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ABSTRACT 

 

Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called 

regime shifts, which significantly alter ecosystem processes and functioning. In the face of 

global change and increasing direct human impacts, there is an urgent need to anticipate and 

prevent undesirable regime shifts, and conversely, to reverse shifts in already degraded reef 

systems. Such challenges require a better understanding of the human and natural drivers that 

support or undermine different reef regimes. The Hawaiian Archipelago extends across a 

wide gradient of natural and anthropogenic conditions and provides a unique opportunity to 

investigate the relationships between multiple reef regimes, their dynamics and potential 

drivers. We applied a combination of exploratory ordination methods and inferential statistics 

to one of the most comprehensive coral reef datasets available in order to detect, visualize and 

define potential multiple ecosystem regimes. The present study demonstrates the existence of 

three distinct reef regimes dominated by hard corals, turf algae, or macroalgae. Results from 

Boosted Regression Trees (BRT) show non-linear patterns among predictors that explain the 

occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to 

effluent, latitude and depth. 

 

Key words: boosted regression trees – coral reefs – disturbance – Hawai‘i – multiple regimes 

– resilience  
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INTRODUCTION 

 

The dramatic loss of live coral cover on reefs worldwide [1–3] has raised serious concerns 

regarding their future [4,5]. Parallel to this loss, observational [6,7,8], experimental [9,10], 

and modelling [11] studies suggest that many coral reefs are shifting to alternative regimes (or 

states) with consequences for coastal societies that depend on reef resources. While 

transitions from coral to macroalgae dominance are most commonly described [6,7] other 

degraded states, characterized by sponge, soft coral or corallimorpharian dominance, have 

been suggested [12]. 

Regime shifts in coral reefs have primarily been described in human-dominated 

environments [13,14] where overfishing and reduced water quality, acting in concert with 

climate change, have been suggested as key drivers [10,15]. Specifically, the loss of 

herbivores, which keep algal colonization and growth in check, has been argued to be a 

leading cause of regime shifts [2,7], particularly when large tracts of substratum become open 

for rapidly colonizing algae, e.g. following hurricanes or coral mass bleaching events 

[10,16,17]. 

Yet, recent meta-analyses of longitudinal datasets have questioned the existence (or 

the stability) and the generality of alternative reef regimes in coral reefs. For example, Bruno 

et al. [18] looked for multimodal patterns in the frequency distribution of benthic cover in 

1851 reefs worldwide, and reported that most reefs were neither in a coral-dominated state 

(>50% coral cover) or macroalgae-dominated state (>50% macroalgal cover), challenging the 

assumption that coral-macroalgae shifts are a common phenomenon. Similarly, 

using stochastic semi-parametric modelling on reef data from the Caribbean, Kenya, and 

Great Barrier Reef, Żychaluk et al. [19] found no evidence of bimodality at a regional scale. 

However, Mumby et al. [20] argued that both studies make a number of unrealistic statistical 

assumptions with regards to the constancy of environmental variables, resolution of field data, 

and disturbance dynamics. Similarly, Hughes et al. [14] claimed that data used are often too 

patchy and unable to identify the complex mechanisms or processes causing long-term 

change. Moreover, they contested the cut-off set by Bruno et al. [18] (i.e. >50% cover) 

arguing that few reefs globally display such abundances of dominating benthic taxa. 

Diagnosing multiple regimes from field data is problematic because coral reef may 

respond slowly to frequent pulse perturbations [20] that mask trends of recovery or decline. 

Given the critical consequences of regime shifts on ecosystem services [5,21] and their 

profound management implications, we need a better understanding of the processes that 
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drive alternative reef regimes, and improved methods to extract evidence of their existence 

from field data. 

Here, relying on an extensive spatial dataset gathered in the Hawaiian Archipelago 

across gradients of natural and anthropogenic conditions, we apply a novel approach for 

detecting, visualizing and defining potential multiple ecosystem regimes. We also identify the 

primary human and natural drivers that explain these regimes across a regional scale. 

 

 

MATERIAL AND METHODS 

 

Study area 

The Hawaiian Archipelago (Hawai‘i, USA) is one of the most isolated archipelagos in the 

world (figure 1). While the heavily populated Main Hawaiian Islands (MHI) are overfished 

[22] and subjected to a range of anthropogenic stressors [23], the North-western Hawaiian 

Islands (NWHI) receive minimal direct human impacts and are among the most protected 

coral reefs globally [24]. 

 

Organization of data 

Benthic and fish data were collected in 2010 from 302 reef sites across the Hawaiian 

Archipelago by the Coral Reef Ecosystem Division, as part of NOAA’s Pacific Reef 

Assessment and Monitoring Program. (For sampling methodology see the electronic 

supplementary material S1.) 

Fish species were categorised into functional groups based on their trophic level (see 

the electronic supplementary material S2), and herbivores were further divided into grazers, 

scrapers, and browsers [25]. Grazers are fish that crop on algal turf, preventing the 

establishment and growth of macroalgae. Scrapers also feed on turf but they remove some 

component of the reef substratum, which provides bare areas for coral recruitment. Finally, 

browsers consistently feed on macroalgae and may play a crucial role for reversing 

macroalgae-dominated states [5,26]. Dietary information was collected from FishBase [27] 

and complemented from the literature [25] when higher-resolution data was required for 

herbivore classification. In cases where fish could only be identified to genus level, 

information on the diet of close relatives from the same genus was used. Total biomass per 

functional group was calculated from the biomass of individual fish obtained using the 

formula: 
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W = a TLb 

where W is the weight in grams, TL the total length in mm, and a and b species-specific 

conversion parameters extracted from FishBase [27]. 

In addition to benthic and fish data, a set of human-use and environmental GIS-

derived variables – human population density, distance to potential impact (e.g. shore, 

stream), effluent discharge and stream disturbance data (composite metrics of many land 

cover variables) [28] – was compiled for the Main Hawaiian Islands except for Lāna‘i and 

Ni‘ihau. 

(For methodology and detailed list of the variables see the electronic supplementary material 

S3.) 

 

Data analyses 

All statistical analyses and graphical presentations were conducted using R version 2.15.1 

[29]. Specific packages used are referred to in the text or in the figure legends. 

 

Identification of reef regimes and categorisation of sites 

First, we replicated the method applied by Bruno et al. [18], to create a phase shift index (PSI) 

and graphically check for multimodality in the frequency distribution of benthic states. In 

essence, the PSI is the first component of a Principal Component Analysis (PCA) based on 

the cover of coral and macroalgae. 

Second, a correlation-based PCA was performed using six benthic habitat variables: 

hard coral cover (Hcoral), macroalgae cover (MA), turf algae cover (TA), structural 

complexity estimate (Complexity), sand cover on the reef surface (Sand) and crustose 

coralline algae cover (CCA). Structural complexity was included since it is a key aspect of 

reef habitat quality [30], and data were standardised to account for variables measured at 

different scales. A hierarchical clustering of the variables was produced with the same 

Euclidean distance matrix as for the PCA using pvclust package version 1.2-2 [31], and p-

values computed by 10 000 multi-scale bootstrap resampling [32] were assigned to each 

cluster to indicate how strong the cluster was supported by the data. A cluster was considered 

to be significant when the approximately unbiased p-value was above 0.95. Finally, building 

on the number of significant clusters obtained through the previous hierarchical analysis, a K-

means partitional clustering process [33] was carried out to categorise the 302 sites with 

regards to their benthic habitat. 
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Relative influence of natural and human variables on reef regimes 

To assess what key human and environmental variables were associated with different reef 

regimes, a Boosted Regression Trees (BRT) modelling technique [34] was performed using 

the gbm package version 2.0-8 [34] and the gbm.step routine described by Elith et al. [36]. For 

the MHI (with the exception of Lāna‘i and Ni‘ihau) 147 sites were modelled simultaneously 

against 15 predictor variables while for the NWHI, where human settings are absent, 118 sites 

were modelled against a set of 7 continuous and categorical predictor variables (table 1). 

Pairwise relationships between all variables (no Spearman rank correlation coefficient were 

greater than |0.75|) showed no multicollinearity. The categorisation of sites into different 

regimes was converted to presence-absence of each regime by survey site and analyzed using 

a binomial distribution. Partial dependency plots were used to visualize and interpret the 

relationships between each predictor variable and the regime after accounting for the average 

effect of all other predictor variables in the model. (For BRT methodology and details on 

model optimisation see the electronic supplementary material S4.) 

 

 

RESULTS 

 

Identification of reef regimes and categorisation of sites 

The test for multimodality in the frequency distribution of living coral and macroalgae of the 

302 Hawaiian sites (figure 2) displayed a normal distribution which is similar to the findings 

by Bruno et al. [18], i.e. an absence of multiple regimes. In contrast, the combination of 

analytical approaches used in this paper highlighted the existence of three primary regimes. 

The results were identical for the MHI and the NWHI and therefore, only the pattern for the 

archipelago as a whole is shown in figure 3. 

 

The PCA using six benthic parameters showed a clear pattern of three distinct 

regimes. The first principal component axis (PC1) and the second principal component axis 

(PC2) accounted for 61.4 % of the total variability in the data (figure 3a). PC1 described a 

gradient from high coral cover, high CCA cover and high structural complexity (at negative 

PC1 scores), to high macroalgae cover, high sand cover and low complexity (at positive PC1 

scores). PC2 best explained the variability of turf algae with higher turf cover at negative PC2 

scores.  
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The hierarchical cluster analysis (figure 3b) confirmed the visual impression from the 

PCA with the benthic variables grouping into 3 significant clusters: CCA being associated 

with hard coral and structural complexity (p-value = 1), turf algae being closer to macroalgae 

and sand but a cluster by itself since outside of any significant cluster (p-value = 0.79) and 

macroalgae being closely associated with sand (p-value = 0.99). 

Finally, the K-means partitional clustering differentiated the sites along these three 

clusters with an overrepresentation of turf algae dominated sites (figure 3c): 153 sites (51%) 

were categorised as turf regime (sites dominated by turf algae), 80 sites (27%) as calcifying 

regime (high structural complexity sites dominated by CCA and hard coral), and 69 sites 

(23%) were categorised as macroalgal/sand regime (low structural complexity sites 

dominated by macroalgae and sand). (Mapping of the categorised sites per island and average 

values of the benthic variables within each regime are shown in the electronic supplementary 

material S5.) 

 

Relative influence of human and natural variables on reef regimes 

For each region, only the four most influential predictor variables were reported and 

illustrated (figure 4).  Preliminary threshold values below are given only in cases where the 

shape of the fitted function best matches the distribution of the fitted values. (See the 

electronic supplementary material S4 for the plots of the fitted values in relation to each 

predictor.) 

 

Calcifying regime 

In the MHI, a positive relationship with scraper biomass (22.3% relative influence) was the 

optimal predictor of the occurrence of structurally complex coral and CCA dominated sites 

(figure 4a). Other important predictors were negative relationships with higher latitudes 

(14.6%) and increasing effluent (13.1%, drop around 1.0 x 106 mgd), and a positive 

correlation with stream fragmentation (10.7%). 

In the NWHI, three variables contributed most strongly to predicting calcifying regime 

occurrence (figure 4a): scraper biomass (34.1%, positively correlated), depth (30.5%, peaked 

between 12-22 meters), and latitude (20.7%, occurrence decreased at higher latitudes). 

 

Turf regime 

In the MHI, grazer biomass (18.6%) and effluent discharge (17.9%) were the two optimal 

predictors of turf algae occurrence, with positive non-linear relationships for both predictors 
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displaying thresholds around 10 g.m-2 and 1.5 x 106 mgd, respectively (figure 4b). The 

opposite pattern (i.e. negative correlation) was observed for stream fragmentation (14.5%), 

and distance to stream (12.9%). 

In the NWHI, depth (30.3%) contributed most to explain the occurrence of turf algae 

with a drop near 10 m (figure 4b). Grazer biomass (19.8%) and Latitude (16.8%) were 

positively correlated, followed by a negative correlation with scraper biomass (11.9%).  

 

Macroalgal/sand regime 

In the MHI three key predictor variables contributed to the occurrence of macroalgae-

dominated sites (figure 4c). Macroalgal dominance displayed negative non-linear 

relationships with increasing grazer (24%) and browser (15.5%) biomass. Thresholds seemed 

to occur around 5 g.m-2 and 2 g.m-2, respectively. Human population density represented 

14.8% of the relative influence and was positively correlated, whereas scraper biomass was 

negatively correlated (7.1%). 

In the NWHI, herbivore biomass was again the main predictor (figure 4c): occurrence 

of macroalgal/sand sites decreased as the biomass of grazers (29%, drop at 5 g.m-2), scrapers 

(22.8%, drop at 4 g.m-2) and browsers (12.3%) increased. In addition, latitude (13.7%) was 

positively correlated. 

 

 

DISCUSSION 

 

Identifying existing regimes and understanding their drivers has great relevance for managers, 

policymakers and planners seeking to protect ecosystem services generated by coral reefs 

[5,37]. Based on a combination of exploratory and inferential statistics, this study provides a 

novel method to identify multiple regimes, and offers strong evidence of three distinct reef 

regimes occurring across the Hawaiian Archipelago – calcifying, turf algae, and 

macroalgal/sand regimes. It further suggests that simply testing for bimodality in the 

frequency distribution of present reef state [18] does not constitute a sufficient test of multiple 

regime existence. Our results also contribute to a deeper understanding of the relative 

influence of different drivers that underpin the occurrence of reef regimes, supporting the idea 

that they are multi-causal, driven by a combination of biotic processes, abiotic conditions and 

human drivers. 
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All three regimes occur both in the MHI and the NWHI, despite major differences in 

exposure to direct human impacts. This corroborates the findings of Vroom and Braun 

[38],who recorded high algal abundances in the NWHI and further stressed the necessity of 

re-evaluating the metrics used to gauge subtropical reef health. Our results also show that 

most reefs in this system are dominated by turf algae (51% of all sites). This raises the 

question whether turf-dominated reefs constitute a stable regime or an unstable transitional 

state that is moving towards a coral or macroalgal attractor [17]. It has been argued that turf 

eventually proceeds towards macroalgae dominance if herbivore density is low [39,40], but 

experimental studies suggest that turf can also constitute a stable regime in sediment-rich 

areas because herbivory of epilithic algal turfs is suppressed under sediment-laden conditions 

[41–43]. 

In this study the occurrence of all three regimes was strongly predicted, for both 

regions, by the biomass of herbivores, confirming the important role they play in coral reef 

dynamics and in mediating reef regime-shifts [2,44]. In addition, categorising herbivores into 

finer-scale functional groups (i.e. grazers, scrapers and browsers) allows for a better 

understanding of what specific ecological functions are important in supporting different 

regimes. The occurrence of macroalgal/sand regimes showed a negative non-linear 

relationship with the density of browsers that directly consume macroalgae, as well as with 

increasing biomass of grazers and scrapers that limit their growth. The calcifying regime was 

positively associated with the biomass of scrapers that provide area of clean substratum 

(feeding scars) for coral recruitment, whereas turf regime was positively correlated with 

grazers that prevent the transition from turf to macroalgae through top-down control. This 

confirms numerous studies that show how higher herbivore abundances coincide with a lower 

cover of macroalgae on reefs [10,11]. However, our results further suggest that an increase in 

herbivore biomass could lead to different regime trajectories, depending on the functional 

make-up of the herbivorous assemblage. Specifically, if the herbivores are predominantly 

grazers then the probability of turf dominance increases, while if scrapers are abundant (e.g. 

Chlorurus sordidus, Chlorurus perspicillatus, Scarus rubroviolaceous) then there is an 

increased chance of a reef shifting to a calcifying regime. 

Human drivers also influenced the distribution of different regimes. Population density 

has been used as a coarse proxy for overall human influence on coral reefs [45]. However in 

recent studies the relationships between population density and reef states appear ambiguous 

[46,47]. The present study suggests that population density is a relatively poor predictor of 

reef regimes across the Hawaiian Archipelago, which is overwhelmed by the influence of 
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more refined proxies, particularly those for land-based pollution and land-use change (such as 

effluent discharge or stream fragmentation).  In the MHI, the total amount of effluent 

discharged had a strong positive impact on turf regime while being negatively correlated with 

the calcifying regime. McClanahan et al. [48] showed that an increase in phosphorus 

stimulated growth of filamentous and turf algae but not the growth of macroalgae. Overall, 

there is ample literature about the negative effects of nutrient pollution on corals and how it 

can lead to excessive algae growth (45–47, but see 48), particularly in combination with loss 

of herbivory [53]. However, this negative impact on corals seemed countered by a positive 

correlation with fragmentation of streams. The rationale behind this unexpected positive 

effect of human-induced stream disturbance could be that higher fragmentation reduces the 

natural water flow, thus allowing more of the effluent to sink or to be deposited on the stream 

edges before reaching the reefs.  

Finally, biophysical drivers also play a key role in coral reef regimes in this system. 

Unlike the turf and macroalgal/sand regimes, the calcifying regime was negatively correlated 

with latitude. Low temperatures have been shown to limit coral growth [54] and considering 

the latitudes the Hawaiian Archipelago encompasses, it is likely to have an influence on the 

results [55]. Depth was also an influential abiotic parameter, although mostly significant in 

the NWHI. This divergence in relative influence between both regions is not clear but could 

be the result of increased water turbidity that limits lights gradients in the MHI because of 

sediments. In the NWHI, we found the occurrence of calcifying regimes to peak at mid-

depths, similar to results from Williams et al. [56]. However, gradients in other oceanographic 

variables that are known to be important in structuring benthic communities have been 

identified across the region [55]. For example, additional data on sedimentation [57] or wave 

exposure [56,58,59] will help investigators develop a better understanding of these important 

physical processes in influencing reef regimes. 

These analyses provide a promising approach for investigating multiple ecosystem 

regimes and the processes underpinning them, which could help guide effective management. 

However, since our study does not account for historic disturbance events (e.g. hurricanes, 

disease outbreaks, bleaching events), it only represents a snapshot in time (year 2010). 

Therefore, the stability (or at least the trajectory of development) of any specific reef regime 

remains unknown and needs to be further explored. From a management perspective, the 

identification of non-linear patterns and preliminary thresholds among many predictor 

variables offers an interesting avenue for future studies to investigate more accurately the 
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location of these tipping points, in order to provide tangible management targets for both 

proactive avoidance of potential regime shifts and restoration of degraded reefs. 
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Table 1. Predictor variables used in the Boosted Regression Trees analysis. MHI, Main 

Hawaiian Islands; NWHI, North-western Hawaiian Islands. 

 

 

 

 

 

 

 

 Variable Description Range 

M
H

I 

GrazerBiom Grazer biomass in g.m
-2 

0 – 28.3 

ScraperBiom Scraper biomass in g.m
-2 

0 – 13.9 

BrowserBiom Browser biomass in g.m
-2 

0 – 22  

Latitude Latitude in decimal degrees (WGS 1984) 18.97 – 22.24   

Depth Depth in meters 2 – 29    

DistCoast Distance in meters from nearest shoreline to survey location 14 – 2509 

DistStream Distance in meters from nearest stream to survey location 96 – 20130  

Effluent 
The total effluent in million gallons per day (mgd) discharged within parcels that intersected 

with a 10km buffer from survey location 
600 – 7177840  

Population 
Human population density in a 10km buffer from survey location based on 2010 census 

data 
232 – 523576  

UrbanIndex Representation of urban disturbance standardized from 0 to 1  0 – 0.98  

PointIndex Representation of the density of sources of point pollution standardized from 0 to 1 0 – 0.50 

FragIndex Representation of stream fragmentation standardized from 0 to 1 0 – 0.31 

FormplIndex 
Representation of lands that were formerly pineapple or sugarcane plantations standardized 

from 0 to 1 
0 – 0.54 

DitchIndex Representation of the relative density of ditch infrastructure standardized from 0 to 1 0 – 0.73 

AgrIndex Representation of agricultural disturbance standardized from 0 to 1 0 – 0.65 

N
W

H
I 

GrazerBiom Grazer biomass in g.m
-2 

0 – 29.6 

ScraperBiom Scraper biomass in g.m
-2 

0 – 30.8 

BrowserBiom Browser biomass in g.m
-2 

0 – 146.4 

LPredBiom Large predator biomass in g.m
-2 

0 – 2961.8 

Latitude Latitude in decimal degrees (WGS 1984) 23.63 – 28.45 

Depth Depth in meters 1 – 28  

ReefZone Zones of the reef: Fore reef – Back reef – Lagoon  NA 
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Figure 1. Map of the study area showing the Hawaiian Archipelago and the location of the 

survey sites (green dots). 118 sites were surveyed in the North-western Hawaiian Islands (A, 

B, C, D) and 184 within the Main Hawaiian Islands (E). 

 

Figure 2. Count histogram of the phase shift index (PSI) (Bruno et al. 2009) of 302 reef sites 

in the Hawaiian Archipelago. 

 

Figure 3. (a) Principal Component Analysis (PCA) diagram showing the spatial variation in 

benthic habitat of 302 sites in the Hawaiian Archipelago along the first two principal 

components. Variables are plotted as vectors and dots represent sites. The smaller the angle 

between two variable vectors the stronger the correlation. Hcoral, hard coral cover; MA, 

macroalgae cover; CCA, crustose coralline algae cover; TA, turf algae cover; Sand, sand 

cover; Complexity, structural complexity. (b) Cluster dendrogram of the benthic variables 

from 302 sites, with p-values given in percentage. For a cluster with p-value > 95%, the 

hypothesis that "the cluster does not exist" is rejected with significance level 0.05. (c) PCA 

diagram with an overlaying k-means clustering of the sites. Green squares (80 sites), orange 

circles (153 sites) and red triangles (69 sites) represent categorisation of the sites matching the 

previous hierarchical grouping of the benthic variables. The ellipses encompass 80% of the 

dots associated to each cluster. 

 

Figure 4. Partial dependency plots for the four most influential variables in the Boosted 

Regression Trees analysis of three distinct benthic regimes (a – c) in the MHI and the NWHI. 

Number of sites within each region and relative influence of each predictor are shown in 

parenthesis. Photo credits: NOAA. 

 


