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Abstract 31 

 32 

Eight strains of acidophilic bacteria, isolated from mine-impacted and geothermal 33 

sites from different parts of the world, were shown to form a distinct clade (proposed 34 

genus “Acidibacillus”) within the phylum Firmicutes, well separated from the 35 

acidophilic genera, Sulfobacillus and Alicyclobacillus. Two of the strains (both isolated 36 

from sites in Yellowstone National Park, USA) were moderate thermophiles that 37 

oxidized both ferrous iron and elemental sulfur, while the other six were mesophiles 38 

that also oxidized ferrous iron, but not sulfur. All eight isolates reduced ferric iron to 39 

varying degrees. The two groups shared <95% similarity of their 16S rRNA genes and 40 

were therefore considered to be distinct species: “A. sulfuroxidans” (moderately 41 

thermophilic isolates) and “A. ferrooxidans” (mesophilic isolates). Both species were 42 

obligate heterotrophs; none of the eight strains grew in the absence of organic carbon. 43 

“Acidibacillus” spp. were generally highly tolerant of elevated concentrations of 44 

cationic transition metals, though “A. sulfuroxidans” strains were more sensitive to 45 

some (e.g. nickel and zinc) than those of “A. ferrooxidans”. Initial annotation of the 46 

genomes of two strains of “A. ferrooxidans” have revealed the presence of genes 47 

(cbbL) involved in the RuBisCO pathway for CO2 assimilation and iron oxidation (rus) 48 

though with relatively low sequence identities. 49 

  50 
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1. Introduction  51 

 52 

     Acidophilic microorganisms comprise a large variety of different species that are widely 53 

distributed in all three domains of known life-forms [1]. While the greatest number (and earliest 54 

isolates) of known extremely acidophilic  bacteria are members of the phylum Proteobacteria, 55 

other phyla, including the Firmicutes, Nitrospirae, Actinobacteria and Aquificae, all include 56 

species that grow optimally at pH <3. Currently, the Firmicutes (endospore-forming eubacteria 57 

with low G+C contents) include two genera of extreme acidophiles, Sulfobacillus and 58 

Alicyclobacillus, most species of which are moderate thermophiles (growth temperature optima 59 

of 40 – 60ºC) though some are mesophilic. Sulfobacillus spp. are typically found in mineral- 60 

and sulfur-rich acidic environments, such as solfatara fields and biomining operations, and are 61 

characterised by having far greater metabolic versatilities than many of the more specialised 62 

bacteria (such as Leptospirillum and Acidithiobacillus spp.) with which they frequently cohabit. 63 

Species such as Sb. thermosulfidooxidans, Sb. acidophilus and Sb. beneficiens can grow 64 

autotrophically by oxidizing inorganic electron donors (sulfur, ferrous iron and hydrogen) and 65 

fixing carbon dioxide, heterotrophically using organic carbon as both energy and carbon 66 

source, and chemolitho-heterotrophically whereby they obtain most of their energy from 67 

oxidizing inorganic electron donors but use organic materials, such as yeast extract, as carbon 68 

sources. Sulfobacillus spp. are facultative anaerobes that use either molecular oxygen or ferric 69 

iron as terminal electron acceptors. In contrast, the genus Alicyclobacillus includes species of 70 

moderate (pH growth optima 3 - 5) as well as extreme acidophiles. The earliest isolates were 71 

obligately heterotrophic moderate thermophiles that were isolated from pasteurised fruit juices 72 

which they had contaminated. Later isolates (e.g. Alb. disulfidooxidans and Alb. ferrooxydans) 73 

more resembled Sulfobacillus spp., both in terms of the environments they inhabited and in 74 

their metabolic capabilities (e.g. in catalysing the dissimilatory oxidation of sulfur and iron). 75 

Alicyclobacillus spp. tend, however, to be generally more “heterotrophically inclined” than 76 

Sulfobacillus spp., and grow more successfully using defined organic compounds such as 77 

glucose (e.g. [2].        78 
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     For a number of years, some acidophilic Firmicutes isolated from mineral-rich terrestrial or 79 

acidic aquatic environments have been found, from sequencing of their 16S rRNA genes, to 80 

be affiliated to neither Sulfobacillus nor Alicyclobacillus (e.g. [3-5]), though these have not been 81 

fully characterized. Clones related to these isolates have also been found in diverse locations 82 

(e.g. [6-8]). In this paper, we describe the characteristics of eight such strains, isolated from a 83 

variety of low pH environments from different global locations, and show that they comprise 84 

two distinct species of a proposed novel genus of Firmicutes, “Acidibacillus”.  85 

 86 

2. Materials and Methods 87 

 88 

2.1. Bacterial origins, isolation and cultivation 89 

     The eight bacterial strains studied were isolated from a variety of mine-impacted and 90 

geothermal sites from different global locations over a 20 year period and maintained within 91 

the Acidophile Culture Collection at Bangor University (U.K.; Table 1). Bacteria were isolated 92 

on solid media that select for the growth of different physiological groups of acidophilic bacteria 93 

[9], either directly by streaking water samples (or mine waste slurries) onto plates, or (in the 94 

case of isolates Y0010 and ITV01) following enrichment in acidic liquid media. Plates were 95 

incubated at either 30º or 45ºC and isolates purified by repeated re-streaking of single colonies 96 

onto fresh solid media. These were then transferred into a liquid medium containing 10 mM 97 

ferrous sulfate, 0.02% (w/v) yeast extract and acidophile basal salts (ABS), adjusted to pH 2.0 98 

with sulfuric acid. ABS contained (g/L) 0.15 Na2SO4∙10H2O, 0.45 (NH4)2SO4, 0.05 KCl, 0.5 99 

MgSO4∙7H2O, 0.05 KH2PO4, and 0.015 Ca(NO3)2·4H2O. 100 

 101 

2.2. Phylogenetic analysis  102 

 103 

     DNA was extracted from bacteria grown in 5 mL of ferrous iron/yeast extract liquid 104 

medium using the FastDNA Spin Kit for Soil (MP Biomedicals) using a modified 105 
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protocol [10]. The 16S rRNA genes were amplified from DNA extracts by PCR using 106 

DreamTaq PCR Master Mix (Thermo Fisher) and primers 27F (5´-AGT GTT TGA 107 

TCC TGG GTC AG-3´; [11]) and GM4R (5´- TAC CTT GTT ACG ACT T-3´; [12]). 108 

PCR products were purified, and overlapping sequencing from both sides of the gene 109 

was performed by Seqlab (Germany). Contigs were constructed with the software 110 

Geneious Pro 5.4, and the resulting gene sequences were analyzed using BLAST at 111 

the NCBI database (http://ncbi.nlm.nih.gov/BLAST) and added to the database. 112 

Alignment of the sequences obtained, together with those of related strains, was 113 

carried out using Mega 6.0 [13], followed by manual editing to remove gaps and 114 

positions of ambiguous nucleotides. Phylogenetic trees were constructed by 115 

neighbour-joining analyses. Reliability of the tree topologies was confirmed by 116 

bootstrap analysis using 1,000 replicate alignments.  117 

 118 

2.3. Growth characteristics  119 

 120 

     Growth rates and optimum pH values and temperatures for growth of the two proposed type 121 

strains, SLC66T (“A. ferrooxidans”) and Y002T (“A. sulfuroxidans”) were determined by growing 122 

the bacteria in a pH- and temperature-controlled 2 L bioreactor (Electrolab, UK), as described 123 

elsewhere [14]. The liquid medium contained 0.1 mM (SLC66T) or 1 mM (Y002T) ferrous 124 

sulfate, 0.02% (w/v) yeast extract and ABS, and the bioreactor was stirred at 100 rpm and 125 

aerated with ~1.5 L of sterile atmospheric air/minute. Since preliminary experiments had 126 

confirmed that growth of both isolates was coupled to ferrous iron oxidation, growth rates were 127 

routinely determined from semi-logarithmic plots of ferrous iron oxidized against time. 128 

 129 

2.4. Dissimilatory redox transformations of inorganic electron donors and acceptors 130 

 131 

     Dissimilatory oxidation of ferrous iron was determined by monitoring changes in ferrous iron 132 

concentrations and cell numbers in acidic (pH 1.5 to 2.5) liquid medium containing 10 – 25 mM 133 
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Fe2+, amended (or not) with yeast extract. To determine whether bacteria were able to utilize 134 

the energy available from oxidizing iron, strains SLC66T and Y002T were grown in replicate 135 

flasks containing 0.005% (w/v) yeast extract and different concentrations of ferrous iron (1, 10 136 

and 25 mM, at an initial pH of 1.9 for SLC66T, and 1, 25 and 50 mM, at an initial pH of 1.7 for 137 

the more acidophilic isolate Y002T). Culture media were designed to maximize the amount of 138 

ferrous iron oxidation without causing hydrolysis (and precipitation) of the ferric iron generated, 139 

which would have impaired the accuracy of cell counts. Cultures were incubated (at 30ºC for 140 

SLC66T and 45ºC for Y002T), shaken at 100 rpm, and residual ferrous iron and cell numbers 141 

determined daily for up to 6 days.  142 

     Specific rates of ferrous iron oxidation by strain Y002T grown in ferrous sulfate/yeast extract 143 

medium (determined at pH 1.8 and 45ºC) were evaluated as described elsewhere [15]. A 144 

modified protocol was used for strain SLC66T, which involved growing the isolate in a 2 L 145 

bioreactor in 25 mM ferrous iron/yeast extract medium (at pH 2.0 and 30ºC) until all of the iron 146 

had been oxidized, and then adding a further 3 mM ferrous iron and determining residual Fe2+ 147 

concentrations over the following 90 minutes. Concentrations of bacterial proteins were 148 

measured at the start and end of these experiments to determine whether there had been any 149 

significant increase in biomass during the time span of the experiments. 150 

     Dissimilatory oxidation of elemental sulfur (S0) was tested by inoculating active cultures into 151 

a liquid medium containing ~0.5% (w/v) sterile S0, with or without 0.02% (w/v) yeast extract, 152 

and poised initially at ~pH 3.0. Since the end product of the reaction is sulfuric acid, both 153 

changes in pH and sulfate concentrations, as well as increases in cell numbers were used to 154 

monitor growth. Oxidation of tetrathionate was assessed by growing isolates Y002T and Y0010 155 

in pH 3 medium that contained 2.5 mM filter-sterilized potassium tetrathionate, 0% or 0.02% 156 

yeast extract,  500 μM ferrous iron and ABS. Growth was monitored by enumerating cells and 157 

measuring changes in pH and sulfate concentrations.  158 

     The oxidative dissolution of pyrite by the novel Firmicutes was tested by inoculating the two 159 

proposed type strains (SLC66T and Y002T) into a liquid medium containing ABS and 1% finely-160 

ground pyrite (Strem Chemicals, USA) supplemented (or not) with yeast extract (0.02%, w/v). 161 
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Where yeast extract was not included, cultures were supplemented with trace elements. 162 

Replicate shake flask cultures were incubated at either 30ºC (SLC66T) or 45ºC (Y002T). Both 163 

non-inoculated cultures and others inoculated with the moderate thermophilic Firmicute, Sb. 164 

thermosulfidooxidansT were incubated in parallel, to act as negative and positive controls (Sb. 165 

thermosulfidooxidans cultures contained yeast extract and were incubated at 45ºC). Samples 166 

were withdrawn at regular intervals to measure pH, redox potential (EH values), ferrous iron 167 

and total soluble iron. 168 

     Dissimilatory ferric iron reduction was assessed by growing cultures in 100 mL of liquid 169 

medium containing 10 mM ferrous iron, 0.02% yeast extract and ABS, adjusted to either pH 170 

2.0 (isolates SLC66T, SLC40, ITV01, BSH1, GS1 and Gal-G1; incubated at 30ºC) or 1.8 171 

(isolates Y002T and Y0010; incubated at 45ºC). The shake flask cultures were incubated, 172 

aerobically, until ferrous iron concentrations had fallen to <0.5 mM, at which point 20 mL 173 

aliquots were withdrawn from each and placed in 25 mL sterile bottles, further yeast extract 174 

added (to 0.02% w/v) and the replicate bottles placed in sealed jars under either anaerobic or 175 

micro-aerobic environments (using AnaeroGen and CampyGen systems, Oxoid, U.K.). 176 

Samples were withdrawn after 2 and 4 days (moderate thermophiles) and 10 days 177 

(mesophiles) and concentrations of ferrous iron determined. Dissimilatory reduction of sulfur 178 

was tested in cultures incubated anaerobically in media containing 10 mM ferrous iron, 0.02% 179 

yeast extract, 5 mM glucose and 0.5% elemental sulfur. Growth on hydrogen was tested on 180 

solid media using protocols described elsewhere [16]. 181 

 182 

2.5. Carbon metabolism 183 

 184 

     Bacteria were grown routinely in liquid medium containing 10 mM ferrous iron and 0.02% 185 

(w/v) yeast extract, adjusted to either pH 2.0 (for strains of “A. ferrooxidans”) or 1.8 (for strains 186 

of “A. sulfuroxidans”). The effect of adding different concentrations (0, 0.005, 0.02 or 0.5%, 187 

w/v) of yeast extract to this medium on cell yields of strains SLC66T and Y002T was examined. 188 

Comparative growth was also assessed in 1 mM ferrous iron/0.005% yeast extract liquid 189 
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medium complimented complex carbon sources (casein hydrolysate and tryptone, both at 190 

0.02%, w/v), or defined organic compounds. The latter were: (i)  monosaccharides (glucose, 191 

fructose, and maltose, all at 5 mM); (ii) alcohols (15 mM ethanol, 10 mM glycerol and 5 mM 192 

mannitol); (iii) organic acids (citric acid and lysine, both at 5 mM); (iv) benzyl alcohol (5 mM). 193 

Biomass yields were determined from regular counts of bacteria in liquid media over 3 - 5 days 194 

incubation period. Growth yields of all isolates (in triplicate cultures) were also compared using 195 

the following liquid media: (i) 1 mM ferrous iron; (ii) 20 mM ferrous iron; (iii) 1 mM ferrous iron/5 196 

mM glucose; (iv) 20 mM ferrous iron/5 mM glucose; (iv) 1 mM ferrous iron/0.005% yeast 197 

extract.  198 

 199 

2.6. Metal and salt tolerance  200 

 201 

     Standard ferrous iron/yeast extract liquid medium was supplemented with sterile 202 

solutions of aluminum, cobalt, copper, ferrous iron, manganese, nickel or zinc sulfates 203 

or sodium molybdate, to give final concentrations of 50 -1000 mM (sulfate salts) or 204 

0.05 - 0.3 mM (molybdate). The pH of the media was adjusted to 2.0 with sulfuric acid 205 

and the cultures incubated, shaken, at 30°C (“A. ferrooxidans” strains) or 45°C (“A. 206 

sulfuroxidans” strains) for up to 14 days. Growth was assessed by enumerating 207 

bacterial cells. In cultures where ferrous iron tolerance was tested, positive growth was 208 

reported by increase in cell numbers determined by SYBR staining [17]. A similar 209 

approach to that described above was used to determine salt (sodium chloride) 210 

tolerance. Both the highest concentration of metal (or salt) at which growth was 211 

observed, and the minimum inhibitory concentrations (MIC) were recorded. 212 

 213 

2.7. Genome analyses  214 

 215 

     Genomic DNA was extracted from cultures of “A. ferrooxidans” SLC66T and ITV01, 216 

and from “A. sulfuroxidans” Y002T, grown on 10 mM ferrous iron, 0.02% yeast extract 217 
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and 5 mM glucose, using a modified CTAB/high-salt extraction on lysozyme treated 218 

cells, followed by alcohol precipitation [18]. Whole-genome sequencing was performed 219 

via a combined approach using an Ion Torrent personal genome machine (Life 220 

Technologies, Carlsbad, CA), with 400 bp chemistry libraries and 318 semiconductor 221 

chip (strain ITV01), and an Illumina MiSeq sequencer with paired-end sequencing kit 222 

(strains SLC66T and Y002T). Genome assembly was conducted as described 223 

elsewhere [19]. Gene sequences coding for proteins in assimilating carbon dioxide and 224 

dinitrogen fixation were obtained from the genomes of different acidophilic bacteria: 225 

Acidithiobacillus ferrooxidans (GCA_000021485.1), Sulfobacillus acidophilus 226 

(GCA_000219855.1) and Alicyclobacillus acidocaldarius (GCA_000024285.1). These 227 

were used as query sequences to search the genome scaffolds of the “Acidibacillus” 228 

spp., employing local Blast with default parameters, using CLC Genomics Workbench 229 

7 (https://www.qiagenbioinformatics.com/). The best hits were investigated as putative 230 

orthologs and the protein structures were characterized using InterproScan tools [20]. 231 

 232 

2.8. Electron microscopy 233 

 234 

     Active cultures of strains SLC66T and Y002T were fixed in 2.5% glutaraldehyde 235 

followed by progressive ethanol dehydration. Fixed cultures were filtered through 0,2 236 

µM Nuclepore filters, and the immobilized bacteria critical point-dried and gold-237 

coated, and were visualized using a Zeiss Sigma VP scanning electron microscope. 238 

 239 

2.9. Analytical methods and reference bacteria  240 

 241 

     Bacteria were enumerated using a Helber counting chamber marked with Thoma 242 

ruling (Hawksley, United Kingdom) and viewed with a Leitz Labolux phase-contrast 243 

microscope at a magnification of 400X. Ferrous iron was determined using the 244 

Ferrozine reagent [21]. Total soluble iron was determined using the same method but 245 
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following reduction of ferric iron to ferrous by adding ascorbic acid, and ferric iron 246 

concentration from differences in the two values. Protein concentrations were 247 

measured using the Bradford assay [22]. Concentrations of glucose were determined 248 

using a Dionex ICS 3000 ion chromatography system fitted with a Carbo Pac MA1 249 

column and ED amperometric detector, and sulfate concentrations using a Dionex 250 

IC25 ion chromatograph with an Ion Pac AS-11 column equipped with a conductivity 251 

detector. Culture pH was measured using a pHase combination glass electrode, and 252 

redox potentials (adjusted to be relative to a standard hydrogen electrode; EH values) 253 

using a combination platinum silver/silver chloride electrode (VWR, UK). Both 254 

electrodes were coupled to an Accumet pH/redox meter 50.     255 

       The type strain of Sb. thermosulfidooxidans (DSM 9293) and Acidiphilium cryptum 256 

strain SJH [9] were used in some experiments 257 

 258 

3. Results 259 

 260 

3.1. Bacterial cells and colonies 261 

 262 

     All eight novel bacteria were isolated on acidic overlay solid media that contained 263 

organic carbon (tryptone soya broth or yeast extract) in addition to ferrous iron. They 264 

were subsequently subcultured on “FeSo” medium [9] which contains 2.5 mM 265 

potassium tetrathionate in addition to ferrous iron and tryptone soya broth. Bacterial 266 

colonies on FeSo medium had “fried egg” morphologies (Supplementary Fig. 1) typical 267 

of heterotrophic iron-oxidizing acidophiles, the orange coloration of the colony centres 268 

resulting from the accumulation of oxidized iron. Cells of “A. ferrooxidans” SLC66T 269 

were motile rods, 1.5 – 1.8 μm long, ~0.4 μm wide, and formed oval endospores which 270 

were located at the cell termini. Cells of “A. sulfuroxidans” Y002T were also motile rods, 271 

3 - 4 μm by ~0.5 μm that formed oval endospores located at the cell termini. It was 272 

noted that numbers of individual cells of Y002T increased during the early phases of 273 
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incubation (up to 2 days) but declined subsequently; this appeared to be related to  274 

cells aggregating as incubation progressed (Supplementary Fig. 2), a feature that was 275 

much less apparent in cultures of SLC66T.  276 

 277 

3.2. Phylogenetic analysis 278 

 279 

     Analysis and comparison of 16S rRNA gene sequences confirmed that all eight 280 

isolates were members of the phylum Firmicutes (order Bacillales, family 281 

Alicyclobacillaceae). Figure 1 shows that they clustered into three closely-related 282 

groups, two of which (Groups IA and IB) shared >99% similarity of their 16S rRNA 283 

genes and all of these were proposed to be strains of the novel species “A. 284 

ferrooxidans”. The two Group II isolates (Y002T and Y0010) shared >99% 16S rRNA 285 

gene similarity but were more distantly related (94% gene similarity) to both Groups IA 286 

and IB and considered to be strains of a different species, “A. sulfuroxidans”. These 287 

phylogenetic differences were also reflected in some key physiological traits, described 288 

below.   289 

  290 

3.3. Effects of pH and temperature on growth rates 291 

 292 

     Figure 2 shows the effects of pH and temperature on the culture doubling times 293 

(td’s) of SLC66T and Y002T. Both bacteria were confirmed to be extreme acidophiles, 294 

though Y002T was more acidophilic with a pH optimum and minimum for growth of 1.8 295 

and 1.6, respectively, while corresponding values for SLC66T were 2.9 and 1.9. The 296 

two isolates also displayed contrasting temperature-related growth: SLC66T was 297 

mesophilic (temperature optimum and maximum of ~30ºC and 37.5ºC) while Y002T 298 

was a moderate thermophile with an optimum growth temperature of ~43ºC and a 299 

maximum of 50ºC. When grown at optimum conditions of pH and temperature, SLC66T 300 

had a culture doubling time (td) of 6.7 h (corresponding to a growth rate, μ, of 0.10 h-301 
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1), while the moderate thermophile Y002T grew much more rapidly (minimum td of 2.1 302 

h, corresponding to a μmax of 0.33 h-1). Tests carried out in shake flasks confirmed that 303 

none of the “Group I” isolates (“A. ferrooxidans”) grew at pH 1.5, though one Group IA 304 

strain (BSH1) and both Group IB strains (ITV01 and Gal-G1) grew at pH 1.75 305 

(Supplementary Table 1). None of the four Group IA strains grew at 40ºC, in contrast 306 

to both Group IB strains (though neither of these grew at 45ºC). Like Y002T, the other 307 

strain of “A. sulfuroxidans” (strain Y0010) grew at 45ºC, though this bacterium was less 308 

acidophilic than Y002T and grew at pH 1.75 though not at pH 1.5 (Supplementary Table 309 

1).   310 

 311 

3.4. Dissimilatory redox transformations of inorganic electron donors and acceptors  312 

 313 

     All eight of the isolates catalysed the oxidation of ferrous iron in acidic media, and 314 

this was found to be highly correlated (r2 = 0.98 - 0.99) with growth of the bacteria. In 315 

cultures containing very small concentrations (0.005% w/v) of yeast extract, cell yields 316 

of both SLC66T and Y002T increased in parallel with the amount of ferrous iron oxidized 317 

(Fig. 3a). However, this trend was not found in cultures that contained a much higher 318 

(0.05%) concentration of yeast extract, and in these cell numbers were also noted to 319 

continue to increase beyond the point at which all of the ferrous iron had been oxidized 320 

(Supplementary Fig. 3). The specific rates of ferrous iron oxidation were 36.1 +/- 3.4 321 

mg min-1 mg protein-1 (SLC66T, at 30ºC and pH 2.0) and 48.5 +/- 1.3 mg min-1 mg 322 

protein-1 (Y002T, at 45ºC and pH 1.8). 323 

      None of the six Group I (“A. ferrooxidans”) strains oxidized elemental sulfur. In 324 

contrast, pH declined and sulfate concentrations increased as a result of the 325 

dissimilatory oxidation of sulfur to sulfuric acid, in yeast extract-containing cultures of 326 

both Group II isolates (Y002T and Y0010; Supplementary Fig. 4). Numbers of Y002T 327 

and Y0010 did not, however, correlate with oxidation of sulfur, which was considered 328 

to be due to attachment of cells to particulate S0. In contrast, numbers of both Y002T 329 



13 
 

and Y0010 increased in tetrathionate-containing media, paralleling changes in sulfate 330 

concentrations and culture pH (and was more pronounced in cultures of Y002T), 331 

confirming that the two strains of “A. sulfuroxidans” can oxidize tetrathionate as well 332 

as elemental sulfur. 333 

      “A. ferrooxidans” SLC66T catalysed the oxidative dissolution of pyrite, as 334 

evidenced by increasing concentrations of total soluble iron and cultures developing 335 

more positive EH values with incubation time, though again this was only observed with 336 

yeast extract-containing cultures (Fig. 4a). Cultures of Y002T, in contrast, initially failed 337 

to show any evidence of pyrite oxidation in liquid media that had been prepared under 338 

identical conditions. It was also noted that this isolate was unable to oxidize the ferrous 339 

iron released during sterilization of pyrite when the mineral was autoclaved in the 340 

presence of yeast extract. However, when sterile yeast extract solution was added 341 

subsequent to autoclaving pyrite/ABS, oxidative dissolution of pyrite proceeded, as 342 

shown in Fig. 4b. As with SLC66T, it was found that pyrite oxidation by strain Y002T 343 

was negligible in yeast extract-free medium, though adding yeast extract to “inorganic” 344 

cultures of Y002T at day 12 resulted in rapid oxidation of the ferrous iron present, as 345 

indicated by a mean increase in redox potential of >200 mV during the following two 346 

days, and the initiation of pyrite dissolution (Fig. 4b). The addition of further yeast 347 

extract (at day 12) to cultures of Y002T that had yeast extract added at the start of the 348 

experiment also resulted in more positive EH and accelerated pyrite oxidation. Pyrite 349 

dissolution by “A. sulfuroxidans” Y002T was noted to be about 40% less extensive than 350 

that observed in cultures of Sb. thermosulfidooxidansT grown under identical 351 

conditions. 352 

     All strains of “Acidibacillus” tested were able to catalyse the dissimilatory reduction 353 

of ferric iron under anaerobic conditions (Supplementary Fig. 5), though no reduction 354 

was observed in parallel cultures incubated under micro-aerobic conditions (data not 355 

shown). The two strains of “A. sulfuroxidans” displayed the greatest propensity for iron 356 

reduction, and the two Group IB strains the least. None of the isolates was found to 357 
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reduce elemental sulfur or catalyse the dissimilatory oxidation of elemental hydrogen. 358 

Cultures on solid media grown in H2-enriched or H2-free atmospheres were identical in 359 

size and morphology after protracted incubation, in contrast to those of the positive 360 

control acidophile, Sb. thermosulfidooxidans. 361 

 362 

3.5. Utilization of organic carbon 363 

 364 

     All of the novel isolates required a source of organic carbon for growth in liquid 365 

media, and yeast extract appeared to be superior to all others tested for this purpose. 366 

Biomass yields of both SLC66T and Y002T correlated with concentrations of yeast 367 

extract (Fig. 3b), though cell numbers of SLC66T were mostly much greater than those 368 

in the equivalent cultures of Y002T, though this was at least partially due to more 369 

pronounced cell aggregation of the latter, as noted previously. 370 

     Addition of some complex and defined organic compounds to ferrous iron/yeast 371 

extract liquid media resulted in increased cell numbers of all of the “Acidibacillus” 372 

strains, though this was limited in scale (Supplementary Table 2). Comparative data 373 

for the mesophilic acidophiles SLC66T and Acidiphilium SJH (Fig. 5) show that 374 

numbers of the former were far fewer than those of Acidiphilium SJH, grown in identical 375 

glucose-containing liquid medium. Also, while all of the glucose provided was utilized 376 

in the Acidiphilium SJH cultures within 3 days, only ~12% of the glucose in cultures of 377 

SLC66T was metabolized. In the case of Y002T
, numbers were >50% greater in cultures 378 

containing glucose than in glucose-free controls, but only ~6% of the available glucose 379 

was utilized (data not shown). In the case of strain Y002T, cell numbers were also 380 

significantly greater (by ~55% on day 3 and ~500% on day 7) in iron/yeast extract 381 

cultures that contained glucose compared to those that did not, though again the 382 

amount of glucose consumed was relatively small (5.5% of that provided; 383 

concentrations, compensated for evaporative water loss, falling from 4.90 +/- 0.02 mM 384 

on day 0 to 4.62 +/- 0.06 on day 7).  385 
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     Figure 6 compares numbers of all eight isolates grown in different inorganic and 386 

organic-amended liquid media. While there were some differences displayed between 387 

the “Acidibacillus” strains, there were some interesting general trends, including the 388 

observation that greater amounts of ferrous iron did not generally result in enhanced 389 

cell yields in organic carbon-free media, though they did in most cases where glucose 390 

was also present. Cell numbers of all of the strains were also much greater in 1 mM 391 

ferrous iron medium containing 0.005% yeast extract than in those containing 5 mM 392 

glucose, even though the amount of organic carbon present (~ 25 mg/L, compared to 393 

360 mg/L) was much less in the former.  394 

 395 

3.6. Tolerance of “Acidibacillus” spp. to some transition metals, aluminium and sodium 396 

chloride 397 

 398 

      The tolerance of the six strains of “A. ferrooxidans” and the two strains of “A. 399 

sulfuroxidans” to aluminum and selected transition metals are shown in Table 2. 400 

Strains belonging to “A. ferrooxidans” had in general a higher tolerance towards most 401 

of the metals tested than the two “A. sulfuroxidans” isolates. The proposed type stain 402 

of “A. ferrooxidans” (SLC66) had a lower MIC for copper than the other strains 403 

belonging to the same species. Strain BSH1 displayed less tolerance of copper but 404 

had by far a higher tolerance threshold for cobalt than other strains of this species. 405 

Strains of “A. sulfuroxidans” were far more sensitive to copper and cobalt than the two 406 

“A. ferrooxidans” strains None of the isolates were halotolerant, though both strains of 407 

“A. sulfuroxidans” were able to grow in liquid media containing higher concentrations 408 

of sodium chloride than the six strains of “A. ferrooxidans” tested (Table 2).  409 

 410 

3.7. Genome compositions, and carbon- and nitrogen-fixation genes  411 

 412 
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     Data from the preliminary annotation of the genomes of the three strains of 413 

“Acidibacillus” (SLC66T, ITV01 and Y002T) showed that they had GC contents of 52%, 414 

50% and 46%, respectively. The current assemblies contain 3.03 Mbp for SLC66T, 415 

3.23 Mbp for ITV01 and 2.70 Mbp for Y002T. The genomes of strains SLC66T and 416 

ITV01 contained genes with relatively low (34% and 36%, respectively) similarity to 417 

the cbbL gene (which encodes the large subunit of RuBisCO form IA, involved in CO2 418 

assimilation) but not the cbbM gene (which encodes the large subunit for type II 419 

RuBisCO). No gene identified as being necessary for nitrogen fixation were identified 420 

in the three genomes, but BLAST searches revealed a low sequence identity (36%) 421 

for the gene encoding for rusticyanin (a protein involved in ferrous iron oxidation in the 422 

iron-oxidizing acidithiobacilli and some other acidophiles) in the genomes of the three 423 

“Acidibacillus” strains. 424 

 425 

 426 

4. Discussion 427 

 428 

     The bacteria described in this report were isolated from geothermal and mine-429 

impacted sites from different parts of the world. The fact that other closely related 430 

acidophiles have also been isolated from sites in Germany [4, 5] and clones identified 431 

in samples in China [6], Japan [7] and Argentina [8] suggests that “Acidibacillus” spp. 432 

are very widely distributed in extremely acidic environments. The first reported strains 433 

(“SLC series”) were all described as obligately heterotrophic, mesophilic iron-434 

oxidizing acidophiles, and were noted to be only distantly phylogenetically related to 435 

other Firmicutes [3]. Six other phylogenetically-related isolates that have since then 436 

been added to the Acidophile Culture Collection at Bangor University since then were 437 

studied alongside two of the original “SLC series” strains in the present study. While 438 

the eight strains shared a number of physiological traits, there were also some 439 

significant differences.   440 
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     Comparison of 16S rRNA gene sequences clearly separated the eight strains 441 

studied, at the genus level, from currently classified acidophilic Firmicutes. While they 442 

formed a distinct clade, the fact that two of the isolates (Y002T and Y0010) shared 443 

only 94% gene similarity with the other six confirmed that the isolates comprised two 444 

distinct species. Subsequent laboratory tests showed that these phylogenetic 445 

relationships were reflected in some marked differences in some key physiological 446 

characteristics, with the larger group being mesophilic iron-oxidizers (“A. 447 

ferrooxidans”) and the smaller group moderately thermophilic iron- and sulfur-448 

oxidizers that were more tolerant of extreme acidity (“A. sulfuroxidans”). Interestingly, 449 

phylogenetic analysis separated two strains of the larger group (strains ITV01 and 450 

Gal-G1) from the other four strains, even though the six strains shared ~99% gene 451 

similarity, and this was also reflected in some minor differences in their physiologies. 452 

For example, strains ITV01 and Gal-G1 grew at 40ºC, while the other four strains of 453 

“A. ferrooxidans” did not, both grew at pH 1.75 while only one Group IA strain (BSH1) 454 

grew at this pH value, and strains ITV01 and Gal-G1 were also the least effective of 455 

all eight strains at reducing ferric iron.  456 

     The three major physiological traits shared by all of the isolates studied were: (i) 457 

optimum growth at extremely low (<3) pH, (ii) the ability to catalyse the dissimilatory 458 

oxidation of ferrous iron, and (iii) a requirement of organic carbon for growth. In 459 

contrast to Sulfobacillus spp. [16], none of the isolates used molecular hydrogen as 460 

an energy source. All of the isolates also catalysed the dissimilatory reduction of 461 

ferric iron under anoxic conditions though, as noted, this was limited in the case of 462 

the two Group IB strains, and it was not ascertained whether the bacteria could grow 463 

by ferric iron respiration. Ferrous iron is a widely used electron donor among 464 

acidophilic prokaryotes, due to it often being present in large concentrations in low 465 

pH environments, and also chemically stable at pH < 3 [1]. The ability to oxidize 466 

ferrous iron does not necessarily imply that microorganisms are able to conserve the 467 

energy from this reaction. However, the observation that cell numbers of both 468 
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SLC66T and Y002T increased in parallel with the amount of iron oxidized (in organic-469 

lean media) strongly suggests that this is the case with “Acidibacillus” spp.. The 470 

specific rates of ferrous iron oxidation recorded for “Acidibacillus” spp. (36.1 +/- 3.4 471 

mg min-1 mg protein-1 for SLC66T, and 48.5 +/- 1.3 mg min-1 mg protein-1 for Y002T) 472 

were much lower than those reported for other oxidizing acidophiles (192 – 484 mg 473 

min-1 mg protein-1 for chemolithotrophic Leptospirillum and Acidithiobacillus spp., and 474 

236 – 449 mg min-1 mg protein-1 for Sulfobacillus spp. [15]). 475 

     The two “A. sulfuroxidans” strains (Y002T and Y0010) also catalysed the 476 

dissimilatory oxidation of both elemental sulfur and tetrathionate, and it was assumed 477 

(though not confirmed) that they also conserved the energy from these reactions. 478 

The ability to oxidize both ferrous iron and sulfur is not uncommon among 479 

chemolitho-autotrophic and chemolitho-heterotrophic acidophiles, and has been 480 

reported for some Acidithiobacillus spp. (At. ferrooxidans, At. ferridurans, At. 481 

ferrivorans and At ferriphilus. [26]), Acidihalobacter prosperus [27], Acidiferribacter 482 

thiooxydans [28] and “Acidithiomicrobium” [29]. Among the acidophilic Firmicutes, all 483 

classified Sulfobacillus spp. (Sb. thermosulfidooxidans, Sb. acidophilus, Sb. 484 

thermotolerans, Sb. benefaciens, and Sb. sibiricus) [1], as well as Alicyclobacillus 485 

tolerans and Alb. aeris [30] can oxidize both ferrous iron and reduced sulfur. Other 486 

species of acidophilic bacteria (e.g. Leptospirillum ferrooxidans, Ferrimicrobium 487 

acidiphilum, Acidimicrobium ferrooxidans, Acidithrix ferrooxidans and “Ferrovum 488 

myxofaciens”) catalyse the dissimilatory oxidation of ferrous iron but not sulfur [1] as 489 

was the case with the six strains of “A. ferrooxidans”. 490 

     Yeast extract acted as both an energy and carbon source for these bacteria, as 491 

evidenced by: (i) growth continuing in cultures well after all of the ferrous iron had 492 

been depleted, (ii) growth yields correlating with concentrations of yeast extract 493 

provided (in cultures containing relatively little ferrous iron) and (iii) active growth in 494 

yeast extract/ferric iron media. “Acidibacillus” spp. can therefore be classified as 495 

facultative chemolitho-heterotrophs (i.e. they can obtain energy from both inorganic 496 
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and organic electron donors but require an organic carbon source). It was noted that 497 

cell yields of “A. ferrooxidans” SLC66T tended to be greater than those of “A. 498 

sulfuroxidans” Y002T in liquid media that contained the same concentrations of yeast 499 

extract. This was thought to be due, at least in part, to strain SLC66T being able to 500 

utilize a wider range of organic compounds present in this complex material, as both 501 

carbon and energy sources, than strain Y002T. Cell yields of both SLC66T and Y002T 502 

were significantly greater when glucose was added to ferrous iron/yeast medium, 503 

suggesting that it was metabolized to some extent. In contrast to those of the 504 

heterotrophic acidophile, Acidiphilium SJH, only small amounts (5.5 - 6%) of the 505 

available glucose was utilized in these cultures, suggesting that this compound 506 

served as a carbon source, but not an energy source, for “Acidibacillus” spp., and 507 

that growth was ultimately limited by the energy source available (ferrous iron, and 508 

that fraction of yeast extract that could be broken down to generate ATP) in these 509 

cultures. Glucose could also act as a carbon source for “Acidibacillus”, but was far 510 

less effective than yeast extract. For most strains, growth yields in glucose-containing 511 

media was limited by the availability of ferrous iron, suggesting again that the later 512 

served as the sole or main energy source, and glucose as the carbon source for 513 

these bacteria. Further annotation of the genomes of these bacteria will undoubtedly 514 

throw more light on the biochemical constraints that restrict glucose utilization by 515 

these novel acidophiles. The information available so far confirms that “Acidibacillus” 516 

spp. are not diazotrophic. Genes with relatively low sequence identity to ccbL (though 517 

not cbbM) gene were found in the genomes of two of the three sequenced bacteria, 518 

though extensive laboratory tests confirmed that none of the strains could grow in the 519 

absence of an organic form of carbon. Intriguing is the fact that all three bacteria 520 

appear to contain a gene that is related to that which encodes for rusticyanin, a 521 

protein known to be involved in iron oxidation in Acidithiobacillus spp. but not, so far, 522 

in the iron-oxidizing Firmicutes. 523 
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     In theory, any acidophilic bacterium that catalyses the dissimilatory oxidation of 524 

ferrous iron should accelerate the oxidative dissolution of pyrite, as ferric iron is the 525 

primary oxidant of this mineral in acidic liquors [31]. This was the case with both 526 

“Acidibacillus” type species, though it was not immediately apparent for strain Y002T. 527 

Autoclaving pyrite in the presence of yeast extract (as is common practice in the 528 

Bangor research laboratories, and has not previously proven problematic) generated 529 

some, currently unidentified, by-product that inhibited growth and iron oxidation by 530 

strain Y002T, though not by strain SLC66T and the positive control Firmicute, Sb. 531 

thermosulfidooxidans. Adding sterile yeast extract after heat-sterilization of pyrite 532 

eliminated this impediment, though pyrite leaching by Y002T was far less effective, 533 

and appeared to require more yeast extract, than that by Sb. thermosulfidooxidans.  534 

     The major industrial use of iron- and sulfur-oxidizing acidophilic bacteria is in the 535 

commercial bio-processing of sulfide mineral ores to extract and recover base and 536 

precious metals (“biomining” [32]). Whether or not “Acidibacillus” spp. have a 537 

potential role in mineral bioleaching consortia has yet to be evaluated. Both species 538 

could, in theory, carry out two critical roles (those of regenerating ferric iron and 539 

removing potentially inhibitory organic carbon) and “A. sulfuroxidans” strains could 540 

also contribute to the process by generating sulfuric acid. Another important required 541 

characteristic – that of being able to tolerate highly elevated concentrations of 542 

transition and other metals – also appears to be adequate, as the data obtained 543 

showed that metal tolerance is similar to that of most of the iron-oxidizing 544 

Acidithiobacillus spp.. A more significant constraint, however, may be their tolerance 545 

to extreme acidity, as many biomining practices operate at pH values <2, and often 546 

(in stirred tanks) at ~ pH 1.5. Mesophilic “A. ferrooxidans” may, however, play a more 547 

important role in the natural attenuation of acidic (pH >2) ferruginous mine waters by 548 

catalysing the oxidation of ferrous iron and thereby facilitating the hydrolysis and 549 

precipitation of ferric iron [33].  550 

 551 
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 661 

Table 1  662 

Sites of origin of bacteria identified as Acidibacillus spp.. 663 

 664 

 665 

Isolate Origins and dates of isolation Reference 

 

SLC66T 

& SLC40 

Experimental system used to accelerate the oxidation  

of mine waste (pH 2.9, 25°C ); Utah (1994) 

[3] 

Gal-G1 Geothermal area (pH 3.0, 80°C);  

Soufriere Hills, Montserrat, W.I. (1996) 

[23] 

Y002T & 

Y0010 

Geothermal area (pH 2.7, 30-60°C )  

Yellowstone National Park, Wyoming (2000) 

[24] 

ITV01 Stream draining waste rock at a copper mine  

(pH 4.9, 32°C); Brazil (2013) 

I. Ňancucheo et al.. 

(unpublished) 

BSH1 Constructed wetland receiving coal mine drainage  

(pH 7.0, 14°C); England (2014) 

C. Falagan et al.  

(unpublished) 

GS1 Sediment in a pit lake at an abandoned copper mine 

(pH 3.8, 23°C); Spain (2015) 

 

[25] 
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                         Table 2 

                         Tolerance of strains of “Acidibacillus” to selected metals and chloride. The values (in mM) shown are minimum 

inhibitory concentrations (MICs) and those in parentheses are the highest concentrations of that metals/chloride 

where growth was observed. 

 

 

 

 

 

 

 

  Cu Zn Ni Co Al Mn Fe(II) Mo Cl 

SLC66T 300 (200) 1000 (800) 400 (200) 300 (200) 800 (600) >800 800 (600) <0.05 100 (50) 

SLC40 600 (400) 1000 (800) 400 (200) 300 (200) 800 (600) >800 600 (400) <0.05 50 (25) 

BSH1 400 (200) 1000 (800) 400 (200) >600 1000 (800) 800 (600) 800 (600) <0.05 100 (50) 

GS1 800 (600) 800 (600) 400 (200) 300 (200) 600 (400) 800 (600) 600 (400) <0.05 100 (50) 

ITV01 600 (400) 1000 (800) 400 (200) 300 (200) 800 (600) >800 800 (600) <0.05 100 (50) 

G1 800 (600) 600 (400) 400 (200) 300 (200) 800 (600) 600 (400) 800 (600) <0.05 50 (25) 

Y002T 100 (50) 200 (100) 200 (100) 50 (30) 400(300) 800 (600) 600 (400) <0.05 250 (100) 

Y0010 300 (200) 200 (100) 300 (200) 150 (100) 600 (400) 400 (300) 600 (400) <0.05 250 (100) 
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Fig. 1. Neighbour-joining phylogenetic tree derived from 16S rRNA gene sequence 

data showing the relationship of “Acidibacillus ferrooxidans” and “A. sulfuroxidans” to 

other Gram-positive acidophiles. GenBank accession numbers are given in 

parentheses for each strain. The tree was rooted with Acidianus brierleyiT (not shown). 

Bootstrap values are given at the respective nodes.  
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Fig. 2. Effects of (a) temperature and (b) pH on culture doubling times of “A. 

ferrooxidans” SLC66T (●) and “A. sulfuroxidans” Y002T (■). 
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Fig. 3. (a) Effect of ferrous iron concentrations, and (b) yeast extract concentrations 

on cell numbers of A. ferrooxidans SLC66T (dark shaded bars) and A. sulfuroxidans 

Y002T (light shaded bars). Cultures were grown either at a fixed (0.005%, w/v) yeast 

extract concentration and variable amounts of ferrous iron and cells counted when all 

of the iron had been oxidized (a), or at a fixed (10 mM) ferrous iron concentration and 

variable amounts of yeast extract and maximum cell numbers (found after 2 days 

incubation in cultures of Y002T, and 4 days in cultures of SLC66T) recorded. Bars 

indicate mean values and the error bars data range (n = 2). 
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Fig. 4. Oxidative dissolution of pyrite by (a) “A. ferrooxidans” SLC66T (at 30ºC) and 

(b) “A. sulfuroxidans” Y002T (at 45ºC) in the presence and absence of 0.02% yeast 

extract. Key: SLC66T with (●) and without (o) yeast extract; Y002T with (▲) and 

without (Δ) yeast extract. Solid lines show total soluble iron concentrations and 

broken lines redox potentials (EH) values (symbols show mean values and error bars 

range values of replicate cultures). The arrow in (b) shows the point at which (day 12) 

sterile yeast extract was added to both the yeast extract-free and yeast extract-

containing cultures. Non-inoculated control cultures showed little change in total 

soluble iron and redox potential during the time course of the experiments. Data 

points indicate mean values and error bars data range (n = 2). 
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Fig. 5. Comparison of changes in cell numbers (solid lines) and glucose 

concentrations (broken lines) in cultures of “A. ferrooxidans” SLC66T and Acidiphilium 

SJH. Key: cell numbers and glucose concentrations in cultures of “A. ferrooxidans” 

SLC66T grown with (●) or without (o) 5 mM glucose; cell numbers and glucose 

concentrations in cultures of Acidiphilium SJH grown with 5 mM glucose (■).Data 

points indicate mean values and error bars data range (n = 2). 
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Fig. 6. Cell counts of “Acidibacillus” spp. grown in different liquid media; Key:           1 

mM Fe2+;             20 mM Fe2+;            1 mM Fe2+/5mM glucose;            20 mM Fe2+/5 

mM glucose;             1 mM Fe2+/0.005% yeast extract. Bars indicate mean values 

and error bars standard deviations (n = 3). 

 

 


