

Local vs landscape drivers of primate occupancy in a Brazilian fragmented region

Sales, L.P.; Hayward, M.W.; Passamani, M.

Mammal Research

DOI: 10.1007/s13364-015-0252-y

Published: 01/01/2016

Other version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Sales, L. P., Hayward, M. W., & Passamani, M. (2016). Local vs landscape drivers of primate occupancy in a Brazilian fragmented region. *Mammal Research*, *61*(1), 73-82. https://doi.org/10.1007/s13364-015-0252-y

Hawliau Cyffredinol / General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Candidate occupancy models	Model name
Landscape predictors	
Habitat amount & Fragmentation	$\Psi(Hab+Fragm)p(.)$
Habitat amount	Ψ(<i>Hab</i>)p(.)
Fragmentation	$\Psi(Fragm)p(.)$
Local predictors	
Canopy height & Canopy openness	$\Psi(Can_height+Can_openness)p(.)$
Canopy height	$\Psi(Can_height)p(.)$
Canopy openness	$\Psi(Can_openness)p(.)$
Global model	$\Psi(Hab+Fragm+Can_height+Can_openness)p(.)$
Constant model	Ψ(.)p(.)

 Table 1
 Candidate occupancy models and associated predictor variables

In model specifications, Ψ denotes occupancy and p is detection probability. The notation (.) indicates that parameter is kept constant, while names within brackets indicate that parameter is modeled as function of a covariate.

Species	Model	AIC	ΔΑΙϹ	AICwt
Titi monkey	Ψ(.)p(.)	64.01	0.00	0.44
	$\Psi(.)p(Ppt)$	64.97	0.96	0.27
	$\Psi(.)p(Vel)$	65.89	1.88	0.17
	$\Psi(.)p(Ppt+Vel)$	66.77	2.76	0.11
Marmoset	Ψ(.)p(.)	102.87	0.00	0.53
	$\Psi(.)p(Ppt)$	104.85	1.97	0.21
	$\Psi(.)p(Vel)$	104.85	1.98	0.19
	$\Psi(.)p(Ppt+Vel)$	106.81	3.94	0.07

Table 2Detection models for the black-fronted titi monkey and the black-pencilledmarmoset.

Detection probabilities were modeled as function of weather covariates *Ppt* (atmospheric precipitation) and *Vel* (wind velocity). AIC is Akaike's information criterion. Δ AIC is the difference from top-ranking model and AIC*wt* is the weight of evidence in favor of a model. Models with constant occupancy - $\Psi(.)p(.)$ - worked as well as models containing weather covariates (Δ AIC<2) for both species.

Models	# par	AICc	ΔAICc or	AICcwt or	LL or
			ΔQAICc	QAICcwt	QuasiLL
Titi monkey					
$\Psi(Can_height+Can_openness)$	p(.) 4	55.	.33 0.00	0.4153	-22.67
Ψ(<i>Canopy_height</i>)p(.)	3	55.	.75 0.41	0.3376	-24.30
$\Psi(Canopy_openness)p(.)$	3	56.	.61 1.28	0.2188	-24.74
global	6	61.	.54 6.21	0.0187	-22.44
constant	2	64.	56 9.22	0.0041	-30.01
Ψ(<i>Hab</i>)p(.)	3	65.	46 10.12	0.0026	-29.16
Ψ(Fragm)p(.)	3	65.	90 10.57	0.0021	-29.38
$\Psi(Hab+Fragm)p(.)$	4	67.	90 12.57	0.0008	-28.95
Marmoset					
constant	3	83.	.79 0.00	0.3157	-38.32
$\Psi(Can_height+Can_openness)$	p(.) 5	84.	63 0.84	0.2075	-37.34
Ψ(<i>Canopy_height</i>)p(.)	4	84.	.70 0.92	0.1996	-38.13
Ψ(Fragm)p(.)	4	86.	26 2.47	0.0918	-38.32
$\Psi(Canopy_openness)p(.)$	4	86.	.62 2.83	0.0767	-38.32
Ψ(<i>Hab</i>)p(.)	4	86.	.65 2.86	0.0756	-37.57
$\Psi(Hab+Fragm)p(.)$	5	88.	40 4.61	0.0315	-37.62
global	7	94.	.52 10.73	0.0015	-34.41

Table 3Occupancy models for black-fronted titi monkey and black-pencilledmarmoset in forest patches of a Brazilian fragmented landscape.

Set of single-season models fitted to detection/non-detection data. Occupancy (Ψ) was kept constant (constant model) or modeled as function of local predictors (*Canopy height* and *Canopy openness*) or landscape predictors (*Habitat amount* and *Fragmentation*). Global models indicate that occupancy is modeled as function of all predictors. The number of parameters (# par) is given for each model. AICc is Akaike's information criterion corrected for small sample sizes and QAICc is its correction for overdispersion. Model likelihood (LL) or quasi-likelihood (QuasiLL) values are also given. For a complete description of parameters and modeling procedures, please see text and Figure 3.

Table 4Hypothesis about local vs landscape effects on occupancy, hypothesisregarding specific relationships between occupancy and predictor variables, and theevidence found in our analysis.

	Titi mon	key	Marmoset	
	Hypothesis	Response	Hypothesis	Response
Landscape / Local	landscape & local	local	landscape	local
Habitat amount	+ correlated	no evidence	- correlated	no evidence
Fragmentation	- correlated	no evidence	+ correlated	no evidence
Canopy height	+ correlated	+ correlated	- correlated	no evidence
Canopy openness	- correlated	- correlated	+ correlated	no evidence