271	
formed a monophyletic group branching between the deuterostomes and the clade 272	
comprising loriciferans, aceolomorphs and putative mesozoans. Nemerteans were 273	
either located within the two clades containing annelids or formed an independent 274	
cluster nearby. Within this “nemertean only” cluster, it is interesting to note the 275	
presence of a few “platyhelminthes” OTUs assigned to the flatworm “Nematoplana 276	
sp.”. However, most likely the reference sequence from the public database originates 277	
from a misidentified specimen (sequence GenBank D85093). Except for this likely 278	
artefactual identification, all platyhelminthes clustered together in a monophyletic 279	
group. Interestingly, aside from the platyhelminthes cluster, which already includes a 280	
significant number of unassigned OTUs, another large clade is composed exclusively 281	
of unassigned OTUs. While no reliable BLAST identification could be obtained, these 282	
OTUs appear to be related to acoelomorphs. Although meiobenthic tunicates can be 283	
found, the presence of DNA from vertebrates (fish and cetacean) and most likely 284	
planktonic tunicates illustrates well the potential of eDNA to amplify not only 285	
organisms physically present in the sediments but also both indigenous and 286	
allochthonous extracellular DNA. 287	

Biogeographic patterns 288	

When considering all provinces regardless of the depth, out of the 1570 metazoan 289	
OTUs recovered, only 3 OTUs were shared among all 13 provinces (a harpacticoid 290	
copepod, a nematode and an unassigned OTU), 18 additional OTUs were found in 10 291	
to 12 provinces (7 nematodes, 3 copepods and another undefined arthropod, 2 292	
annelids, 1 hemichordate and 4 unassigned OTUs). No evidence was found for a 293	
higher proportion of predominantly planktonic groups, such as Ctenophora and 294	
Chaetognatha, among “cosmopolitan” OTUs, although some tunicates, hydrozoans 295	
and halocyprid ostracods observed in the abyssal provinces might have originated 296	
from the water column. Such findings correspond with the overall low representation 297	
of OTUs originating from the water column. 298	

The spring embedded network visualisation of OTUs distributes the provinces on the 299	
network in order to minimize the differences in lengths of the edges connecting OTUs 300	
to the provinces (i.e. in a similar way as if the edges would be springs connecting 301	
balls corresponding to OTUs and provinces). Although easily saturated when 302	
including large amounts of OTUs, this method of visualising the distribution showed 303	
that the geographic distribution of OTUs appeared not random for several taxonomic 304	
groups. In annelids, the OTUs from abyssal provinces tended to cluster together, 305	
separated from the upper bathyal provinces by the lower bathyal provinces. Moreover, 306	
the two polar lower bathyal provinces grouped near the abyssal ones while the two 307	
polar upper bathyal provinces appeared more isolated (Fig. 6a).  308	

Such patterns are not visible for all phyla, but the pattern observed in the Nematoda 309	
(Fig. 6b, based on OTUs shared by 6 provinces or more) tends to suggest relationships 310	
between abyssal provinces, although more appropriate sampling is required to explore 311	
biogeography in details. Compared to the patterns obtained with annelid OTUs, the 312	
upper bathyal Arctic also grouped close to the South Atlantic and Weddell Sea 313	
abyssal provinces. Moreover, the polar bathyal provinces clustered near or even 314	
within abyssal provinces in the nematodes data. The network made from arthropod 315	
MOTUs (Fig. 6c, including all OTUS) showed a different pattern with the Southern 316	
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Ocean provinces clustering together, as well as the Arctic and abyssal South Atlantic 317	
provinces. The single abyssal Pacific province (NW Pacific, on the edge of the Japan 318	
Trench) appears relatively isolated from the other abyssal provinces and the 319	
Mediterranean, NW Atlantic and two Andaman Sea provinces all appear quite 320	
isolated from each other and from the other provinces.  321	

While networks facilitate the visualisation of the OTUs distributions, they are limited 322	
to taxonomic groups with limited numbers of OTUs (otherwise the network will 323	
saturate) and are directly affected by the sequencing depth (not rarefied). Principal 324	
coordinate analyses (PCoA) on rarefied dataset of all metazoan OTUs provided a 325	
more robust comparison of the different locations (Fig. 7). Unfortunately, the 326	
rarefaction threshold of 4488 metazoan reads per location did not allow the inclusion 327	
of several locations in the analyses (e.g. most abyssal locations including all the 328	
equatorial and South Atlantic locations, see table 1). Nevertheless, all the locations in 329	
Andaman Sea, the province with the most locations sampled, clustered relatively 330	
closely together. The two Mediterranean locations also grouped within this cluster. 331	
The situation was different for the lower bathyal Southern Ocean, for which the two 332	
sampled locations considered did not group together. One possible reason for the 333	
difference observed between the Lazarev Sea and the Maud Rise, may be related to 334	
the sediment characteristics, as Maud Rise sediments sampled were sandier than the 335	
fine muddy sediments from Lazarev Sea. Moreover, compared to the distances 336	
between the locations within Mediterranean Sea or within Andaman Sea, the Maud 337	
Rise was much more distant from the Lazarev Sea, increasing the possibility of 338	
different ecosystems being sampled (Giere, 2008). 339	

Discussion 340	

Most deep-sea diversity is unknown 341	

Pioneering investigations in the 1960s (e.g., Hessler and Sanders, 1967; Sanders and 342	
Hessler, 1969), together with more recent studies (e.g., Snelgrove and Smith, 2002; 343	
Brandt et al., 2007; Rex and Etter, 2010) on bathyal and abyssal fauna, have 344	
challenged the long-held notion that the deep sea hosts a low diversity of metazoan 345	
organisms. Our results, based on the total DNA from the sediments (including 346	
organismal and extraorganismal DNA), reveal a large proportion of unassigned OTUs 347	
(Fig. 5). Although there is not necessarily a direct correspondence between DNA 348	
sequence data and morphological species diversity, these results do suggest that 349	
significant unknown diversity exists in deep-sea sediments at different taxonomic 350	
levels, supporting the idea of a highly diverse deep-sea fauna. Moreover, the irregular 351	
distribution of unassigned OTUs in the phylogenetic tree provides clear evidence that 352	
some taxonomic groups are particularly understudied. These less sequenced groups 353	
include cryptic and/or fragile organisms such as the acoelomorphs and loriciferans, 354	
which are rarely seen in deep-sea samples, as well as several groups of nematodes.  355	

Based on the rate at which new taxonomic descriptions are being published, it has 356	
been proposed recently that most biodiversity on Earth might be described in the 357	
relatively near future (e.g. Appeltans et al., 2012; Costello et al., 2013). A distinction 358	
does need to be made between species that have been described taxonomically and 359	
those that have only been sequenced (Fig. 1). Nevertheless, by suggesting that 360	
important unknown genetic diversity exists within several deep-sea metazoan phyla 361	
(Fig. 4), our results tend to challenge these ambitious predictions and support the view 362	
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that a large part of the planet’s biodiversity remains to be discovered in the deep sea 363	
(e.g. Grassle and Maciolek, 1992; Poore and Wilson, 1993; Brandt et al., 2007; 364	
George et al., 2014). Many of these OTUs could not be assigned to any taxonomic 365	
group and some could therefore represent new higher taxa. Unfortunately, no DNA 366	
information is available for much of the known deep-sea metazoan diversity (Fig. 1) 367	
and their novelty is therefore impossible to confirm. These uncertainties should not 368	
undermine the potential of metabarcoding to better understand the diversity of poorly 369	
known communities. Indeed, the total information obtained from a large number of 370	
taxa in parallel provides a good estimator of environmental community diversity that 371	
has many practical applications for ecosystem assessment and monitoring (Chariton et 372	
al., 2010; Czernik et al., 2013; Stephenson et al., 2013; Chariton et al., 2014; Lallias 373	
et al., 2014; Pawlowski et al., 2014; Willerslev et al., 2014; Guardiola et al., 2015; 374	
Lejzerowicz et al., 2015; Pochon et al., 2015; Boschen et al., 2016). 375	

Almost all marine benthic phyla were found in the sediments analysed and even with 376	
a conservative OTU clustering threshold of 97% and a limited number of samples, a 377	
wide diversity of OTUs was identified within the dominant phyla (Fig. 5, Fig. S2). 378	
The prevalence of nematodes and other meiofaunal groups is immediately apparent 379	
and confirms that meiofauna are an important component of the deep-sea benthic 380	
biodiversity. Such community composition is consistent with the slower rate of 381	
decline in the abundance and biomass of metazoan meiofauna from bathyal to abyssal 382	
regions compared to that of larger animals (macrofauna and megafauna) (e.g., Thiel, 383	
1975; Rex et al., 2006; Rex and Etter, 2010). However, the absence of some 384	
macrobenthic taxa (e.g. peracarid crustaceans) and particularly of megabenthos such 385	
as decapod crustaceans, sea cucumbers and fish, which are very common in the deep 386	
sea, can be partially explained by the limited volume of analysed sediment samples 387	
(i.e. less than 10 ml per core). The megafaunal (vertebrate) sequences found in our 388	
data clearly originate from extracellular DNA and illustrate well the potential of 389	
environmental DNA to inform not only on the organisms physically present in the 390	
sample but also on DNA traces of large sized species.  391	

In comparison with previous studies, we retrieved a lower proportion of metazoans 392	
than when the meiobenthos is isolated by decantation and sieving (45-1000µm size 393	
fraction) prior to DNA extraction (Creer et al., 2010; Fonseca et al., 2010; Bik et al., 394	
2012a; Bik et al., 2012c; Fonseca et al., 2014). This finding is consistent with recent 395	
comparisons between different sampling sizes (Brannock and Halanych, 2015). 396	
However, in terms of metazoan diversity, our approach of analysing the DNA 397	
extracted directly from sediments does not appear to have retrieved significantly 398	
different patterns of diversity, as the dominant phyla are similar using both 399	
approaches. Brannock and Halanych (2015) recommend the use of elutriated samples 400	
(with meiofauna extracted from the sediments) to increase the amount of metazoan 401	
reads recovered. However, such approach requires larger volumes of sediments, 402	
which are not always available in deep-sea research. Extracting DNA from raw 403	
sediments has the advantage of including more extracellular DNA, but also the risk of 404	
including DNA from non-benthic organisms. Another study based on abyssal 405	
sedimentary DNA suggested that the DNA of planktonic species might account for 406	
more than 30% of all eDNA preserved in seafloor sediments (Pawlowski et al. 2011), 407	
although our new results do not reflect these findings. The length of the amplified 408	
fragment likely explains the higher proportion of benthic diversity observed here. The 409	
DNA fragment sequenced in this study was significantly longer (approximately 450 410	
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bp) than the 150-bp-long V9 region used in Pawlowski et al. (2011). Comparison 411	
between different genetic markers or data obtained with different primer pairs should 412	
be considered with caution (Hadziavdic et al., 2014). For example, different markers 413	
will likely have different evolution rates that will additionally vary between 414	
taxonomic groups, leading to confusing taxonomic interpretations of the results 415	
obtained. However, overall, targeting larger DNA fragments will favour the 416	
amplification of DNA from living organisms, or that of recently dead individuals 417	
whose genomic content still persists in good condition in the environment. 418	
Considering the logistic difficulties to sample in the deep sea, and the additional bias 419	
induced during the meiofaunal isolation process (Bik et al., 2012c), sequencing the 420	
total sedimentary eDNA represents a good compromise for exploring the biodiversity 421	
of small-sized, deep-sea metazoans. 422	

Biogeographic patterns 423	

Broad spatial distributions are reported among small-sized eukaryotic taxa such as 424	
rotaliid foraminifera (Pawlowski et al., 2007; Gooday and Jorissen, 2012), nematodes 425	
(Vanreusel et al., 2010; Zeppilli et al., 2011) and harpacticoid copepods (Menzel et al., 426	
2011), as well as certain macrofaunal and megafaunal taxa (Sibuet, 1979; Allen, 427	
2008). However, in some cases, detailed morphological and/or molecular re-428	
examination of putative cosmopolitan species resulted in the recognition of cryptic 429	
species having much smaller distribution ranges (Moura et al., 2008; Brandão and 430	
Yasuhara, 2013; Krapp-Schickel and De Broyer, 2014; Yasuhara et al., 2014). The 431	
lower numbers of cosmopolitan taxa in our study originate either from higher than 432	
expected biodiversity or undersampling of the vast ocean-floor environment. 433	
Unfortunately, we cannot discriminate between these two hypotheses because the 434	
samples on which this study is based were collected opportunistically, with different 435	
numbers of samples and different sequencing depths at each location.  436	

Deep-sea habitat heterogeneity at larger spatial scales is poorly understood but is 437	
believed to play an important role in the maintenance of benthic biodiversity on the 438	
ocean floor (e.g. Levin et al., 2001; Van Gaever et al., 2009; Vanreusel et al., 2010; 439	
Durden et al., 2015).  Our data suggest a considerable degree of taxonomic 440	
differentiation, and hence biogeographic patterning, between the soft-sediment 441	
benthic communities that are represented by our eDNA samples (Figs 6,7). For 442	
example, the lower bathyal (1920-2160 m) polychaete data from the Lazarev Sea and 443	
Maud Rise (BY9) and those derived from upper bathyal (290-500 m) samples taken 444	
on the unusually deep Antarctic shelf (BY9Z) are strikingly different. This is 445	
inconsistent with the extended bathymetric ranges often observed among species 446	
living around the Antarctic continent (Brandt et al., 2007), but is not surprising given 447	
the distinctive nature of benthic communities on the western side of the Antarctic 448	
Peninsula (Scotia area; (De Broyer and Koubbi, 2014)). The composition of soft-449	
sediment communities in the lower and particularly the upper bathyal Andaman Sea 450	
provinces will almost certainly be influenced by the oxygen minimum zone in this 451	
region (Cedhagen et al., 2013). However, further biogeographic interpretation of our 452	
data would be inappropriate given the fact that our samples were obtained 453	
opportunistically from scattered locations. More extensive sampling, preferably 454	
targeted in relation to environmental gradients (e.g. depth, productivity, bottom-water 455	
oxygen levels), will be required in order to assess the full potential of eDNA 456	
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metabarcoding to explore the heterogeneity of deep-sea metazoan communities and 457	
their biogeographic patterns.  458	

Future challenges of deep-sea eDNA metabarcoding.  459	

From a molecular perspective, the main challenge for deep-sea metabarcoding studies 460	
is to find optimal molecular markers for metazoan species delimitation. Metazoa 461	
comprise highly diversified phyla with different rates of evolution (Johnson et al., 462	
2014) and selecting a region of rRNA genes that would have a similar taxonomic 463	
resolution for all species is virtually impossible. For example, based on 18S rDNA 464	
data publicly available, different species within the deep-sea mollusc genus 465	
Bathymodiolus share between 99.2 and 100 % identities, while species of the 466	
crustacean genus Paramunida share between only 91.5 and 99.4% identities and 467	
different genera within the cnidarian family Parazoanthidae share between 97.8 and 468	
99.7% identities. Consequently both 97% and 99% identity clustering thresholds will 469	
merge OTUs representing very different taxonomic ranks depending on the taxa 470	
concerned. Even within organisms, a recent study of deep-sea nematodes by 471	
Dell’Anno et al. (2015) demonstrates how significant intragenomic polymorphism can 472	
impact the interpretation of metabarcoding data. Due to the arbitrary nature of species 473	
definitions and evolutionary differences between metazoan taxa, such issue will 474	
remain crucial despite efforts made to improve the taxonomic assignments of high-475	
throughput sequencing data (Quince et al., 2011; Morgan et al., 2013).  476	

The widely used COI gene has been proposed as an alternative metabarcoding marker 477	
to compensate for the lack of resolution of 18S rDNA at species, genus, or even 478	
higher taxonomic ranks in meiobenthos taxa (Tang et al., 2012). However, finding 479	
conserved COI priming sites in all metazoans is even more problematic than for 18S 480	
rDNA (Deagle et al., 2014). Moreover, the level of codon saturation provided by COI 481	
precludes us from identifying OTUs without an accurate and complete reference 482	
dataset. A test study conducted in parallel with this research has shown that less than 483	
10% of the reads obtained for a standard COI fragment could be identified by BLAST 484	
(unpublished data). These results support published data on seagrass meadows where 485	
93% of the COI OTUs recovered remained unassigned (Cowart et al., 2015). 486	
Therefore, although the high-resolution power of COI for identifying species provides 487	
a significant advantage, the substantial inadequacy of available reference sequences is 488	
even more acute than for rRNA genes.  489	

From a taxonomic perspective, the main challenge for deep-sea biodiversity research 490	
is to expand the reference database. Deep-sea diversity remains largely unknown 491	
(Costello et al., 2010; Danovaro et al., 2010) and even when identified using 492	
molecular taxonomic approaches, high-level assignment cannot be achieved in many 493	
cases. Moreover, a complete and reliable reference database is not only needed for 494	
taxonomic assignment but is also essential for post-sequencing processing of the data 495	
(Edgar et al., 2011; Quince et al., 2011; Fonseca et al., 2014). As shown in Figure 5, 496	
the level of taxonomic identification depends on the group. For example, the copepod 497	
clade, several groups of nematodes, and one group of annelids include only a modest 498	
proportion of unassigned OTUs. However, other groups are almost entirely composed 499	
of unassigned OTUs, suggesting the absence of reference sequences in the database. 500	
Overall, the amount and clustering of the unassigned OTUs observed here suggest the 501	
existence of largely uncharacterized taxonomic groups and highlights the potential 502	
extent of the unknown diversity in the deep sea.  503	
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DNA barcoding and morphology-based taxonomy have sometimes been perceived as 504	
antagonistic approaches (e.g. Ebach and Holdrege, 2005; Trewick, 2008; Boero, 505	
2010). However, our results clearly emphasize the absolute necessity to increase 506	
taxonomic effort, including morphological analyses as proposed originally for DNA 507	
barcoding approaches (Hebert et al., 2003), in order to fully exploit the gigantic 508	
amounts of DNA data obtained by metabarcoding.  On the one hand, morphological 509	
examination of the specimens that compose benthic communities is not always 510	
possible and even when possible is often extremely time consuming and usually 511	
requires the expertise of specialist taxonomists. Such limitations apply especially in 512	
the deep sea, where samples are difficult to obtain and often limited in size. On the 513	
other hand, as discussed above and in Dell’Anno et al. (2015), interpretation of 514	
metabarcoding data is limited by the reference database available. Therefore, rather 515	
than being in competition, the two approaches complement each other in providing a 516	
concerted framework that can be used to obtain the most accurate estimation of 517	
marine biodiversity on our planet for both pure and applied environmental research. 518	
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 909	
Legend to the figures 910	

Figure 1: Proportions of deep-sea species with available DNA sequences on 911	
GenBank. The numbers are based on valid species described and registered in the 912	
World Register of Deep-Sea Species. The category “Other” groups Porifera, 913	
Bryozoan, Nematoda, Brachiopoda, Platyhleminthes, Sipuncula, Echiura, 914	
Chaetognatha, Nemertea, Ctenophora, Tardigrada, Hemichordata, Cephalorhyncha, 915	
Dicyemida, Acanthocephala, Entoprocta, Gastrotricha, Phoronida (listed by order of 916	
described species number). . Data accessed 17.10.2014. 917	

Figure 2: Map of the sampled regions. 1. Arctic (BY1 and BY1Z), 2. NW Atlantic 918	
(BY4b), 3. Mediterranean Sea (BY4), 4. Pernambuco Abyssal Plain (AB2), 5. Brazil 919	
Basin (AB3), 6. Argentinean Basin (AB5), 7. Southern Ocean (AB6 and BY9), 8. 920	
Antarctic Peninsula (BY9Z), 9. Andaman Sea (BY11), 10. NW Pacific (AB13). 921	

Figure 3: Taxonomic composition. a) Species richness, contribution of OTUs from 922	
different phyla to the total metazoan species richness for each province. b) 923	
Quantitative distribution of the reads from each phyla to the total amount of metazoan 924	
reads for each province. The number of metazoan reads obtained for each location is 925	
indicated above each column. The last column represents the proportions based on all 926	
locations. 927	

Figure 4: Order and family diversity. Proportions at order (inside chart) and family 928	
(outside chart) levels for a) nematodes, b) arthropods and c) annelids. Different shades 929	
of the same colour in the outside charts indiciate different families within each order. 930	
Detailed legends on the family charts are available in Fig. S1. 931	
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Figure 5: Phylogenetic distance tree obtained from all metazoan OTUs. OTUs 932	
unassigned using BLAST are named in red. Major taxa identified through 933	
independent BLASTs are highlighted. Names within quotation marks indicate taxa 934	
corresponding to OTUs that could not be reliably identified by BLAST but that were 935	
subsequently identified using the complete GenBank database and phylogenetic 936	
distance with reference sequences. Branch lenghts are representative of the genetic 937	
distances between sequences. 938	

Figure 6: A) Annelid OTU network. Small dots represent OTUs and larger discs 939	
represent provinces.  Lines connect OTUs to the provinces they were found. Lines are 940	
colored according to depth: blue = abyssal, red = lower bathyal, green = upper bathyal. 941	
B) Network of nematode OTUs shared by 6 provinces or more.  C) Network of all 942	
arthropod OTUs.  943	

Figure 7: Principal Coordinate Analyses (PCoA) plot of the beta diversity distances 944	
obtained from the unweighted UNIFRAC analyses on 100 independent resampling of 945	
4488 metazoan reads per province (most abyssal samples did not reach this threshold 946	
and were discarded from the analyses). Symbol colour correspond to the 947	
biogeographic regions, overlapping ellipses (most often masked by the symbols) 948	
represent the interquartile range. Grey triangles = BY9 (Southern Ocean with Lazarev 949	
Sea and Maud Rise), pink pentagon= BY1 (Arctic), petrol blue triangles = BY4 950	
(Mediterranea), green squares = BY11 (bathyal Andaman Sea), salmon squares = 951	
BY11Z (upper bathyal Andaman Sea), yellow diamond = BY9Z (upper bathyal 952	
Antarctic peninsula), blue hexagon = BY4b (NW Atlantic), purple circle = AB13 953	
(Abyssal NW Pacific).	954	

 955	

Supplementary material 956	

Table S1 : Sampling location and information. 957	

Table S2: List and sequences of the MID tags used. 958	

Figure S1: Order and family diversity (as in Fig. 4). Proportions at order (inside 959	
chart) and family (outside chart) levels for a) nematodes, b) arthropods and c) 960	
annelids. 961	

Figure S2: Phylogenetic tree of copepods. Reference sequences obtained from 962	
GenBank are represented in red. OTUs obtained in this study are in black. 963	

 964	

 965	

 966	

 967	

 968	

 969	
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 970	

 971	

Table 1: Amounts and proportions of reads/OTUs for each location. Maximum and 972	
minimum values are indicated in green and red respectively. 973	

Location Biogeographic 
region 

Eukaryota Metazoa Metazoan 
proportion (%) 

Reads OTUs Reads OTUs Reads OTUs 
Andaman S1 BY11 35390 1886 19210 396 54.28 21.00 
Andaman S3 BY11 41689 2278 18291 465 43.87 20.41 
Andaman S4 BY11Z* 14583 1515 4936 233 33.85 15.38 
Andaman S5 BY11Z* 16642 1267 7793 214 46.83 16.89 
Mediterranea 890 BY4 26059 1866 8374 280 32.13 15.01 
Mediterranea 950 BY4 10881 954 7002 189 64.35 19.81 
NW Atlantic BY4b* 42974 856 4488 123 10.44 14.37 
Japan Trench AB13 56946 1674 21550 248 37.84 14.81 
Pernambuco 
Abyssal Plain AB2 20564 1482 2324 165 11.30 11.13 
N Brazil Basin AB3 7651 934 446 100 5.83 10.71 
S Brazil Basin AB3 42480 2383 2658 201 6.26 8.43 
Argentinean 
Basin AB5 6829 576 1412 165 20.68 28.65 
Antarctic 
Peninsula BY9Z* 97456 722 67582 251 69.35 34.76 
Weddell Sea BY9 13295 979 2986 90 22.46 9.19 
Lazarev Sea BY9 11878 924 6543 110 55.09 11.90 
Maud Rise BY9 43974 2371 18600 316 42.30 13.33 
Arctic lower 
bathyal BY1 37866 2169 6191 258 16.35 11.89 
Arctic upper 
bathyal BY1Z* 3819 626 1522 132 39.85 21.09 
Total  530976 25462 201978 1568 38.04 6.16 

* indicates regions not listed in Watling et al. 2013, "Z" refers to upper bathyal depths, 974	
while BY4 was split to allow distinction between North Atlantic and Mediterranean 975	
Sea. 976	
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