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1. Abstract 

This paper reports attempts to optimise the chemical modification of wood impregnated 

with polybutylene succinate oligomers (OBS). OBS impregnation at temperature and 

subsequent heating to induce in-situ polymerisation led to high OBS uptake, but limited 

dimensional stability. However, subsequent water soaking followed by drying enhances 

wood dimensional stability in both high humidity environments and in liquid water. To 

enhance OBS treatment and performance, it was found that OBS impregnation followed 

by wet heat or water soaking and a second heating step, promoted oligomer migration 

into wood cell walls. These combined treatments provided modified wood with anti-

swelling efficiency at 95% relative humidity (ASE*
95%RH) values of 55 to 70 %. 

 

Keywords: bio-polymers, dimensional stabilisation, poly(butylene succinate), 

poly(lactic acid), wood modification 

2. Introduction 

Enhancing the properties and performance of wood has been extensively studied over 

many decades. During this time, a range of wood treatments have been developed and 

commercialised to improve the strength, hardness and durability of treated woods (Hill 

2006; Rowell 2005; Lande et al. 2004; Chang and Chang 2002; Ibach 2005; Xie et al. 

2005; Belgacem and Gandini 2008; Choura et al. 1997). With an increasing awareness 

of sustainability and the emergence of bio-derived materials, there is also a similar need 

to consider more environmentally benign options for treating wood. Recently a 

promising wood modification using biopolymers based on glycolic and lactic acids and 

polybutylene succinate and polybutylene adipate esters was reported. Wood was treated 

with these polyesters in their oligomeric forms via a bulk impregnation and then 

polymerised in-situ within the wood to variously enhance wood properties such as 

dimensional stability (Noël et al. 2015a, 2015b, 2015c; Vitkeviciute, 2015). However, 

across these biopolyester treatments, differing degrees of impregnation and cell wall 

infiltration were observed, with corresponding variations in the in-situ polymerisation 

and wood properties (Figure 1). This was most contrasted by the polylactic acid (PLA) 

oligomer (OLA) and polybutylene succinate (PBS) oligomer (OBS) ester treatments. 
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Figure 1: Comparison of PLA and PBS oligomers efficiency for wood modification in relation to the 

cell wall modification 

On impregnating oligomeric esters into wood, OLA-based treatments were revealed to 

be cell wall bulking, whereas OBS treatment remained lumen-filling only (Figure 1) 

(Noël et al. 2015a). This manifested in wood properties where OLA esters led to very 

good dimensional stabilisation (up to 75% ASE), but increased brittleness of the treated 

wood (unpublished results). In contrast, OBS esters (70% of polymers weight uptake in 

wood) decreased the wood hygroscopicity, but were found to provide only limited 

dimensional stabilisation (Noël et al. 2015a), most likely because of a highly hindered 

capillary conduction. In comparison to untreated wood exposed at high humidity, a 

lower equilibrium moisture content of OBS treated wood with identical resulting 

swelling can be explained by the partial OBS solubility. OBS oligomers are partially 

solubilized and transported to the cell wall. The swelling observed during high humidity 

exposure is thus due to water and oligomers diffusion and explains the decreased EMC. 

The OBS ester treatment did not influence the mechanical properties of the treated 

wood. Furthermore, as part of ASE evaluations, treated wood was observed to variously 

leach polyester materials when initially in contact with water on testing. While the 

leaching was considered relatively high for OLA treatments, the OBS oligomers 

appeared retained within the wood structure on water leaching, with only 20% of 

polymer loss (Noël et al. 2015a).  

 

An aspect of OBS polyester treatment and testing was an unexpected improvement in 

ASE cyclic humidity testing performance after initial water soaking. Original, unleached 

OBS treated samples show no ASE*
95%RH as the cell walls were not impregnated (Figure 

1). However, OBS treated samples initially exposed to water as part of leaching 

resistance testing were subsequently observed to have substantially improved properties 

as evidenced by high ASE*
95%RH values and no detrimental impact to mechanical 

performance (Noël et al., 2015a). This unanticipated finding has prompted a further 

evaluation of biopolyester treatments using OBS oligomers together with attempts to 

optimise the processing of treated wood. This has included an evaluation of temperature 

and in-situ polymerisation times together with water treatment conditions to enhance 

OBS penetration into wood cell wall and wood property enhancement. Ultimately, the 

goal of this study is a range of tailored biopolyester treatments for the enhancement of 

wood stability and performance. 

3. Experimental methods 

3.1. Synthesis of the PBS oligomers (OBS) 

Oligomeric polyesters were synthesised by their direct polymerisation under vacuum, 

using a four-necked flask fitted with a magnetic stirrer and reflux condenser linked to an 
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inline cold trap and vacuum pump. Thermometers were used to observe the 

polymerisation, condenser head, and heater temperatures. 

Oligoesters (OBS) were synthesised by melt polymerisation of dimethyl succinate and 

1,4-butanediol. This was achieved by adding a 25% stoichiometric excess of 1,4-

butanediol in the presence of titanium (IV) butoxide as esterification catalyst. A mixture 

of dimethylester, 1,4-butanediol, and catalyst was poured into the flask under a nitrogen 

purge. The mixture was gradually heated to 180˚C over 130 min under reduced pressure 

(150 mbar). At the end of the reaction, oligomers were poured into bottles, sealed and 

cooled. OBS esters solidify as a white block on cooling. The melt temperature of the 

resulting oligomeric OBS material was rheologically measured at ca. 75˚C. 

3.2. Wood treatment 

Wood OBS oligomer treatments followed a published processing procedure (Noël et al. 

2015a). Wood samples were immersed in liquid oligomers at 90°C as an initial 

impregnation step. Containers were then placed in a vacuum oven under reduced 

pressure (580 mmHg) for 40 min, then atmospheric pressure over 40 min. Impregnated 

samples were then wiped and set on aluminium foil in a ventilated oven under 

controlled temperature and duration (Table 1). Anhydrous sample weight was measured 

before impregnation, after impregnation and then after heat treatment. Weight uptake 

has been calculated according to Eqn. 1. 

 

( ) 100%
0

0/
/ ´

-
=

w

ww
WU ti

ti       (1) 

 

where wi stands for the impregnated sample weight, wt for the sample weight after 

complete treatment, and w0 the oven dried sample weight before treatment. 

3.3. Anti-swelling efficiency (ASE) 

All treated samples (15 x 15 x 10 mm, T x R x L) were placed in 95% relative humidity 

(RH). Sample dimensions were measured before exposure in dry state (due to treatment 

process) and after weight stabilisation. Regular weight measurements were made in 

order to determine the equilibrium moisture content of samples with time and 

conditioning. 

As some treatments show a strong bulking effect in the cell wall while others only 

penetrate wood lumens (Figure 1), the ASE calculation was based on the corrected 

swelling calculation of treated samples (St) as defined in Eqn. 2 (Thybring, 2013): 

 

100(%)
0

%95*
´

-
=

V

VV
S tst

t       (2) 

 

100(%)

*

* ´
-

=
nt

tnt

S

SS
ASE       (3) 

 

where V95%st stands for the treated sample volume after stabilisation at 95%RH, Vt for 

the treated sample volume before stabilisation at 95% RH, V0 the oven dried sample 

volume before treatment and Snt the reference untreated sample swelling: 
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0

%95 ´
-

=
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V
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where V95%snt stands for the reference untreated sample volume after stabilisation at 

95%RH and Vnt for the oven dried reference untreated sample volume. 

 

For treated samples, the reduced equilibrium moisture content EMCRt has been 

calculated as defined in Eqn. 5: 

 

100(%)
0

%95 ´
-

=
w

ww
EMC tst

Rt      (5) 

 

where w95%st stands for the treated sample weight after stabilisation at 95%RH, wt for 

the dry treated sample weight before stabilisation at 95%RH, and w0 the oven dried 

sample weight before treatment.  

The reduced EMC, or EMCRt, allows comparison of the different treatments by relating 

the water uptake to the dry wood weight, not taking in consideration the weight of 

polymer into wood structure which may differ between treatments.  

Swelling and anti-swelling efficiency of samples soaked into liquid water were 

calculated as well according to formulae (2), (3) and (4) where “95%” can be replaced 

by “lw” standing for liquid water. 

3.4. Leaching 

The treatment resistance to water leaching was measured in terms of weight loss of 

polymeric material (WPL) resulting from the ASE test in liquid water. The samples 

were soaked in water at 23°C for 7 days. At the end of the test, the samples were air 

dried at 23°C / 56%RH for 24h and subsequently oven dried until constant weight. The 

WPL was calculated as defined in Eqn. 6: 

 

100(%)
0

0 ´
-

-
=

ww

ww
WPL

t

ttl       (6) 

where wtl0 stands for the treated sample weight after leaching and oven drying, wt for 

the treated sample weight (necessarily oven dried) and w0 the oven dried sample weight 

before any treatment. 

3.5. Dynamic Mechanical Analysis 

The DMTA analysis has been carried out on a Triton TTDMA equipped with a humidity 

generator set up to allow a temperature ramp and the RH in the chamber for samples of 

dimensions 50 x 10 x 4 mm, L x RT x TR. The temperature changes were manually 

performed when the conditions in the chamber were stable. Once the temperature and 

RH were stable, the average of five values of the stabilised storage modulus, taken at 3 

min intervals, was calculated with this average storage modulus value reported in Figure 

5. Only thermal scans carried out at 1 Hz are reported in this paper.  

Sample swelling was measured as the ratio between the sample volume after DMTA run 

and on further oven drying (at 103°C for 24h) and comparing with the initial dry sample 

volume immediately after the hot oligomer impregnation. 

3.6. Durability assessment and natural weathering 
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A preliminary determination of the potential conferred durability has been carried out 

according to a modified EN 113 standard, with the following variation: 11 week-

exposure to Coriolus versicolor, samples dimensions of 50 x 15 x 12.5 mm3. Virulence 

controls showed a 14.5% weight loss, and did not reach the 25% threshold of the 

standard. Samples treated with OBS (160°C / 2 days) and leached (according to the EN 

84 standard, with following deviations: water boxes not placed in controlled conditions 

of humidity and temperature, oven drying of samples after leaching instead of 

stabilisation at 65%/20°C) have been tested, as well as untreated samples heated at 

160°C for 2 days for evaluation of the thermal treatment influence.  

Natural, outdoor weathering has been conducted in Biel (Switzerland) at 45° from the 

ground with the sample wood grain direction exposed horizontally. The assessment was 

conducted according to a modified EN 927-3 standard, with the following variation: 

samples dimensions of 150 x 72 x 12 mm3 (L x R x T), no protection of the end-grain 

and edges. Along the exposure, the following evaluations have been made: deformation, 

cracking, colour homogeneity, mould attack, colour change.  

4. Results and discussion 

4.1. Relation of OBS treatment with water and wood 

Even if no direct correlation can be drawn between the behaviour of pure chemicals and 

the behaviour of these chemicals in wood, the polyester was prepared in pure form so to 

assess any responsiveness of OBS polyesters to exposure to varying humidity, and to a 

near saturated environment (ca. 95% RH). This revealed that the sensitivity of OBS to 

water sorption was relatively limited, and in accordance with literature (Phua et al. 

2011; Tserki et al. 2006; Frollini et al. 2013). After 10 weeks exposure, weight 

increases of less than 0.5% were observed with no distinctions between OBS polyesters 

prepared at 140°C or 160°C. In contrast, polymerised OLA oligomers heated at 120°C 

can absorb up to 28% moisture content at 95% RH (Vitkeviciute 2015). Furthermore, 

water absorption profiles reveal OBS to rapidly achieve equilibration, whereas moisture 

sorption by OLA polymer increases with time (Figure 2). It is also possible that the 

polyester undergoes hydrolysis which may increase hydrophilicity, according to the 

following process: the polymer degradation through ester bond hydrolysis leads to an 

increased amount of carboxylic end groups, which are known to autocatalyse the ester 

hydrolysis, and to an increase in acidity due to soluble oligomers leaching resulting in 

accelerated degradation (Proikakis et al. 2006; Edlung and Albertsson 2003; Madhavan 

Nampoothiri et al. 2010; Cho et al. 2001).  
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Figure 2: Moisture content of OLA and OBS oligomers, preliminary heated for 2 days at 140 °C, then 

exposed at 96%RH at room temperature [Vitkeviciute, 2015] 

 

 

Figure 3: EMCRt of wood samples treated with OLA or OBS oligomers heated at 140°C for 6h or 3 

days, then exposed to 96%RH at room temperature [Vitkeviciute, 2015] 

An evaluation of moisture uptake at high humidity revealed wood samples treated with 

OLA show an increasing EMCRt over time, and this occurred at a greater rate when 

thermal treatment and in-situ polymerisation was short (6h, Figure 3). Similarly, 

samples treated with OBS also have greater moisture sorption when polymerised with a 

shorter thermal treatment. However, with these OBS samples the EMCRt profile 
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appeared stabilised (ca. 40%) after 6 weeks of exposure with the EMCRt comparable to 

the reference, untreated sample (Figure 3). This comparable EMCRt was consistent with 

the pure OBS polyester moisture uptake exhibited in Figure 2, but also suggests the 

impregnation treatment was insufficient to significantly decrease the EMCRt.  

 

An evaluation of OBS treated samples which underwent the water soak leaching step 

revealed comparatively lower EMCRt profiles than unleached samples (95%RH at 23°C, 

Figure 4). Firstly, samples prepared with extended cure heating (160°C, 9 days) 

exhibited distinctly lower EMCRt profiles than moderately cured OBS samples (160°C, 

2 days) (Figure 4). The influence of treatment duration and water leaching was shown 

with significantly lower EMCRt values after 240 days at 95%RH/23˚C. Moreover, the 

trends in EMCRt values for leached OBS treated sample also manifested in the 

95%RH/23°C ASE evaluations of these samples. In this case, the treated samples 

displayed greater dimensional stability (ASE*
95%RH of ca. 40%) after the water leaching 

with up to 55% ASE*
95%RH for the extended cure treatment (9 days at 160°C). Given 

these samples swell after leaching and drying, this suggests partial penetration of the 

OBS oligomers into wood cell walls, and may provide an insight to the observed ASE 

values. 

 

 

Figure 4: EMCRt of OBS treated samples (160°C/2days and 9 days) and reference samples not heated, 

or heated (160°C/2 days and 9 days) along exposure time to 95%RH at 23°C (_95%RH/23°C), or to 

water soaking (_water) 

 

To provide further understanding of the partial OBS oligomer penetration achieved on 

leaching, dynamic mechanical analysis (DMA) under fixed humidity (35%RH, 57%RH 

and 86%RH) was performed on treated and leached samples (Figure 5). The objective 

was to link the differing physico-mechanical properties of the wood with relative 

humidity and temperature using sample stiffness (storage modulus, E’). For the OBS 

treated sample at 35%RH, the E’ decrease was relatively consistent from 20 to 40˚C, 

decreasing by 0.4 GPa at 40˚C. At 57%RH, the sample behaviour was relative similar, 
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also decreasing by 0.4 GPa. Moreover, the DMA heating induced swelling of the OBS 

sample by 5.6% and 7.4% at 35%RH and 57%RH, respectively (swelling measured at 

dry state after and before the test). At 85%RH, the E’ loss of the OBS sample was 

higher (>0.8 GPa) and at a greater rate, resulting in 17.6% sample swelling. The analysis 

of volume gain indicates that with higher RH, each heating run allowed OBS material to 

penetrate into the cell wall contributing to greater swelling, and further confirmed by the 

observation that untreated samples do not swell. This initial relationship between the E’ 

change and polymer cell wall penetration will require further study to better understand 

the mobility and interaction between OBS and wood components.  

 

 

Figure 5: Relative storage modulus of samples impregnated (solid line), impregnated and leached 

(dotted line); at 35%RH, 57%RH and 85%RH along temperature increase from 20 to 50°C 

 

For OBS impregnated and leached samples (where the polymer had been observed to 

penetrate cell walls), DMA revealed differing E’ behaviours. At 35%RH, the E’ loss of 

the leached sample was relatively similar to that for the impregnated sample and 

associated with swelling of 2.4%. At 57%RH, the E’ curve was comparable to the 

impregnated sample, but with a greater decrease in E’ value. However, sample swelling 

was only 1.7%. At 85%RH, the leached sample had a differing E’ profile with only a 

moderate loss in E’, similar to the untreated reference sample (not presented). The 

additional swelling of this sample was 3.7%, being significantly lower than the 

unleached sample. This suggests the heating of leached samples with increased humidity 

does not promote any significant additional cell wall penetration as observed with the 

impregnated-only samples. 

4.2. Aging of OBS treated wood 

OBS treated samples (160°C / 2 days) were exposed to outdoor weathering. After 12 

months, the surface quality of treated samples was assessed as being better (no cracking 

and no mould attack) than the reference on which many wide and deep cracks were 

visible, as well as a darker coloration (Supplementary Material 1).  
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According to the preliminary durability assessment, OBS treated samples (160°C / 2 

days) showed a weight loss of only 3.7% (17% for control samples), whereas untreated 

samples heated according to the same thermal treatment (160°C / 2 days) showed 12.2% 

weight loss (15.4% for control samples). Furthermore, there appeared a substantial 

fungicidal effect confered by the OBS treatment which cannot be attributed to only the 

thermal treatment (Hakkou et al. 2006; Kamdem et al. 2002). Presently, further 

investigation is pending to determine if OBS treatment is fungical or if the decreased 

EMC conferred by this treatment contributes the improved durability. 

4.3. Applications potential 

Given the promising properties of the OBS treatment above and the previously reported 

results (Noël et al. 2015a), further samples were produced to determine OBS treatment 

efficiency (Table 1). A range of processing and cure temperatures (120°C and 140˚C) 

were used, being intermediate temperatures relative to the previous sample treatments. 

This showed that treatment at differing temperature did not induce any swelling on 

impregnation (Si), despite a high weight uptake (WUi, ca. 65%) of most samples. Only 

for treatment of fresh, green wood (98% mc) was there no weight uptake nor swelling 

observed, likely a result of adsorbed water being replaced by the oligomer material 

which was associated with intense foaming from the sample during impregnation. The 

analysis of volume gain indicates that with higher RH, each heating run allowed OBS 

material to penetrate into the cell wall contributing to the observed greater sample 

swelling. In contrast, untreated samples do no swell under these conditions. The wet 

treatment followed by dry heating variously led to sample swelling (St) which was ca. 

7% for high temperature drying samples (samples 3 and 5) and ca. 13% for wet step 

samples (samples 2, 7-16). Furthermore, wet heating for 30 min (samples 7, 9, 10) led to 

higher oligomer cell wall penetration than water leaching at room temperature (7 days, 

sample 2). A longer wet heating did not lead to higher swelling (samples 11-16). 

Comparing samples 9-16, it was observed that a longer heating step at higher 

temperature generally led to greater swelling (samples 10, 12, 14 and 16 in comparison 

to samples 9, 11, 13 and 15). A comparison of samples 7 and 9 shows that longer heat 

treatment at 103°C led to higher swelling, whereas the comparison of samples 7 and 10 

shows that for a four-day heating step, a higher heating temperature did not lead to 

greater swelling. For samples 2 and 7-16 their wet treatment may have led to partial 

oligomer hydrolysis (Cho et al. 2001) promoting oligomer mobility into the cell wall 

together with leaching of oligomers from the wood. 

Table 1: Treatment parameters evaluated 

Ref. EMCa  

[%] 

Impregnation 

temperature 

[°C] 

Wet step Dry step 

1 0 90 - Oven heating, 103°C/12h 

2 0 90 Water leaching, 23°C/7d Oven heating, 103°C/2.5d 

3 0 90 - Oven heating, 140°C/12h 

4 0 130 - Oven heating, 103°C/12h 

5 0 130 - Oven heating, 140°C/12h 

6 0 90 Wet heating, 100°C/100%RH/30min - 

7 0 90 Wet heating, 100°C/100%RH/30min Oven heating, 103°C/4d 

8 98b 90 - Oven heating, 103°C/4d 

9 0 90 Wet heating, 100°C/100%RH/30min Oven heating, 103°C/2.5d 

10 0 90 Wet heating, 100°C/100%RH/30min Oven heating, 120°C/4d 

11 0 90 Wet heating, 100°C/100%RH/2h Oven heating, 103°C/2.5d 

12 0 90 Wet heating, 100°C/100%RH/2h Oven heating, 120°C/4d 

13 0 90 Wet heating, 100°C/100%RH/5h Oven heating, 103°C/2.5d 
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14 0 90 Wet heating, 100°C/100%RH/5h Oven heating, 120°C/4d 

15 0 90 Wet heating, 100°C/100%RH/10h Oven heating, 103°C/2.5d 

16 0 90 Wet heating, 100°C/100%RH/10h Oven heating, 120°C/4d 
aWood EMC before impregnation, bNon dried wood, freshly cut 

Table 2: Treatments description and efficiency 

Ref. Si 

[%] 

WUi 

[%] 

St
a 

[%] 

WUt
a 

[%] 

ASE*
lw

b 

[%] 

EMCRtlw
b 

[%] 

WLP 

[%] 

Slw
c 

[%] 

ASE*
95%

d 

[%] 

EMCRt95%
d 

[%] 

1 0.2 
± 0.4 

66.6 
± 2.1 

0.9 
± 0.3 

64.6 
± 2.2 

-1.4 
± 6.5 

52.6 
± 0.8 

-23.6 
± 0.4 

5.6 
± 0.4 

30.3 
± 5.8 

31.4 
± 0.8 

2 0.3 
± 0.1 

65.3 
± 5.4 

11.6 
± 0.7 

49.6 
± 4.2 

42.8 
± 4.4 

56.9 
± 1.9 

-5.2 
± 0.3 

2.1 
± 0.3 

55.2 
± 5.1 

30.5 
± 0.5 

3 -0.1 
± 0.3 

63.8 
± 7.5 

7.8 
± 0.3 

55.2 
± 6.6 

37.1 
± 3.2 

53.8 
± 1.3 

-7.3 
± 0.7 

-2.1 
± 0.8 

37.3 
± 6.3 

28.0 
± 0.5 

4 0.5 
± 0.4 

62.6 
± 9.5 

0.8 
± 0.1 

60.8 
± 9.3 

1.9 
± 11.9 

55.6 
± 2.0 

-21.2 
± 0.6 

5.1 
± 0.7 

33.2 
± 11.9 

30.4 
± 1.0 

5 0.8 
± 0.6 

68.2 
± 5.5 

6.7 
± 1.1 

63.0 
± 5.1 

29.3 
± 9.7 

55.6 
± 3.1 

-11.7 
± 1.0 

0.5 
± 1.5 

40.1 
± 9.8 

30.5 
± 1.3 

6 0.5 
± 0.2 

64.2 
± 5.5 

-e -e -e -e -e -e 18.3 
± 7.6 

31.8 
± 1.7 

7 0.7 
± 0.4 

65.2 
± 7.4 

14.9 
± 1.0 

51.9 
± 7.2 

53.8 
± 3.8 

61.0 
± 0.6 

-16.4 
± 1.0 

-1.9 
± 0.8 

47.8 
± 7.2 

30.5 
± 1.0 

8 -2.4 
± 1.4 

-1.8 
± 0.9 

12.0 
± 1.2 

57.4 
± 5.5 

56.9 
± 4.3 

48.0 
± 3.4 

-19.5 
± 0.9 

-0.8 
± 0.8 

55.1 
± 4.9 

29.4 
± 2.1 

9 0.7 
± 0.4 

74.4 
± 3.8 

8.8 
± 0.4 

70.5 
± 3.2 

36.8 
± 6.5 

53.7 
± 1.9 

-18.0 
± 0.5 

-3.8 
± 0.8 

64.0 
± 5.8 

24.5 
± 0.6 

10 0.9 
± 0.4 

75.3 
± 7.4 

12.3 
± 0.8 

69.8 
± 7.4 

43.6 
± 4.7 

50.4 
± 1.4 

-14.1 
± 0.5 

-4.1 
± 0.9 

70.8 
± 3.5 

23.9 
± 1.0 

11 0.5 
± 0.1 

67.2 
± 7.5 

14.5 
± 1.3 

63.6 
± 7.2 

50.6 
± 6.7 

55.8 
± 4.1 

-17.0 
± 0.9 

-1.1 
± 0.8 

52.8 
± 8.3 

25.6 
± 0.9 

12 0.5 
± 0.2 

67.4 
± 7.2 

16.0 
± 0.6 

61.6 
± 8.2 

61.9 
± 2.7 

57.4 
± 2.2 

-14.0 
± 0.3 

-1.4 
± 0.6 

68.7 
± 1.4 

25.1 
± 1.0 

13 0.3 
± 0.2 

60.8 
± 5.8 

15.0 
± 1.1 

58.1 
± 7.3 

51.1 
± 8.4 

53.5 
± 1.7 

-15.2 
± 0.7 

-0.5 
± 0.6 

54.7 
± 2.3 

25.4 
± 0.5 

14 0.3 
± 0.2 

65.0 
± 3.3 

17.1 
± 0.4 

60.1 
± 4.0 

62.9 
± 3.3 

53.9 
± 1.4 

-12.3 
± 0.8 

-2.6 
± 0.2 

71.1 
± 1.6 

25.0 
± 0.4 

15 0.6 
± 0.4 

69.0 
± 4.1 

13.6 
± 2.1 

55.8 
± 8.0 

42.1 
± 10.6 

59.8 
± 3.0 

-16.1 
± 0.8 

0.1 
± 1.2 

46.0 
± 7.1 

25.1 
± 0.3 

16 0.1 
± 0.2 

68.6 
± 4.0 

17.1 
± 0.7 

59.0 
± 5.9 

60.8 
± 2.4 

59.7 
± 1.0 

-12.5 
± 0.7 

-1.8 
± 0.8 

66.5 
± 1.6 

25.1 
± 0.3 

aTreatments are defined in Table 1. They consist in the wet and dry step. bASE* and EMCRt in liquid 

water. cSwelling measured after the water leaching and oven drying. dASE* and EMCRt at 95%RH. eThis 

data could not be calculated because the ASElw step directly followed the wet step. An intermediate drying 

would have been necessary for the calculation. 

 

To further characterise the treatment effectiveness, ASE values were determined in both 

liquid water (23°C/7d, measured as ASE*lw), and then after oven drying (103°C) 

subjection to 95%RH/23°C conditioning (ASE95%, Table 2). For samples immersed in 

water, the EMCRt values were found to be ca. 55%, but the ASE* were highly dependent 

on the treatment process. Samples 7, 8, 12, 14 and 16 attained the highest ASE*
lw values 

(ca. 55-60%) with the high initial sample EMC and the wet heating followed by long 

heating at high temperature, suggestive of efficient processing compared to water 

soaking prior to heating (sample 2, 43% ASE). With slightly lower swelling (St), 

samples 9 and 10 led to lower ASElw. High temperature drying with no wet step (140˚C, 

samples 3 and 5) lead to ASE*
lw values of ca. 30%. This result suggests a high 

impregnation temperature does not improve the stability properties which was also 

observed with samples 1 and 4 which had no ASE and used the lower (103˚C) heating 

temperature.  
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Typically, conditioning in high humidity revealed most samples to have high EMCRt 

values (ca. 25-30%) with samples distinguished by differing ASE*
95% values. Samples 2 

and 8 have the similar ASE*
95% (55%) demonstrating that either water leaching at room 

temperature or oligomer impregnation of wet wood led to similar treatment efficiency. 

High temperature heating conferred an ASE*
95% value of ca. 40%, showing that the 

temperature was not the most significant parameter in this treatment. Samples 1 and 4 

which do not have a wet step and use the lower temperature heating step gave ASE*
95%, 

values of 30%. In the case of sample 6 which had the lowest ASE*
95% value of 18% 

suggests the wet step needs to be followed by a dry heating step to confer dimensional 

stability. Samples 12, 14 and 16 which have the greatest ASE*
95%, confirm this 

observation. 

 

The influence of temperature and humidity on the treatment efficiency was confirmed 

with these results. A high wood EMC before impregnation or a wet heating step after 

impregnation led to better performance than a room temperature water soaking before 

dry heating. Increasing the dry heating temperature also led to better performance than a 

higher impregnation temperature. It is hypothesised that the wood cell wall swelling 

induced either by the high wood EMC before impregnation, or by a wet heating step, 

contributed to the partial dissolution of OBS oligomers during this process and allowed 

higher oligomer diffusion into the wood structure. Higher temperatures are likely to 

decrease OBS oligomer viscosity, also contributing to the partial product diffusion into 

the cell wall, but to a lesser extent than where wood is swollen by water or humidity. 

Moreover, contact of wood and polymer at high temperature must be sufficient to 

observe this effect and may explain why an 80 min impregnation step gave lower treated 

wood performance compared to 12h, 2.5d or 4d heating steps. 

5. Conclusions 

A comprehensive evaluation of OBS biopolyester impregnation followed by moisture 

exposure and a second heating step has confirmed this treatment process confers 

dimensional stability to the treated wood. Results indicate the OBS oligomers can be 

impregnated in wood over a range of temperatures (90-130°C). While this treatment 

alone is predominantly lumen filling, a subsequent water soak step then drying step can 

enhance wood dimensional stability in both liquid water and high humidity. This was 

likely through partially hydrolyzed OBS oligomer diffusion to the cell wall contributing 

the dimensional stability and performance improvements in weathering and durability 

evaluations. 

 

Attempts to define the water exposure and dry heating steps to optimise OBS oligomer 

treatment revealed impregnation can be undertaken over a range of temperatures from 

90 to 130˚C. Samples can then be processed in a wet state either by water soaking or 

wet heat (100˚C) to promote oligomer hydrolysis and migration into wood cell walls. 

The temperature of the final dry heating step contributes to treatment efficacy where a 

higher temperature was associated with greater dimensional stability. Further 

understanding of the degree of hydrolysis and polymerisation rate required within these 

treatment steps will further aid optimisation and enhancement of this promising wood 

treatment. 
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8. Figure captions 

Figure 1: Comparison of PLA and PBS oligomers efficiency for wood modification in 

relation to the cell wall modification 

Figure 2: Moisture content of OLA and OBS oligomers, preliminary heated for 2 days at 

140 °C, then exposed at 96%RH at room temperature [Vitkeviciute, 2015] 

Figure 3: EMCRt of wood samples treated with OLA or OBS oligomers heated at 140°C 

for 6h or 3 days, then exposed to 96%RH at room temperature [Vitkeviciute, 2015] 
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Figure 4: EMCRt of OBS treated samples (160°C/2days and 9 days) and reference 

samples not heated, or heated (160°C/2 days and 9 days) along exposure time to 

95%RH at 23°C (_95%RH/23°C), or to water soaking (_water) 

Figure 5: Relative storage modulus of samples impregnated (solid line), impregnated 

and leached (dotted line); at 35%RH, 57%RH and 85%RH along temperature increase 

from 20 to 50°C 

Figure S1: Wood samples exposed for one year outdoors. (A) OBS-treated samples 

(160°C / 2 days) (B) untreated reference (pictures have been slightly and equivalently 

lightened to make the cracks more visible) 

9. Table captions 

Table 1: Treatment parameters evaluated 

Table 2: Treatments description and efficiency 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

















Supplementary materials list 

 

Figure S1 is an illustration of the weathering of untreated and treated wood outdoors, where 

many deep cracks and a dark grey colour are observable on the untreated wood, whereas the 

OBS-treated wood remains brown and shows an undegraded surface after one year of 

exposure.  

 

Caption of Figure S1: 

Figure S1: Wood samples exposed for one year outdoors. (A) OBS-treated samples (160°C / 2 

days) (B) untreated reference (pictures have been slightly and equivalently lightened to make 

the cracks more visible) 

 

 

(A) 

(B) 


