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Abstract 11 

The common prawn (Palaemon serratus) supports a small-scale but economically important seasonal static-12 

gear fishery in Cardigan Bay, Wales (UK). Due to a lack of statutory obligation and scientific evidence, the 13 

fishery has operated to date without any harvest-control-rules that afford protection from overfishing. In 14 

response to fluctuations in landings and in pursuit of increased economic returns for their catch, some 15 

members of the fishing industry have adopted a size-selective harvesting regime, which we evaluate here 16 

using baseline data. Monthly samples were obtained from fishers operating out of five ports between 17 

October 2013 and May 2015 (n = 4,233). All prawn were sexed, weighed and measured, whilst the fecundity 18 

of females was estimated for 273 (44%) individuals. Peak spawning occurred during the spring and females 19 

were estimated to undergo a ‘puberty moult’ at a carapace length (CL) of 7.7 mm, whilst functional maturity 20 

was estimated at a CL of 9.9 mm. The sampled population exhibited sexual dimorphism, with females 21 

attaining a greater size than males. The current harvesting regime results in a sex bias in landings as even 22 

large mature males remained under the recruitment size to the fishery, unlike the large mature females. The 23 

temporal trend in sex-ratio indicates a continual decrease in the catchability of female prawn through the 24 

fishing season; however, whether this is caused by depletion via fishing mortality or migratory behaviour is 25 

yet to be resolved. Here, we provide a comprehensive baseline evaluation of population biology and discuss 26 

the implications of our findings for fisheries management. 27 
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INTRODUCTION 28 

The fishery for the common prawn, Palaemon serratus (Pennant 1777; Neal 2008), is relatively small 29 

compared to other European “prawn” fisheries (Nephrops norvegicus and Pandulus borealis); however, in 30 

the UK it has significant regional economic importance. In Cardigan Bay (Wales), the fishery accounts for 31 

~76% of total UK landings (estimate from 2013; MMO, 2015). Commercial exploitation of prawns in 32 

Cardigan Bay is exclusively an inshore static-gear pot fishery, with most vessels working within six nautical 33 

miles of the coast. The fishery begins to target prawn in early autumn and continues through to the following 34 

spring (Cardigan Bay Fishermen’s Association (CBFA) pers comm.). The fishing season is dictated by the 35 

reproductive migrations of P. serratus, which are thought to move inshore to release larvae during the 36 

summer and then move offshore in winter. Similar seasonal migrations are reported in a range of palaemonid 37 

species, including for P. serratus in other regions (Guerao & Ribera, 2000; González-Ortegón et al., 2006). 38 

The seasonal migration of prawns inshore in the summer decreases static gear catches to levels that are no 39 

longer economically viable (CBFA pers comm.). Nonetheless, the Cardigan Bay prawn resource is integral in 40 

maintaining the economic viability of many fishing businesses as it provides income during a time of the 41 

year when the catchability of other target species, such as European lobster (Homarus gammarus), is low. 42 

The fishery is therefore an important element in a necessarily diverse static-gear sector. 43 

Commercial demand for a larger-sized prawn has resulted in the introduction of voluntary size-grading of 44 

catch by fishers. Since 2008, many Cardigan Bay fishers have used a 10 mm bar-spacing riddle (CBFA pers 45 

comm.). Prawns that fall through the bars and into the sorting box are discarded overboard, whilst prawns 46 

retained by the riddle are stored onboard, usually within small viver systems.  47 

As with many small-scale artisanal fisheries, the Welsh prawn fishery is considered data-poor, with little 48 

information pertaining to the fisheries biology of the species. Combined with limited management and the 49 

lack of a formal stock-assesment, there is considerable uncertainty about the future sustainability of the 50 

fishery. Indeed, fluctuations in inter-annual landings in the Irish fishery (Fahy & Gleeson, 1996; Kelly et al., 51 

2009) suggest a variable biomass that may be vulnerable to periodic overfishing or recruitment failure in the 52 

absence of management. Understanding the interaction of fishing activites with the species biology is 53 

necessary to inform future evidence-based management of the fishery and more generally, understanding the 54 

reproductive biology of a fished species is critical information when considering ‘supply-side’ ecology of 55 

benthic populations with economic value (Underwood & Fairweather, 1989; Anger, 2006). 56 
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The common prawn is patchily distributed throughout European inshore waters (Kelly et al., 2009) and 57 

occurs between the Mediterranean Sea in the south and the temperate coastal waters of the United Kingdom 58 

and Ireland in the north (Forster, 1951). Although the longevity of the species has been speculated to be up to 59 

five years (Cole, 1958; Forster, 1959), P. serratus are more likely to have a relatively short life span, with 60 

individuals persisting for between two to three years (Forster, 1951; Fahy & Gleeson, 1996). Similar to other 61 

palaemonids, P. serratus is sexually dimorphic, with adult females attaining significantly larger sizes 62 

(Forster, 1951;  Berglund, 1981). Sexual dimorphism may influence mortality rates between the sexes, from 63 

both size-selective commercial exploitation and natural mortality through predation (Berglund & Rosenqvist 64 

1986). For female palaemonids, a larger body size also allows for increased fecundity (Guerao et al., 1994). 65 

Compared to other similar species, P. serratus broods contain larger eggs with high nutritional values 66 

(Morais et al., 2002), which are thought to reflect environmental conditions and increase successful 67 

recruitment through the larval phase (Parker & Begon, 1986). The planktonic larval phase is characterised by 68 

temperature dependent periods of incremental growth and metamorphis (Reeve, 1969a; Kelly et al., 2012), 69 

while salinity has been shown to influence mortality rates during the early life stages (Kelly et al., 2012). 70 

 The aim of this research was to fill the knowledge gaps for this data-poor fishery by presenting baseline 71 

catch and population biology characteristics (length frequency, sex ratio, size at maturity) during the adult 72 

stage of the species life-history and to highlight several potential implications of a mandatory technical 73 

conservation measure of riddling catches at 10 mm. 74 

MATERIALS AND METHODS 75 

In August 2013, six commercial fishermen operating from five different ports in Cardigan Bay, Wales, were 76 

each given three standard prawn traps (referred to hereafter as “science pots”). The cylindrical pots were 77 

fitted with 8 mm mesh on all sides with 35 mm circular entrance at both ends. Once a month, when possible, 78 

each fisher recorded the date and GPS location of a haul and the entire contents of each science pot were kept 79 

separate and stored frozen. Samples were retained for scientific analysis during two fishing seasons (2013-80 

2014 and 2014-2015), ending in May 2015.  81 

<figure 1> 82 

 83 

Scientific pot samples were assessed in the laboratory using a dissecting microscope. All animals caught in 84 

the science pots were identified, weighed and measured. Palaemon species were identified according to the 85 
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illustrated key published by González-Ortegón & Cuesta (2006). Sex was recorded; male prawns were 86 

identified by the presence of an appendix masculina on the second pleopod pair. All morphometric 87 

measurements were recorded to the nearest 0.1 mm and included the carapace length (CL; the distance 88 

between the posterior of the eye-orbit to the posterior of the cephalothorax carapace segment), carapace 89 

width (CW; the widest point of the cephalothorax carapace) and pleura width (PLW; the widest section of 90 

the second abdominal pleura). The reproductive state (ovigerous or not) was also noted for female prawns 91 

and the fecundity of ovigerous females were calculated from a subsample of 10% of the entire egg mass (wet 92 

weight). The fecundity was estimated using the following formula (1); where ϒ indicates the subsample 93 

calculated as a proportion of the total eggs mass (T), which was then used to calculate fecundity (F).  94 

Υ(approx.=0.1) =
Weightsubsample 

Tweight

 95 

F =
Countsubsample

Υ
         (1) 96 

All statistical analyses were run in “R” (R Core Team, 2014). Prior to statistical modelling data were tested 97 

for normality using the Kolmogorov-Smirnov test and inspected visually using a Q-Q plot. 98 

Heteroskedasticity was tested using Levene’s test and a Cook’s distance plot was used to check for outliers. 99 

A Hartigan’s dip test was used on length distribution data for non-unimodality. The likelihood of the sample 100 

having a 1:1 sex-ratio was tested using a G-test. Since we were not able determine size-at-age for the 101 

sampled population, age cohorts are inferred from the observed length distribution. A mixed population 102 

approach was used to determine statistical differences between sexes and cohorts within a mixed bi-modal 103 

dataset. Using the R packages “MIXTOOLS v1.0.3” (Young et al., 2015) and “MIXDIST v0.5-4” 104 

(Macdonald & Du, 2011), the mean and standard deviation of the two modes in aggregated male and female 105 

length distribution data is presented alongside a goodness-of-fit Chi-square test. We use the results to 106 

evaluate the length distributions of immature and mature populations as well as sexual dimorphism within a 107 

single mixed-population cohort. 108 

 109 

The size of functional maturity was estimated by relating growth parameters (CL) and ovigerous status 110 

(binary variable, where 0 = no eggs and 1 = gravid) of females using a logistic regression model (Roa et al., 111 

1999) reformulated by Walker (2005) to give: 112 
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𝑃𝑖 = {1 + 𝑒 
− ln(19)(

CL𝑖−CL50
CL95 − CL50

)
 }

−1

       (2)  113 

where Pi  is the proportion of the female population gravid at a given CL. Model parameters were estimated 114 

using generalized linear model with logit link function and a binomial error structure. Confidence intervals 115 

were added by bootstrapping the generalized linear model (1000 runs). The base R code was constructed by 116 

Harry (2013) and is available online. 117 

To describe morphometric maturity and determine at what CL positive allometry occurs, an iterative search 118 

procedure was used whereby PLW is modelled against CL for male and female populations separately using 119 

piecewise linear regression. The analysis examines the linear morphological relationship (CL:PLW) and 120 

searches for significant deviations between male and female growth patterns, indicating sex-specific 121 

morphological changes in preparation for sexual reproduction described as a “puberty moult” (Hartnoll, 122 

2001). The method searches each potential “breakpoint” or “inflection” (c) within a predetermined range 123 

until the model has found the point at which the total residual mean standard error is minimised (Crawley, 124 

2007). The model simulation then produces a value (CL) at which the linear models above and below the 125 

breakpoint c show the statistically strongest inflection. The model applied to both male and female datasets is 126 

described mathematically using the equation 3. 127 

𝑦𝑖 =  {
𝛽0 + 𝛽1𝐶𝑊𝑖 ,   𝐶𝑊𝑖 < 𝑐
𝛽2 + 𝛽3𝐶𝑊𝑖 ,   𝐶𝑊𝑖 ≥ 𝑐

}        (3) 128 

where yi is the CL of individual i, c is a breakpoint (inflection) between linear relationships applying above 129 

and below the value of carapace length equal to c, and the β parameters are the intercepts and slopes of the 130 

two linear relationships.  131 

In order to relate the morphological estimate of population characteristics, fisheries catches (CL) results are 132 

converted to CW using the following equations (4) produced by linear regression (p < 0.05): 133 

CWMale = 0.563CLMale + 0.643 134 

CWFemale = 0.6389 CLFemale − 0.297      (4) 135 

Individuals with a CW < 10 mm are assumed to be discarded through the use of a 10 mm spaced riddle. 136 

RESULTS 137 
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Severe weather conditions during the 2013 and 2014 fishing seasons limited the fishing opportunities and the 138 

number of individual prawns that could be sampled within that season (n = 765). In total, fishers returned 82 139 

pot-samples and 4,233 P. serratus underwent laboratory analysis (table 1). 140 

<Table 1> 141 

 142 

Sexual dimorphism and riddling 143 

Sexual dimorphism was evident in the length distributions of all samples. Moreover, prawn populations 144 

showed bimodal distributions when data was aggregated by fishing season and location (Hartigan’s dip-test; 145 

DMale = 0.95, DFemale = 0.04, p-value < 0.001). The majority of male prawns and the smaller sized cohort of 146 

female prawns caught in the small mesh science pots were of a size that would be discarded  using the 10 147 

mm riddle employed by Caridgan Bay fishers (Fig 2).  148 

<figure 2> 149 

 150 

Carapace width varied significantly between sexes and two cohorts were identified using a mixed population 151 

cohort analysis (1+ and 2+; summary statistics and ANOVA results in Table 2a). Table 2b compares 152 

dimorphism highlighted by Forster (1951) and the present study. A higher proportion of the males (78.3 %) 153 

caught were smaller than 10 mm CW compared to the females (39.7 %) in catches. 154 

<Table 2> 155 

The maximum size observed  in the sampled population showed females grew to a size considerably greater 156 

than males, whilst the length distribution of catches show that the average male prawn within the 2+ cohort 157 

does not reach a size at which it recruits into the Cardigan Bay prawn fishery.  158 

 159 

Sex ratio 160 

The sex-ratio of catches varied significantly from the expected 1:1 ratio, with both male and female directed 161 

skews being observed throughout the sample period (Fig 3a) 162 

<figure 3> 163 

 164 
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For all locations sex-ratios were female skewed in autumn and winter samples, with a higher proportion of 165 

males caught in spring. Where an extended time-series was available from a single location, data exhibited 166 

strong temporal trends in the sex-ratio and declining abundance of females as the fishing season progressed 167 

in New Quay (3b); however, the data trend was less clear in the samples from Aberystwyth (Fig 3c). 168 

Size at maturity (SOM)  169 

Using an iterative search procedure, an inflection point was detected in the linear relationship between CL 170 

and PLW in the female dataset. The data suggests that for pleura morphometrics, males display an isometric 171 

growth pattern and females an allometric growth pattern. For females, the CL:PLW inflection point was 172 

detected at 12.5 mm CL (Fig 4).  173 

<figure 4> 174 

 175 

Size at maturity (L50) 176 

Maturity is expressed as L50, which is the size (CL) at which 50% of the females were observed to be gravid 177 

(carrying eggs). The maximum likelihood estimate of L50 estimated by the generalised linear model with a 178 

binomial distribution was 15.9 mm CL (upper and lower confidence intervals = 16.4 mm and 15.4 mm CL 179 

respectively; Fig 5). 180 

<figure 5> 181 

 182 

Fecundity 183 

Of the 616 gravid prawn that were captured by scientific pots, 273 (44%) were analysed for fecundity using 184 

the equation described (1). Prawn ranged in size from 14.2 mm to 25 mm (CL) and produced fecundity 185 

estimates of between 221 and 5,121 eggs per animal. 186 

<figure 6> 187 

A Spearman’s correlation was run to assess the relationship between CL and fecundity. There was a strong 188 

positive correlation, which was statistically significant (rS = 0.48, p <0.001) and is explained by the power 189 

relationship below (figure6; equation 5). The fecundity data exhibits a high degree of variability with CL 190 
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explaining just 22.2% of the variation in fecundity. Data points shown as triangles represent available 191 

fecundity data from Forster (1951). 192 

Fecundity = 92.546 𝑒0.1465 𝐶𝐿      (5) 193 

 194 

DISCUSSION 195 

Sexual dimorphism   196 

Our results confirm that P. serratus in Cardigan Bay are sexually dimorphic, with females occupying a 197 

broader length-distribution than males in the sampled populations. These results mirror the sexual 198 

dimorphism that has been reported elsewhere for Palaemon serratus (Guerao & Ribera, 2000) and many 199 

other Palaemon spp, with typically slower growth rates and smaller sizes in males. (e.g. Berglund, 1981; Ito 200 

et al., 1991; Bilgin et al., 2009; Al Maslamani et al., 2013). 201 

The evolutionary cause for dimorphism in this species is likely to have resulted from selection based on the 202 

differing reproductive roles of the sexes (Shine, 1989). The current size-selective exploitation and resulting 203 

pressure on mature females could potentially result in evolutionary responses that change growth and 204 

reproductive patterns at a genetic level (e.g Conover & Munch, 2002; Walsh et al., 2006; Swain et al., 2007). 205 

Given the short life span of P. serratus, fishery-induced responses such as decreasing size-at-maturity and 206 

size-at age may occur over a timescale of years or decades (Reznick et al., 1997; Thompson, 1998; Koskinen 207 

et al., 2002; Stockwell et al., 2003), a phenomenon that has been demonstrated in a number of other 208 

exploited populations (e.g Grift et al., 2003; Olsen et al., 2004; Barot et al., 2004). Indeed, the selection 209 

pressure towards large females and potential decrease in growth rates may have a negative effect on the 210 

value of the species in the long term, which runs contrary to the larger prawns desired by the market. Hence 211 

it is important to continue monitoring these life history characteristics, in order to determine any long term 212 

changes, particularly in females. It would also be valuable to compare populations with varying degrees of 213 

commercial exploitation. 214 

Length frequency and commercial fishing 215 

At present, the fishery is not subject to any statutory harvest-control-rules or technical-measures that aim to 216 

encourage sustainable exploitation of prawn populations in Welsh waters in addition to the requirement for 217 
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commercial fishers to hold a shellfish license. The voluntary riddling of catch using either a 10 mm riddle or 218 

> 10 mm pot mesh by some fishers ensures both a better market price and may return as many as 40% of 219 

females to sea including sexually immature individuals. Since the grading of prawns is an entirely voluntary 220 

practice, it is not possible to determine the relative proportion of common prawn landings in the UK that 221 

have been graded at sea, on the quayside or not at all. Whilst the mortality rate amongst prawns discarded at 222 

sea is still to be determined, personal observations indicate a very high level of mortality when prawns are 223 

graded on the quayside. The absence of information on discard mortality rates calls into question the real 224 

value of the riddling practice, particularly since the mortality rate is likely to be high. If the rate of mortality 225 

amongst discarded prawn is at a significant level, the sex-specific consequences of riddling may not be as 226 

severe as the data suggests. Nonetheless, there is a need to ensure that riddling is done at sea over fishing 227 

grounds and habitat from which the prawn were removed. Some fishermen argue that a larger mesh size on 228 

the fishing gear is a more appropriate conservation measure. We suggest that a gear comparison trial be 229 

conducted to determine the gear design that maintains catchability whilst promoting the escape of undersized 230 

prawn. Importantly the interaction between riddling and size-selectivity (i.e that a riddle will retain prawn 231 

only of a size ≥ 10 mm) is an assumption in this study and not empirically validated. Future research needs to 232 

collect data on retention rates of a known size distribution of animals being graded in order to evaluate the 233 

real the real size and sex specific implications of the technical measure. 234 

In 2008, when voluntary measures were adopted by some Cardigan Bay fishers, it was hoped that the 235 

discarding of small prawn at sea would provide additional ecological and economic value by improving 236 

market prices and releasing immature prawns to improve yield-per-recruit and spawner-per-recruit 237 

respectively (CBFA pers. comm.). Our results show that by applying a size-selective harvesting regime, the 238 

Cardigan Bay prawn fishery subjects the female population to a much higher level of removal relative to the 239 

male population. Indeed, the immediate consequence of the quasi-minimum-landing-size would have been 240 

the discarding of approximately 78% of male prawns caught in pots, compared to a female discard rate of 241 

approximately 40% on average throughout the fishing season. The bi-modal distribution of size-frequency 242 

data was present in all spatial and temporal combinations, representing a strong indication that two cohorts of 243 

prawns are present during fishing the season. With the assumption that commercial activities select prawn at 244 

a size 10 mm CW under the voluntary MLS, data shows females are recruiting into the fishery in their 245 
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second year at a mean size of 12.32 mm CW (SE ± 1.22). However, fewer 2+ males are recruited into the 246 

fishery, as the average male in their second year is 9.64 mm CW (SE ± 0.84).  247 

Our study shows similar patterns in length-cohort distribution to previous studies. Forster (1951) reported 248 

female population attaining a greater modal size than males within the 2+ cohort (TLMo
♀ ≈ 92.5 mm; TLMo

♂ ≈ 249 

77.5 mm). The above values are comparable to those reported in this study; however, the historical data 250 

indicates a smaller average size of prawn within the 1+ group than we observed in this study (see table 2b), 251 

although the difference is unlikely to be significant. The difference in 1+ size is likely to be as a consequence 252 

of differing sampling methods employed by the two studies; Forster (1951) using fishery independent trawl 253 

surveys in contrast to the present study, which used fishery-dependent ‘science pots’, which were fished 254 

alongside commercial gear and therefore targeted the larger prawns. 255 

Sex bias in the fishery 256 

A consequence to size-selective fishing and higher rates of removal of female prawn may be evident in the 257 

temporal trend of sex-ratios (Figure 3a), representing sex-overfishing on a regional scale. However, Fig 3b 258 

and 3c shows that decreasing catchability of female prawn is location specific, with samples from 259 

Aberystwyth showing a near 1:1 sex ratio late into the fishing season in comparison to fishing grounds to the 260 

south, although the proportion of females in spring is still lower than during winter. The decreasing 261 

abundance of females in catches marks the end of the prawn season as it is perceived by fishers as a 262 

weakening fishery that yields less marketable catch. Seasonal variation in sex-ratios have been observed in a 263 

range of palaemonid species (see Kim, 2005; Al-Maslamani et al., 2013) and has been attributed to 264 

differential migration patterns, seasonal habitat preferences and possibly mortality between males and 265 

females (Berglund, 1981). Female P. serratus are known to migrate between habitats to release larvae in 266 

Wales (Haig et al. unpublished data) and hence it is unsurprising that we observes temporal and spatial 267 

changes in sex-ratio as the fishing season progressed in Cardigan Bay as this may reflect localised 268 

differences in timing of migration or habitat availability. 269 

On a regional scale, fishing behaviour follows an inter-annual pattern whereby fishers in the south 270 

experience the onset of the fishing season, with fishing opportunities gradually opening in a northward 271 

direction along the Cardigan Bay coast (pers. obs. and CBFA pers comms.). Similarly, fishing opportunities 272 

decline earlier in the south relative to the north, with fishermen from Aberystwyth and Aberdovey continuing 273 
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to fish for months after fishing has ceased to be commercially viable in Fishguard and New Quay (pers. obs. 274 

and CBFA pers. comm.). Fishermen therefore hold the view that females migrate in a northerly direction, 275 

sustaining different rates of catch in different areas through the season. The scientific evidence presented 276 

here neither validates nor disproves this view on the migratory behaviour of prawn in the region. Further 277 

fisheries independent research (ideally using mark recapture methods) is required to determine if the 278 

observed patterns in female catch indicate sex-overfishing, decreasing catchability as a result of seasonal 279 

migration by females, or a cumulative response to both of these. 280 

The potential for sex-overfishing identified by this study may have consequences on recruitment levels in the 281 

future, although the life-history of palaemonids (highly fecund and typically multiple broods per season) may 282 

safeguard it against depletion events. The data show female skewed catches in the early period of both 283 

fishing seasons (Emmerson et al., 2014), which indicates the population has a degree of resilience in 284 

sustaining size-selective fishing at present effort levels, the research presented here cannot draw a conclusion 285 

with regards to sex-overfishing in the absence of both long-term datasets and evidence pertaining to adult 286 

migration patterns. 287 

Size at maturity 288 

Crustacean fisheries are most commonly managed in the UK using a minimum landing size (MLS), 289 

appropriated by maturity characteristics. In order to determine a valid MLS in decapod crustaceans, maturity 290 

indicators such as morphological sexual maturity and functional maturity can be applied (Waddy and Aiken, 291 

2005; Pardo et al., 2009). Size at maturity has been determined from allometric growth parameters (e.g. 292 

Hartnoll, 1974; Little & Watson III, 2005; Claverie & Smith, 2009) and specifically the CL:PLW 293 

relationship in Palaemonidae species (Cartaxana, 2003). In this study, the pleura has been shown to undergo 294 

allometric growth in female P. serratus, which expand the brood chamber in preparation for egg carriage at a 295 

size CW = 7.7 mm. At this point, females undergo an expansion in the PLW relative to males as they 296 

continue to grow. It is highly likely that this dynamic allometry amongst females represents a physical 297 

change of the abdomen in preparation for egg bearing and thus a sign of sexual maturity.  Only 1.5% (n = 9) 298 

of ovigerous females were observed at a size below our estimate of morphological size at maturity, implying 299 

a high degree of confidence in the results of the iterative search procedure used. A total of 18.6 % of females 300 

(n = 361) captured by scientific pots throughout this study had a CW < 7.7 mm and were assumed to be 301 
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sexually immature. With a CW < 10 mm, immature female prawn that have yet to develop their brood 302 

chamber and are released by Cardigan Bay fishers onto the fishing ground from where they were captured.  303 

The size at morphological sexual maturity supports the results from this study’s estimate of functional 304 

maturity (L50), with the results implying that female prawn undergo a puberty moult at an estimated size CW 305 

= 7.7 mm, whilst 50% of females are able to contribute to the reproductive capacity of the population by the 306 

size CW = 9.9 mm (15.9 mm CL). In this way, the voluntary measure of releasing prawn below CW = 10 307 

mm by CBFA fishers has been shown to be a potentially valuable conservation measure. The CL50 reported 308 

here is greater than that reported in similar studies elsewhere for the species (Ireland; CL50 = 12.5mm; Kelly, 309 

2009), though similar to previous estimates for the Welsh population (CL50 = 16.5; Huxley, 2011). 310 

Fecundity 311 

P. serratus were found to carry between 221 and 5,121 eggs at any one time (mean average = 1,916). This is 312 

similar to estimates published by Forster (1951), who found large prawn (TL = 105 mm) carry up to 4,282 313 

eggs and within a similar range of other Palaemonidae species (Corey & Reid, 1991). The fecundity (number 314 

of eggs carried) of female prawns was positively correlated with body size (CL); however, there was a high 315 

degree of variability between individuals and CL only explained ~23% of the variation. Studies of similar 316 

species (P. elegans, P. adspersus and P. xiphias) report R2 values > 0.95 (Guerao et al., 1994; Cartaxa, 2003; 317 

Bilgin & Samsun, 2006). Different methodologies for estimating fecundity may be the reason behind the 318 

variable R2 values reported here and in the published literature. In particular, previous fecundity estimates 319 

were derived from the number of eggs at stage 1 (e.g Guerao et al., 1994) in order to account for egg loss 320 

during incubation, which can be the result of mechanical stress or parasites (Glamuzina et al., 2014) and has 321 

been reported to be as high as 38% in this species (Reeve, 1969 in Zimmermann et al., 2015). Egg counts by 322 

developmental stage were unavailable in this study, which is the likely explanation for the high variability in 323 

the fecundity estimate.  Nonetheless, the results are within the range reported for the species, as shown in 324 

figure 6, and provide an important baseline from which to further understand the reproductive capacity of the 325 

Welsh P. serratus population by providing an estimate between the numbers of eggs laid on pleopods during 326 

spawning and the total that eventually hatched. 327 

Fecundity can be influenced by temporal-spatial variations of environmental factors such as depth (e.g P. 328 

naval; Thessalou-Legakiand, 1992), mean bottom temperature (e.g P. borealis; Parsons & Tucker, 1986) and 329 
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habitat (e.g E. modestus and P. gravieri; Oh & Park, 2000). We recommend future studies pay particular 330 

attention to the problem of egg loss during brooding on pleopods by staging eggs using the criteria outlined 331 

in Guerao and Ribera (1995). Preservation of samples would permit a more accurate estimate of real 332 

fecundity, which should incorporate egg stage, size-dependent egg losses and egg-quality into the fecundity 333 

estimate. The limited scope and resources dedicated to the present study has constrained the data available 334 

for our fecundity estimate; however, it provides a useful baseline from which to continue monitoring. 335 

Management  336 

The aim of this research was to provide a series of region-specific indicators that can be used by fisheries 337 

managers in the Cardigan Bay prawn fishery to guide biologically appropriated management measures. The 338 

voluntary measures employed by some fishing industry members in Cardigan Bay are effective at protecting 339 

50 % of the female brood stock in their catch providing the discard mortality rate is low. The process of 340 

grading prawn on the deck of a commercial fishing boat can be resource intensive and fishers have 341 

engineered bespoke riddle systems or replaced gear for larger mesh traps that may increase the efficiency of 342 

the gear in selecting larger prawn. While the results presented here demonstrate the potential ecological 343 

benefits of using either a larger mesh size, or a riddle in the prawn fishery, many commercial operations do 344 

neither (CBFA pers. comm.). Given the potential economic and ecological value of increasing the size prawn 345 

reaching the market and the reluctance of some industry members to alter their fishing strategy, a 346 

comprehensive analysis of technical options should be explored. This might include the effectiveness of 347 

escape panels and minimum mesh-sizes (Fothergill, 2006), which would allow animals to escape before 348 

being exposed to increased stress and mortality rates associated with handling. 349 

The limited evidence presented here suggests that there has not yet been an observable effect of overfishing 350 

on size-at-maturity of females in Cardigan Bay. However, declining CPUE in other exploited populations on 351 

the coast of Ireland suggest that overfishing can occur (Fahy & Gleeson, 1996) and hence long term 352 

monitoring of any changes should be included as part of ongoing fisheries management. At present, there are 353 

no statutory requirements to collect size at maturity data on P. serratus despite it being recognised as an 354 

important parameter for fisheries management. Ideally, these investigations would be replicated at an 355 

appropriate temporal scale; and given the short-life span of P. serratus, we recommend biennial replication. 356 

Given the potential for sex-overfishing within a size-selective harvesting regime in the Welsh prawn fishery, 357 
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the extent of which is yet to be fully understood, affording a scientifically-validated level of protection to 358 

juvenile females via a MLS would be a valuable safeguard against recruitment failures in the future. 359 
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FIGURE LEGENDS 511 

Fig 1 The homeports for the six active Palaemon serratus fishers in Cardigan Bay, Wales; who 512 
contributed monthly samples (when possible) during the prawn fishing seasons from 2013, 2014 513 
and 2015. Ports are numbered north to south and are as follows: 1, Aberdovey (2 fishers); 2, 514 
Aberystwyth; 3, New Quay; 4, Cardigan; 5, Fishguard 515 

 516 

Fig 2 A length frequency histogram with a probability density function for male (above) and 517 
female (below) Palaemon serratus caught in science pots during the 2013-2015 Palaemon serratus 518 
research period in Cardigan Bay. The solid vertical red line represents the voluntary sorting size 519 
(10 mm CW) used by many fishers in Cardigan Bay 520 

 521 
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Fig 3a The sex-ratio of prawn (Palemon serratus) caught in science pots from during the 2014 / 522 
2015 in Cardigan Bay and 3b the sex ratio of catches in localised datasets from New Quay and 3c 523 
Aberystwyth 524 

 525 

Fig 4 Inflection point indicating allometric growth based on morphometric variance between 526 
iterative tests on linear models of PLW and CL for the prawn Palaemon serratus. The dotted 527 
vertical line is the value with the lowest mean standard error (12.5 mm CL). Solid black line shows 528 
the linear male relationship. Hashed line shows the allometric female relationship after inflection 529 
event 530 

 531 
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Fig 5 Functional maturity model fit for female prawn (Palaemon serratus) from Cardigan Bay 532 
(Wales) with 95% CIs as indicated by the presence or absence of eggs. The horizontal line 533 
represents L50 (15.9 mm CL) for the females sampled within period of peak spawning (April; n = 534 
544) 535 

 536 

Fig 6 Fecundity of gravid prawn (Palaemon serratus) from Cardigan Bay (Wales) with size (CL) 537 
(n = 273). The solid line shows the power relationship between the correlating variables CL and 538 
Fecundity (p < 0.001; R2 = 0.222). The red triangle points and associated hashed trendline show 539 
the fecundity data available from Forster (1951). 540 
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