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Abstract 

Phytophthora infestans populations can differ in composition as a result of host-specialisation on 

tomato and potato hosts. In Great Britain many amateur gardeners grow outdoor tomatoes but there is 

little or no commercial tomato production outdoors. This study analysed isolates of P. infestans from 

British gardens with twelve multiplexed SSR markers that are used to monitor the disease on 

commercial potato crops. Samples of P. infestans from tomato hosts were collected in three years and 

from potato in one year from across Great Britain. Seven previously unreported genotypes were 

detected in garden populations and higher frequencies of unique clonal lineages (28% to 40%) were 

present compared with populations from British commercial potato crops reported elsewhere. Garden 

populations had a lower proportion (11% to 48% less) of the most common lineages (13_A2 and 

6_A1) which together made up at least 86% of the commercial potato populations during the sampling 
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period. Host species accounted for only 2.6% of molecular variance detected between garden potato- 

and tomato-hosted samples. No significant difference in clonal lineage composition was found 

between host species in Great Britain and this could be due to the whole P. infestans population over-

wintering on potato. British garden populations on both hosts were much more diverse than those on 

commercial potato crops; this finding may be influenced by less frequent fungicide use by gardeners 

and a higher diversity of un-sprayed susceptible potato cultivars enabling metalaxyl-sensitive and less 

virulent genotypes to survive in gardens. 

 

Introduction 

Late-blight caused by Phytophthora infestans is one of the most serious diseases of crops of potato 

(Solanum tuberosum) and outdoor tomato (S. lycopersicum) worldwide, causing yield reductions and 

increased production costs associated with fungicide sprays in potato. Late blight can cause 100% 

crop loss in tomato, particularly in unsprayed organic crops.  P. infestans is capable of sexual and 

asexual reproduction. For sexual reproduction (and genetic recombination) A1 and A2 mating type 

genotypes must come into contact. In many areas with or without both mating types present, including 

Great Britain, reproduction is mostly or entirely asexual (Cooke et al. 2014; Collins, 2013; Lees et al. 

2012). In these situations, recurrent clonal lineages dominate in P. infestans populations, with little or 

no genetic change from parent to offspring generations. Accumulation of mutations within clonal 

lineages leads to intra-lineage variation (Cooke et al. 2014). Novel clonal lineages may arise in 

agricultural systems through more extensive mutation, mitotic recombination, sexual recombination, 

or migration from P. infestans diversity hotspots such as South America (Goodwin et al. 1994).  

 

P. infestans is thought to have originated in Mexico and spread to the South American Andes early in 

its evolution (Goss et al. 2014). It remained within this range until the North American and European 

potato blight epidemics of the 1840s (Bourke 1964), which seem to have been caused by a single P. 

infestans clonal lineage, HERB-1 (Yoshida et al. 2013). HERB-1 was displaced by the closely related 

US-1 lineage (Yoshida et al. 2013), which was subsequently the only clonal lineage detected outside 

South America and Mexico (Goodwin et al. 1994) until the next migration event in the late 1970s, 

which introduced new genotypes (including those with A2 mating types) from Mexico to Europe and 

subsequently to the rest of the world (Hohl & Iselin 1984; Spielman et al. 1991). With the migration 

of A2 mating types in the late 1970s came the potential for sexual recombination and the rapid genetic 
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diversification of the global P. infestans population. Thus, since the early 1980s, P. infestans 

populations in most European countries have consisted of multiple unique genotypes and recurrent 

clonal lineages (Euroblight 2014).  

 

P. infestans is capable of infecting several species of Solanaceae worldwide, with Solanum species 

being the most frequent hosts (Nelson 2008). Of the species susceptible to P. infestans, potato and 

tomato are the two most economically important and widespread. In many global regions where 

multiple P. infestans genotypes and multiple host species are present, some degree of host-

specialisation has been observed, both in terms of the frequency of recurrent clonal lineages on each 

host, and in terms of within-lineage genotypic and phenotypic variation. For example, multiple studies 

in the USA have demonstrated that the US-8 lineage is common on potato, but very seldom infects 

tomato (Danies et al. 2012; Peters et al. 2014; Wangsomboondee et al. 2002). In studies where 

inoculations onto tomato and potato leaflets have been carried out, isolates are often found to be more 

pathogenic on one host than another. This specialisation may correspond to the P. infestans clonal 

lineage (Danies et al. 2012) or to the host species from which the isolate was originally collected 

(Garry et al. 2005; Knapova and Gisi 2002; Lebreton et al. 1999; Oyarzun et al. 1998).  

 

P. infestans is a serious threat to British potato production, and P. infestans populations in Great 

Britain have been closely monitored on commercial potato crops since the mid-1990s (Cooke et al. 

2014; Cooke et al. 2007; Day et al. 2004). This work has shown that since 2007-2008, two strains, 

13_A2 and 6_A1, have become dominant in most areas of Great Britain, with relatively few other 

clonal lineages present (Cooke et al. 2014). In Great Britain, there is little or no commercial outdoor 

tomato cultivation, and the glasshouse tomato crop is rarely blighted due to the warmer, dryer 

conditions in glasshouses (Collins 2013; Nelson 2008). However, amateur gardeners commonly grow 

outdoor tomato crops and experience late-blight outbreaks on these as well as on potato. In Great 

Britain most monitoring of P. infestans populations has taken place in commercial potato crops, and 

little is known about the P. infestans population on tomato, or the diversity of P. infestans present in 

domestic gardens and allotments (henceforth “gardens”). However, with over 150,000 allotment plots 

in England (Campbell & Campbell 2013), and outdoor tomatoes widely grown by amateur gardeners 

throughout Great Britain, there is potentially additional P. infestans diversity that has not yet been 

sampled. It is hypothesised that there might be distinct tomato and potato-specialised populations in 

line with the situation in other regions. Since it has been suggested that gardens could be an important 

source of inoculum for commercial potato crops (Ball & Stevenson 2012), understanding more about 

the structure of P. infestans populations in these settings is vital.  
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This study was conducted to compare populations of P. infestans from tomato and potato for genetic 

variation at SSR (microsatellite) loci and to examine the diversity of P. infestans genotypes present in 

gardens, as distinct from commercial potato crops, in Great Britain between 2011 and 2013. 

 

Materials and Methods  

Isolation of P. infestans from Gardens 

P. infestans samples were obtained from private gardens and allotment sites throughout Great Britain 

by appealing through several gardening websites and magazines and by directly contacting allotment 

organisations or public administrators in 300 major British cities and regions. In 2011 and 2012, P. 

infestans samples were sought from tomato only. In 2013, samples were sought from both tomato and 

potato crops. Responding groups and individuals were asked to mail fresh, otherwise healthy leaflets 

bearing small lesions to the authors.  

 

Upon receipt, samples were placed in a 9 cm diameter Petri dish lined with damp tissue paper and 

incubated at cool room temperature (15-20 °C) in diffuse natural light for 24 hours. Once sporulation 

was observed, an agar wedge was used to transfer sporangia to a plate containing Rye A medium 

(Caten & Jinks 1968) amended with 25 mg L-1 of rifampicin and ampicillin (both Bio Basic Canada 

Inc.) and 50 mg L-1 of nystatin (Sigma Aldrich). The cultures were incubated in darkness at 18 °C in 

order to grow mycelium from which DNA was extracted. For some isolates, sporangia would not 

germinate on agar, and in this case DNA was extracted directly from infected plant material. 

 

In 2011 and 2012 respectively, 15 and 36 usable tomato-hosted isolates were received. In 2013, 25 

isolates were received from potato, and 43 from tomato. In all years, most isolates came from England 

and Wales with very few from Scotland. The geographic distribution of isolates was reasonably even 

(Fig. 1). The geographic distribution of isolate origins in the 2013 tomato- and potato-hosted samples 

was similar (Fig. 1c and 1d). 

 

In addition to the samples collected as part of this investigation, the following reference isolates of 

known clonal lineage were included: 2010_8106A (23_A1), 2006_3928A (13_A2), 2006_3984C 

(1_A1), 2006_3888A (2_A1), and 2006_4232E (8_A1). Reference isolates were supplied by Dr 

David Cooke from the collection held at the James Hutton Institute, Invergowrie, Dundee, UK. 
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Reference isolate genotypes as determined in the present study were compared with published 

genotypes in order to standardise allele calling. For comparative purposes survey data from 

commercial potato crops for the same period, collected as part of national P. infestans surveys 

sponsored by the Potato Council, were used in the analyses (D.E.L. Cooke, James Hutton Institute, 

unpublished data). 

 

DNA Extraction 

Approximately 100 mg of mycelium scraped from the surface of an agar plate (or alternatively 

approximately 100 mg of infected plant material) was placed in a sterile collection tube and freeze-

dried. DNA extraction was carried out using DNEasy Plant Mini Kits (Qiagen) according to the 

manufacturer’s instructions.  

 

PCR Amplification 

PCR was carried out using Qiagen Multiplex PCR kits (Qiagen) with primer pairs for 12 SSR loci 

described by Li et al. (2013). Their protocol was modified to use WellRED dyes (Beckman Coulter) 

in two six-plex panels rather than one twelve-plex panel (Supplementary Data 1). The final reaction 

concentration of primer pair SSR4 was increased from 0.05 μM to 0.1 μM (each primer). PCR was 

carried out in a total volume of 12.5 µl using a PTC-100 Thermocycler (MJ Research). The reaction 

mixture consisted of: 6.25 μL Qiagen Multiplex PCR Master Mix (Qiagen), 0.3125 μL each primer 

(Supplementary Data 1), 1.5 μL template DNA (6 ng μL-1) and 1 μL water. PCR conditions were as 

follows: 95 °C for 15 minutes, followed by 30 cycles of 95 °C for 20 s, 58 °C for 90s, and 72 °C for 60 

s, and a final extension at 72 °C for 20 minutes. PCR amplification and fragment sizing were carried 

out at least twice for all samples as a check against failed amplification or fragment sizing errors. 

 

Fragment Sizing 

Fragment sizing was carried out using a CEQ 8000 genetic analysis platform (Beckman Coulter), 

according to the manufacturer’s instructions. The samples were run using the CEQ 8000 Frag-3 

programme, which consisted of a 30 second injection at 2 kV and a 35 minute capillary run at 6 kV, 

50 °C. Alleles were called manually using the nomenclature described by Li et al. (2013). The 

fragments produced by some primer pairs were consistently larger with the present protocol than sizes 

published by Li et al. (2013). The size of any deviation (0 - 24 bp according to locus) was established 
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by comparing the fragment sizes obtained using the reference samples with published fingerprints and 

the appropriate correction made when recording sample fragment sizes (Supplementary Data 1). 

 

Datasets 

Three datasets were used for different parts of the analysis:  

- The Full Dataset was a mixed-ploidy dataset composed of all samples collected in this study. 

- The Clone-Corrected Dataset was derived from the Full Dataset. Where multiple isolates had 

identical SSR genotypes, only one was retained (generally, the first isolate representative of a 

genotype to be received was used). However, in 2013, in instances where a SSR genotype 

was present in both the potato- and tomato-hosted sample, an isolate from each host 

population was retained. 

- Reference genotypes of published named clonal lineages (Li et al. 2013) were included for 

comparison in some analyses.    

-  

 Assignment of Clonal Lineages 

The Full Dataset plus 96 Reference genotypes were used to establish whether or not samples collected 

as part of the present study belonged to known clonal lineages. Inter-individual “Bruvo” distances 

(Bruvo et al. 2004) between all genotypes were calculated using the meandistance.matrix function of 

the package Polysat (Clark & Jasieniuk 2011) on the R statistics platform (R Core Team 2014). The 

resulting distance-matrix served as the input to the assignClones function in Polysat, in order to group 

the study samples with the 96 Reference genotypes. The grouping threshold was set at 0.15 because 

this was found to be the level at which the 96 Reference genotypes would group together within their 

designated clonal lineages without grouping with Reference isolates from other clonal lineages. 

Additionally, the Phytophthora-ID 2.0 website (Grunwald et al. 2014) was used to identify clonal 

lineages. 

 

Detection of Underlying Genetic Structure 

Shannon-Wiener and Simpson’s diversity indices were calculated for each sample population. The 

unique isolates were treated as a single, homogeneous category and similarly, the rarest unidentified 

clonal lineages (New-2, New-5 and New-6) were combined into a single category. Fisher’s exact test 

was used to test for significant differences between populations. 
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Principal Coordinates Analysis was carried out using the cmdscale function of the stats package in R 

(R Core Team 2014) to generate two principal components from the Bruvo distance table produced 

from the Full Dataset.  

 

The Clone Corrected Dataset served as the input for an Analysis of Molecular Variance (AMOVA) 

(Excoffier et al. 1992) using the R package poppr (Kamvar et al. 2014) in order to determine the 

proportion of genetic variability between and within populations.  

 

Results 

Population Composition  

Genotypes were obtained from 119 isolates (Supplementary Data 2). Four known clonal lineages 

(13_A2, 6_A1, 8_A1, 23_A1 and 1_A1) were identified amongst the P. infestans isolates collected 

from gardens (Fig. 2). Seven “unknown” isolate groups were present (Bruvo distance <0.15) that 

could not be assigned to clonal lineages identified in any of the databases available (D.E.L. Cooke, 

James Hutton Institute, unpublished data; Grunwald et al. 2014; Li et al. 2013). Among isolates 

collected from gardens, 36% were unique genotypes that did not group with any other isolates and are 

identified here as “Unique” (Fig. 2).  

 

The P. infestans population on commercial potato crops was dominated by the 13_A2 and 6_A1 

clonal lineages during the period of this study, with these clonal lineages together making up 88%, 

86% and 87% of the sample in 2011, 2012 and 2013 respectively (Table 1) (D.E.L. Cooke, James 

Hutton Institute, unpublished data). In the tomato-hosted samples from gardens for 2011, 2012 and 

2013, the percentages of 13_A2 and 6_A1 together were 33%, 11% and 25%, respectively (Fig. 2a-c). 

The 2013 potato sample from gardens contained 48% 13_A2 and 6_A1 isolates (Fig. 2d). Isolate 

23_A1 made up 20% and 14% of the samples collected from tomato in 2011 and 2012 respectively 

(Fig. 2a and 2b), compared to a single isolate (0.23 %) in 2011 and four isolates (0.56 %) in 2012, in 

the sample from commercial potato crops (D.E.L. Cooke, James Hutton Institute, unpublished data). 

In 2013, 23_A1 was absent from both garden samples (Fig. 2c and 2d) and from the commercial 

potato sample (D.E.L. Cooke, James Hutton Institute, unpublished data). In all years, garden samples 

contained a higher proportion of “Unique” isolates compared to the corresponding sample from 

commercial potato crops (Table 1), with such isolates making up 36% of the garden sample (mean of 

all years, both hosts), compared to 7% of the commercial potato sample (mean of all years). 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Highly significant (p<0.001) differences were found between the distributions of clonal lineages from 

commercial crop populations (D.E.L. Cooke, James Hutton Institute, unpublished data) and garden 

populations in all years (Table 2). Despite the presence of different clonal lineages in the potato- and 

tomato-hosted populations collected from gardens in 2013 (Figs. 2c and 2d),  a Chi-squared test for 

difference in lineage frequency between the two populations did not indicate a significant difference 

(p=0.107).  

 

Underlying Genetic Structure of Garden Populations 

Principal Coordinates Analysis did not reveal clustering of isolates by sample population (Fig. 3a) 

although clustering by clonal lineage was clear among the four garden populations (Fig. 3b). 

 

AMOVA (Table 2) showed that 92.4% of the variance across all populations was between samples 

within populations, and only 7.6% was between populations, with host species accounting for just 

2.6% of this. Whilst the proportion of between-host variance was small, it was statistically significant 

(p=0.028).  

 

Discussion 

This study using SSR markers found little evidence of host-specialisation, despite revealing a broad 

palette of genetic variation in P. infestans populations from British gardens. The significant 2.6% 

genetic variation detected in 2013 suggests that there is only a small effect of host species on intra-

lineage P. infestans variability in Great Britain. This like-for-like comparison between tomato- and 

potato-hosted samples from gardens was only made for one year, yet over three years isolates on 

tomato from gardens could not be distinguished as distinct groups of lineages when compared with 

isolates from commercial potato crops. 

 

The higher diversity indices for the garden derived samples and lower proportion of the 13_A2 and 

6_A1 clonal lineages in favour of rare and “Unique” genotypes, together, suggest a more varied and 

possibly more dynamic P. infestans population in gardens than in commercial potato crops. The 

analysis may have underestimated the diversity, particularly of the garden populations, because 

dissimilar genotypes were combined in the “Unique” category.. 
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Where previous studies have examined clonal lineage using molecular marker systems (SSR or 

RFLP) they have generally found a clear distinction between the lineage frequencies in tomato- and 

potato-hosted populations (Danies et al. 2012; Garry et al. 2005; Knapova & Gisi 2002; Lebreton & 

Andrivon 1998; Oyarzun et al. 1998; Peters et al. 2014; Wangsomboondee et al. 2002). Several 

studies using molecular marker systems have found higher diversity on tomato (Garry et al. 2005; 

Lebreton & Andrivon 1998; Wangsomboondee et al. 2002), whilst others have found higher diversity 

on potato (Danies et al. 2012), or a similar diversity on both hosts (Oyarzun et al. 1998; Peters et al. 

2014). In the case of the present SSR study, Shannon diversity of potato- and tomato-hosted 

populations of P. infestans from comparable (garden) settings was similar, further suggesting that 

these populations are not host-specialised in Great Britain.  

 

Knapova & Gisi (2002) found conflicting results with two marker systems, with higher diversity 

among the potato isolates using AFLP markers, but higher diversity among tomato isolates when 

using SSR markers. However, the study used only two SSR markers, and other studies using larger 

numbers of SSR markers found that SSRs were consistent with other neutral markers (Fry et al. 2013; 

Danies et al. 2012). It is noteworthy that many previous studies were conducted in tropical countries 

where a number of hosts may be present year-round (see below). In the case of Garry et al. (2005), 

Peters et al. (2014) and Wangsomboondee et al. (2002) tomato and potato samples often came from 

different geographical regions, weakening any conclusion as to the effect of host on sample 

composition. In the present study, both potato and tomato samples were collected from throughout 

Great Britain (Fig. 1c & 1d), and it is unlikely that there was any association between host species and 

geographic location. It may be that within the clonal lineages present in Great Britain, differences in 

aggressiveness or virulence exist, as in other countries (Danies et al. 2012; Delgado et al. 2013; Fry et 

al. 2013; Garry et al. 2005; Knapova and Gisi 2002; Lebreton et al. 1999; Oyarzun et al. 1998). There 

is scope to examine the aggressiveness and virulence of tomato- and potato-hosted P. infestans 

isolates collected in Great Britain against tomato and potato differentials carrying a variety of 

resistance genes. 

 

There may be a biological reason for a lack of differentiation between tomato- and potato-hosted P. 

infestans populations in Great Britain. The British climate generally precludes P. infestans from 

overwintering on any host other than potato. Additionally, in contrast to the situation in many other 

European countries, oospore-mediated infections in commercial plantings appear to be rare in Great 

Britain (Cooke et al. 2014; Collins, 2013; Lees et al. 2012)). Therefore, in order to persist from year 

to year, P. infestans lineages must be capable of infecting potato, the only common overwintering 

host. A mirror situation was suggested by Le et al. (2008) as an explanation for the apparent absence 
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of host specialisation in Vietnam, where cropping cycles mean that tomato is the only available host 

for part of the year. However, it is notable that clear evidence of host specialisation exists in France 

and Switzerland (Knapova & Gisi 2002; Lebreton & Andrivon 1999) and in Canada and the north of 

the USA (Danies et al. 2012; Fry et al. 2013; Peters et al. 2014) where a similar growing situation to 

Great Britain exists, so the lack of continuous presence of both hosts does not appear to preclude 

specialisation. It is unclear if and how SSR or RFLP genotype relates to host preference, and more 

work is needed to ascertain the virulence and aggressiveness of P. infestans isolates to both hosts in 

order to explain the lack of apparent host-specialisation in Great Britain in contrast to the clear 

preference of some lineages for particular hosts in the USA, Canada, and other temperate regions. 

 

The greater diversity found in gardens in Great Britain is in agreement with findings of Drenth et al. 

(1993b), who surveyed Dutch P. infestans populations and found that the A2 mating type was more 

common in allotment-derived samples (53%) than in those from commercial fields (12%) over the 

same period. Drenth et al. (1993a) also found greater RFLP genotype diversity in samples collected 

from allotments and community gardens than commercial potato fields in the Netherlands.  

 

Possible explanations for higher diversity of P. infestans genotypes in gardens and allotments may 

include the fact that fungicides are less often used by gardeners than by commercial farmers, and this 

may allow fungicide-susceptible P. infestans genotypes to flourish in these settings. Furthermore, a 

wider range of varieties are grown in gardens than in commercial systems, including many “heritage” 

varieties developed before blight-resistance was a common breeding objective. Gardeners may 

therefore grow crops of susceptible potato varieties unprotected by fungicide sprays, again providing 

an environment in which less virulent P. infestans genotypes can flourish in addition to those which 

infect commercial crops.  Infected potato seed tubers from a larger number of different sources may 

come together in allotment sites, facilitating the recombination of P. infestans genotypes through 

matings. This could explain the high proportion of unique isolates encountered in these settings. 

Finally, biosecurity measures such as removal of all “volunteer” tubers and proper disposal of 

outgrades are likely to be less consistent in garden and allotment settings, reducing the rate of 

stochastic extinction of genotypes from one season to the next.  

 

The particular importance of tomato as a reservoir of P. infestans diversity in Great Britain remains 

unclear. This study demonstrates that P. infestans populations from gardens are particularly diverse, 

and contain a large proportion of unique genotypes possibly originating from matings. This work 
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highlights the need to continue efforts to educate and inform gardeners of the importance of late-

blight prevention and control measures. It also emphasises the need to develop potato and tomato 

varieties with better late-blight resistance and promote them to gardeners. 
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Figure legends 

Figure 1: Origins of isolates making up the 2011 tomato sample (1a), 2012 tomato sample (1b), 2013 potato sample (1c) 

and 2013 tomato sample (1d).  Not shown on maps are: Additional isolates were sent to the authors from unrecorded 

locations in Great Britain. There were four such additional isolates in 2011, four in 2012, one in 2013 (potato) and one in 

2013 (tomato). sent to the authors from unrecorded locations in Great Britain; also oOne isolate was sent from Jersey in 2012 

(not shown). 

Figure 2: The distribution of clonal lineages within P. infestans samples collected from British gardens and allotments from 

tomato hosts (2a-2c) and potatoes (2d) collected for this study. Sample size is indicated in parentheses in the title of each 

graph. Segments are shaded by P. infestans clonal lineage. Fisher’s exact test indicates significantly (p<0.001) different 

distributions for all comparisons between study samples 2a-2d and the corresponding sample collected from commercial 

potato crops in each year (D.E.L. Cooke, James Hutton Institute, unpublished data, not shown) but not between the 2013 

tomato and potato samples from gardens (2c and 2d) where p=0.107. 

Figure 3: Plots of the first two principal coordinates resulting from classical multidimensional scaling of inter-isolate 

genetic distances (Bruvo) calculated from combined data of 12 microsatellite markers tested on P. infestansblight isolates 

from gardens and allotments for with symbols showing each population sampled (2a-d3a) and and for combined data of all 

populations sampled, with points indicating clonal lineage identified (2e3b). “Other Genotypes” includes all Unique isolates 

and less common named clonal lineages. 

Figure 4: Markov Chain Monte Carlo clustering for K=3 clusters of blight isolates, (a) grouped by sample population 

showing no clear association between clusters and sample populations and  (b) grouped by clonal lineage showing 

association with cluster membership. Each isolate is represented by a vertical bar and the proportion (%) of identity to each 

cluster is represented by dark grey, light grey and white bars. Optimal clustering of individuals was obtained using CLUMPP 

(Jakobsson, Rosenberg 2007) from 20 STRUCTURE runs of 1,000,000 iterations following a 100,000 iteration burn-in 

period 
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Supplementary Data 1 – Multiplex PCR Setup: The final concentrations, WellRED dye labels, and panel groupings of the 

12 microsatellite primers used in this study (after Li et al. (2013)). The concentration of primer SSR4-F was increased from 

0.05 to 0.1 μM. Fragments detected in this study were generally larger than those published in (Li et al. 2013), and the 

deviation from the original size is indicated. The fragment sizes remained consistent over multiple PCR and fragment sizing 

runs. Primer stocks were prepared at the concentrations indicated so that the same volume of each could be added to the 

mastermix whilst retaining the desired primer ratio. 

Supplementary Data 2 – Isolate SSR Fingerprints: SSR Genotypes of P. infestans isolates used in this study, along with 

the latitude and longitude of the GB post-code in which the sample was collected, and other sample metadata (where 

available). Some location data is missing, but all samples were collected within Great Britain. The clonal lineages indicated 

are those assigned in this study. Sample IDs were assigned by the authors for our own use and do not relate to any wider 

nomenclature system. 
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Table 1: Diversity indices (Shannon-Wiener and Simpson) of the garden derived samples collected for this study and 
samples mostly taken from commercial crops by the James Hutton Institute (D.E.L. Cooke, James Hutton Institute, 
unpublished data). N indicates the number of isolates in the sample. The percentages in each population are given for the two 
most common clonal lineages (13_A2 and 6_A1) and “Unique” isolates. Within each year, samples with different letters in 
the Group column were significantly different (p < 0.001).   

 

 

 

 

Table 2: Summary of the results of Analysis of Molecular Variance (AMOVA) conducted on the clone-
corrected dataset, indicating the percentage of genetic variation attributable to population level differences 
between the study years 2011-2013, between potato- and tomato-hosted populations in 2013, and between 
individuals. 

 

 

 

Setting Year Population Host N Shannon- 
Wiener 

Simpson % 13_A2 
and 6_A1 

% 
Unique 

Group

Garden 2011 Tomato 15 1.40 0.28 33 40 a 
Commercial 2011 Mainly Potato 436 0.74 0.66 88   7 b 

 
Garden 2012 Tomato 36 1.75 0.22 11 39 a 
Commercial 2012 Mainly Potato 716 1.08 0.45 86   7 b 

 
Garden 2013 Tomato 43 1.81 0.21 25 36 a 
Garden 2013 Potato 25 1.70 0.21 48 28 a 
Commercial 2013 Mainly Potato 219 1.05 0.41 87   8 b 
         
Mean Garden All Both hosts 119 2.00 0.19 27 36 a 
Mean Commercial All Mainly Potato 1371 1.04 0.46 87 7 b 

Source of Variation % of Total        Phi 

Between Years 5.0         0.076    

Between Hosts in 2013 2.6 0.028* 

Between Individuals Within Populations 92.4 0.050* 

Total 100.0 
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