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ABSTRACT: We report on ground and excited state charge transfer in charge-transfer complexes in 

films formed between a semiconducting polymer, MEH-PPV (poly[2-methoxy-5-(2’-ethylhexyloxy)-

1,4-phenylene vinylene]), and a series of fluorene electron acceptors. The latter were designed to vary 

systematically the electron affinity (EA) over ~1.5 eV by attachment of various electron withdrawing 

groups to the fluorene core. The EAs of the acceptors are determined by cyclic voltammetry and 

Page 1 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 2

compared with those from Density Functional Theory calculations. The charge transfer dynamics are 

studied using an ultrafast visible-pump – IR-probe photoinduced absorption technique. We demonstrate 

that the acceptor EA is the key – but not the only – parameter that governs charge recombination rates 

that scale exponentially with the acceptor EA. From the time-resolved data we deduced a model that 

describes charge dynamics for acceptors with low and high EAs. The two opposite trends - higher 

acceptor EA increases the driving force for charge separation but also inevitably increases the rate of 

undesirable charge recombination – should be carefully counterbalanced in designing of novel 

polymer-fullerene bulk heterojunctions.  

KEYWORDS: charge-transfer complex, electron affinity, ultrafast spectroscopy, polaron dynamics, 

polymer-acceptor blends.   
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 3

1. INTRODUCTION 

The electronic ground state of a molecular charge-transfer complex (CTC) is formed by the transfer 

of a fraction of the electron charge between the non-covalently bound molecular entities, the donor and 

the acceptor. CTCs and the very process of electron transfer lay at the heart of many photoinduced 

processes in physics, chemistry, and biology.
 
 According to the Mulliken model,

1,2
 the amount of the 

donor-acceptor charge transfer in the CTC ground state is mainly controlled by the difference between 

the donor ionization potential and the acceptor electron affinity (EA) or in first approximation by the 

energy difference between the acceptor lowest unoccupied molecular orbital (LUMO) and the donor 

highest occupied molecular orbital (HOMO), also known as the effective HOMO-LUMO gap.
3
  

Upon optical excitation of the Mulliken-type CTCs, a major part of the electron density is transferred 

from the donor to the acceptor almost instantaneously while the back electron transfer, i.e. charge 

recombination, occurs within a finite time span.
4,5

 The early studies on dynamics of small-molecule 

CTCs in solutions
6,7

 demonstrated that the driving force for geminate charge recombination is mainly 

determined by the acceptor EA. The charge recombination rate was shown to scale exponentially with 

the acceptor EA, while some deviations were attributed to the reorganization energy variations.
6
 

In recent years, a new kind of Mulliken-type CTCs involving conjugated polymers as donors has 

been identified in a variety of polymer-acceptor blends.
8-12

 А number of unusual properties makes the 

polymer-based CTCs especially fascinating in comparison to their small-molecule counterparts. 

Planarization of the polymer chains
13

 and formation of crystalline domains
14

 are but two examples. 

Such properties are closely related to charge delocalization over conjugated polymer chains (non-

existing in small-molecule CTCs) so that the electron density from several repeating units of the 

polymer is transferred to an acceptor molecule.
13,15

  

Ground-state CTCs have also been observed in conjugated polymer-fullerene blends
16

 although their 

absorption is extremely weak
17-19

, partially because CTCs are formed only near the donor-acceptor 

interface which volume share is minute. In contrast, in polymer-acceptor blends with pronounced 
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 4

ground-state charge transfer, a CTC is formed almost per each conjugated segment so that exciton 

diffusion and other concurrent processes (e.g., generation of triplets) do not affect the photophysics. As 

a result, optical excitation leads to immediate formation of a charge-separated state whose charge 

relaxation dynamics can be readily monitored.
20,21

 Furthermore, the new generation of low bandgap 

conjugated polymers for organic photovoltaics (OPV), which has already demonstrated the highest 

efficiencies in polymer solar cells,
22,23

 is built upon a push-pull donor-acceptor concept
24

 which extends 

the light absorption into the red region of the solar spectrum. This is highly reminiscent of Mulliken-

type CTC absorption, the difference in the charge-transfer state origin (i.e. covalently linked alternating 

electron donating and electron accepting monomer units in the polymer backbone vs. non-covalently 

bonded polymer and small-molecule acceptor) notwithstanding.  

Insofar, the effect of an acceptor EA on the charge recombination dynamics in conjugated polymer 

CTCs has only been studied for two commercially-available acceptors of different molecular 

structures.
20,21

 As a result, no functional dependences of the charge recombination rates as a function of 

acceptor EA could have emerged, in sharp contrast to the case of small-molecule CTCs in solutions.
4-7

 

This calls for a systematic study of charge recombination dynamics in conjugated polymer based CTCs 

where the acceptor EAs are varied in a controlled and predictable way with as small as possible 

alternations of the acceptor molecular structure.  

In this paper, we report on how the acceptor EA controls the charge recombination dynamics in 

CTCs between an archetypical conjugated polymer donor MEH-PPV (poly[2-methoxy-5-(2’-

ethylhexyloxy)-1,4-phenylene vinylene])
25

 and a family of small molecular acceptors (Figure 1). A 

series of fluorene acceptors with a range of EAs was designed, synthesized and characterized by cyclic 

voltammetry and Density Functional Theory calculations. The CTC excited state dynamics were 

studied via generation and recombination of photoinduced charges employing ultrafast visible-pump – 

IR-probe photo-induced absorption spectroscopy. We show that the recombination rate scales 

exponentially with the acceptor EA, similar to the earlier observations for small-molecule CTCs in 
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 5

solution.
6, 26

 Finally, the anisotropy dynamics suggest that separated charges in most of the blends 

remain highly spatially-localized, in sharp contrast to the case of the pristine polymer. 

 

 

 

Figure 1. Structures of the MEH-PPV polymer (upper left) and the studied series of fluorene electron 

acceptors. Abbreviations of the latter are shown in bold. 

 

 

2. EXPERIMENTAL 

 

2.1. Samples  

Fluorenone (Fon) and 2,7-dinitrofluorenone (DNFon) have been purchased from Sigma-Aldrich and 

used without further purification. Details of the synthesis of fluorene acceptors 2-nitrofluorenone 

(NFon), 2,4,7-trinitrofluorenone (TNFon), 2,4,5,7-tetranitrofluorenone (TeNFon), 2-nitro-9-

dicyanomethylenefluorene (NDF), 2,7-dinitro-9-dicyanomethylenefluorene (DDNF), 2,4,7-trinitro-9-
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 6

dicyanomethylenefluorene (DTNF), 2,4,5,7-tetranitro-9-dicyanomethylenefluorene (DTeNF), 4-

cyanofluorenone (4CN-Fon), and 2-nitro-5-cyanofluorenone (4CN-NFon) and their characterizations 

are given in the Supporting Information (see “Synthesis of fluorene acceptors” section and Figs.S1-S16 

for NMR spectra). Absorption spectra of the acceptors in chlorobenzene (Fig.S17) are situated in the 

blue-UV region below 450 nm; no signs of aggregation at concentrations up to 2 g·L
–1

 were found. 

MEH-PPV was chosen as a donor since it is known to readily form a ground-state CTC with fluorene 

electron acceptors.
13, 27

 MEH-PPV (Sigma-Aldrich, Mn = 86000, Mw = 420000) and fluorene acceptors 

were dissolved separately in chlorobenzene at a concentration of 2 g·L
–1

. The solutions were placed 

into an ultrasonic bath for 15 minutes at 22°C and then stirred with a magnetic stirrer for ~6 hours at 

50°C. Their blends were prepared by mixing the solutions of MEH-PPV and an acceptor with a molar 

ratio of 1:0.3 per polymer repeat unit. Further increase of the acceptor concentration in the blends led to 

phase segregation with loss of sample optical quality.
28

  

Films were prepared by drop casting of MEH-PPV/acceptor solution onto a 150 µm thick microscope 

cover slide with subsequent drying for 8 hours in an air atmosphere at 22°C. The resulted optical 

density of the samples did not exceed ~1.5 at their maxima. The solution of MEH-PPV with the highest 

EA acceptor, DTeNF, exhibited strong phase segregation and CTC precipitation, and therefore was not 

used in the optical experiments. All experiments were performed at ambient conditions; no sample 

degradation was observed during the experiments.  

 

2.2. Cyclic voltammetry 

Electrochemical experiments were carried out using an Autolab PGSTAT-302N potentiostat-

galvanostat. Cyclic voltammetry (CV) measurements were performed in a three-electrode cell equipped 

with a platinum disk (d = 1.6 mm) as the working electrode, platinum wire as a counter electrode and a 

non-aqueous Ag/Ag
+
 reference electrode (0.01 M AgNO3 and 0.1 M Bu4NPF6 in MeCN). Cyclic 

voltammograms were recorded at room temperature in dry acetonitrile, deoxygenated by bubbling with 
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 7

argon gas, with 0.1 M Bu4NPF6 as supporting electrolyte, with ohmic drop compensation. The 

potentials were corrected with ferrocene/ferrocenium redox pair (Fc/Fc
+
) as an internal standard, which 

showed the potential of 0.090–0.100 V versus the used reference electrode in our conditions. LUMO 

energies (	E����
�� ) were estimated from the half-wave reduction potentials using the widely used 

relation introduced by Pommerehne et al.
29

 (see also Ref. 30): 		����
��  [eV] = –(4.8 – 	
/�


��), where –4.8 

eV is the potential of Fc/Fc
+
 redox pair versus Fermi level. MEH-PPV HOMO and LUMO energies of 

–5.0 and –2.8 eV, respectively, were taken from the electrochemical data in Ref. 31.  

 

2.3. Computational procedures  

DFT computations of the geometries of the studied fluorene electron acceptors were carried out with 

the Gaussian 09
32

 package of programs by using Pople's 6-31G split valence basis set supplemented by 

d-polarization functions for heavy atoms and with diffusion functions on them. Becke's three-parameter 

hybrid exchange functional
33,34

 with the Lee–Yang–Parr gradient-corrected correlation functional 

(B3LYP)
35

 were employed. The restricted Hartree-Fock formalism was used for calculations of neutral 

molecules whereas the unrestricted HF formalism was used for the calculation of radical anion states. 

No constraints were used and all structures were free to optimize in an acetonitrile solution using the 

polarizable continuum model (PCM).
36-40

 Thus, the geometries were optimized at the B3LYP/6-

31+G(d) level of theory and the electronic structures were calculated at the same level of theory. From 

these calculations on the neutral molecules (in acetonitrile) we estimated the frontier orbital energy 

levels, 		����
���  and		����

��� . Vertical electron affinities (	��
���) were computed as the difference 

between the total energies of the optimized neutral state OptN

totalE  and the radical anion at the frozen 

geometry of the neutral, RA_F

totalE :  

RA_FOptN

totaltotal

DFT

V EEEA −=          (1) 
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 8

Adiabatic electron affinities (	��
���) were calculated as the difference in total energies between the 

optimized geometries of the neutral OptN

totalE  and radical anion RA_Opt

totalE  states, including zero point 

energies corrections N ZPE and RAZPE  for the two state, respectively:  

RAN RA_OptOptN ZPEZPEEEEA totaltotal

DFT

A −+−=        (2) 
 

2.4. Ultrafast spectroscopy experiments 

The dynamics of photogenerated charges in selected materials have been explored with a 

photoinduced absorption (PIA) technique, where allows monitoring the time evolution of photoinduced 

charges. The method is based on the fact that a charge (a hole) created on a polymer molecule induces 

absorption bands in the polymer optical gap in the IR range.
41

 These bands called low energy (LE) and 

high energy (HE) polaron bands
42

 are situated for the MEH-PPV polymer at ~3500 and ~10000 cm
–1

, 

respectively. 
20,43

 The LE band is more suitable as a reporter of charge concentration because it is not 

contaminated by other responses, like electro absorption, stimulated emission etc. which allows for a 

background free measurement.
20, 44

 In the PIA technique, two pulses are applied: the first one 

photogenerates the charges and the second one probes the charge concentration by monitoring induced 

absorption in the IR spectral region. For the aforementioned reasons, the probe wavelength was set at 

2.94 µm, i.e. near the LE polaron absorption peak (see Ref. 20 for the polaron absorption spectrum). 

Briefly, the PIA experiments were performed with a home-built 1kHz Ti:Sapphire multipass 

amplifies laser system that pumps an IR optical parametrical oscillator (OPO) and a nonlinear optical 

parametrical amplifier (NOPA). The NOPA generated ~30 fs, ~3 nJ pulses in the visible range (500–

750 nm). The power density at the sample position did not exceed 800 nJ/cm
2
 to ensure a linear 

excitation regime and absence of bimolecular (non-geminate) recombination. The IR OPO was 

optimized to provide ~70 fs pulses at ~3400 cm
–1

 (near the center of the LE polaron absorption band). 

To realize polarization-sensitive measurements, the polarization of the IR probe beam was rotated by 
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 9

45° with respect to the polarization of the visible pump beam. Parallel and perpendicular components 

of the probe beam were selected after the sample by grid-wire polarizers and detected by two InSb 

photodiodes. The photodiode signals were processed by lock-in amplifiers synchronized to a 

mechanical chopper (500 Hz) inserted into the visible pump beam. To obtain relative changes in the 

transmission ∆T, the differential pump-on, pump-off signal ∆I from the lock-ins were normalized to the 

intensity I of the IR beam transmitted through the sample: 

I

I
T

∆
=∆            (3) 

To calculate the isotropic )(tTIso∆  and anisotropic )(tr  transients the standard expressions (4, 5)
45

 

were used: 

3

)(2)(
)(

|| tTtT
tTIso

⊥∆⋅+∆
=∆          (4) 

)(3

)()(
)(

||

tT

tTtT
tr

Iso∆⋅

∆−∆
= ⊥           (5) 

where )(tT⊥∆  and )(|| tT∆ are relative transmission changes of the perpendicular and parallel 

components of the probe signal. All data were obtained under ambient conditions at room temperature. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1. Fluorene acceptors design 

The acceptor EA engineering was achieved by attaching a number of different electron-withdrawing 

functional groups to the fluorene core: from one to four nitro groups or/and cyano group at the benzene 

rings, as well as using carbonyl oxygen or dicyanomethylene groups at the C-9 bridged atom of the 

fluorene moiety (Figure 1). While the effect of introducing several electron withdrawing groups in the 

fluorene moiety is not exactly additive (especially in the case nitro groups introduced at different 

positions of the fluorene moiety), analysis of previous spectroscopic and electrochemical studies on 
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 10

different electron acceptors of the fluorene series allows for making such generalizations. The 

introduction of an NO2 group in substituted fluorenes increases the EA of the fluorene molecule by 

~0.2–0.3 eV while replacement of oxygen in the carbonyl group by the dicyanomethylene fragment 

increases the EA by ~0.35–0.45 eV.
46-52

 Therefore, with the structural variations of a selected series of 

fluorene acceptors presented in Figure 1, the LUMO energy levels can be tuned by ~1.5 eV. 

 

3.2. Cyclic Voltammetry 

To estimate the LUMO energy levels of fluorene electron studied acceptors, their electrochemical 

reduction was studied by cyclic voltammetry (CV) in dry acetonitrile, with a common three electrode 

scheme using Fc/Fc
+
 as an internal reference. Most of the studied acceptors showed two (or even three) 

reversible redox waves in acetonitrile solution to form stable radical anion and dianion species (in CV 

timescale), respectively, except for the lowest EA acceptors Fon, 4CN-Fon and NFon, which showed 

only the first redox wave to be reversible (Figure 2). An increase of the number of nitro groups results 

in progressive shift of redox potentials into the positive potential region, and further pronounced shifts 

are observed on replacement of O by C(CN)2 groups. The first and second half-wave reduction 

potentials, 	
/�

��
 and E
/�


���, are collated in Table 1 and have been used to estimate the LUMO energy 

levels of acceptors (		��
����, Table 1, Fig. 3), assuming an Fc potential of –4.8 eV versus Fermi level. 

The data for 		��
����  

presented in Table 1 indicate that for both series (fluorenones and 9-

dicyanomethylenefluorenes) each nitro group incrementally decreases the LUMO energy of the 

acceptors by ~0.22–0.27 eV, except for the weakest acceptor, unsubstituted fluorenone Fon, in which 

case an insertion of first NO2 group (NFon) results in a decrease of the LUMO energy by 0.34 eV. 

Replacement of oxygen by a dicyanomethylene group in acceptors decreases their LUMO energies by 

0.41–0.46 eV. These data are in good agreement with the observed linear relationships of first 

reduction potentials,
53

 as well as with intramolecular charge transfer energies
54

 in fluorene acceptors by 
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Hammett-type correlations. The EAs of the studied acceptors estimated from the electrochemical 

experiments, were assigned as 		��� = −		����
�� , in accordance with Koopman’s theorem. 
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Figure 2. Cyclic voltammograms of fluorene acceptors in deoxygenated acetonitrile, supporting 

electrolyte 0.1 M Bu4NPF6, scan rate 100 mV s
–1

. 
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Table 1. Reduction CV potentials and calculated energy levels of fluorene acceptors 

Compound 	
/�

��
  

[V]
a 

	
/�

��� 

[V]
a 

		����
��  

[eV]
b 

		����
���  

[eV]
c 

		����
���  

[eV]
c 

		��
��� 

[eV]
d 

		��
��� 

[eV]
e 

Fon -1.669 – -3.131 -2.781 -6.534 2.891 3.140 

4CN-Fon -1.460 – -3.340 -3.013 -6.847 3.120 3.379 

4CN-NFon -1.159 -1.516 -3.641 -3.555 -7.292 3.647 3.910 

NFon -1.328 – -3.472 -3.372 -6.966 3.459 3.730 

DNFon  -1.098 -1.245 -3.702 -3.749 -7.435 3.839 4.087 

TNFon  -0.839 -1.054 -3.961 -4.045 -7.789 4.142 4.393 

TeNFon -0.564 -0.814 -4.236 -4.377 -8.136 4.478 4.725 

NDF  -0.869 -1.456 -3.931 -3.768 -7.041 3.891 4.081 

DDNF -0.648 -1.210 -4.152 -4.045 -7.492 4.165 4.356 

DTNF -0.383 -1.050 -4.417 -4.302 -7.815 4.420 4.621 

DTeNF -0.157 -0.760 -4.643 -4.591 -8.074 4.710 4.869 

a
 The first and second reduction half-wave potentials in acetonitrile versus Fc/Fc

+
, calculated as 

averages of anodic and cathodic peak potentials from cyclic voltammetry. 
b
 LUMO energy levels from 

CV experiments: 		����
�� � 4.8 − 	
/�


��
. 
c
 HOMO and LUMO energy levels from B3LYP/6-31+G(d) 

calculations in acetonitrile. 
d
 Vertical electron affinities of acceptors from B3LYP/6-31+G(d) 

calculations in acetonitrile (see eq. 1). 
e
 Adiabatic electron affinities of acceptors from B3LYP/6-

31+G(d) calculations in acetonitrile (see eq. 2). 

 

 
 

Figure 3. Positions of the LUMO energy levels (		����
�� ) of fluorene electron acceptors from CV 

experiments (red blocks). MEH-PPV HOMO and LUMO energies (blue blocks) are also shown for 

comparison. 
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3.3. DFT Computational Studies 

DFT computations have been performed at B3LYP/6-31+G(d) level of theory for both geometry 

optimizations and calculations of electronic structures of neutral acceptors and their radical anions. The 

effect of the solvent (acetonitrile) was incorporated using the polarizable continuum model (PCM) to 

match the results with CV measurements in this solvent. Kohn-Sham frontier orbital energies for 

neutral acceptors, 		����
���  and 		����

��� , are collated in Table 1 (more details on B3LYP/6-31+G(d) level 

of theory calculations are given in Supporting Information, Table S1). Orbital energy diagrams together 

with HOMO and LUMO orbital coefficients of the fluorene acceptors obtained from B3LYP/6-

31+G(d) calculations in acetonitrile are given in the SI (Figure S18 and Table S2). It is evident that 

nitro groups incrementally decrease the LUMO energy levels for both fluorenone and 9-

dicyanomethylene series of acceptors (Figure S18), and while their effect is nor fully additive, the trend 

is clear and in general reproduces well the observations of CV experiments. Both nitro groups and 

dicyanomethylene fragment are substantially involved in LUMO delocalization, with a more 

pronounced effect for the NO2 groups in positions 2,7- as compared to positions 4,5-. Cyano groups in 

the benzene ring are very weakly involved in the LUMO delocalization (Figure 4, Table S2). The lower 

degree of LUMO delocalization over the 4,5-nitrogroups is partially due to a steric effect. According to 

single crystal X-ray data for various fluorene acceptors and their CTC, this results in rotation of NO2 

around the C–N bond to form dihedral angles with the fluorene plane (in general, 30–50
o
 and 3–10

o
, for 

nitrogroups in positions 4,5- and 2,7-, respectively.
48-53, 55-60
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   4CN-Fon �	����
��� �–3.56	eV)        DTNF �	����

��� �–4.30	eV) 

 

Figure 4. LUMO orbital coefficients for two representative fluorene acceptors from B3LYP/6-31+G(d) 

calculations in acetonitrile (for others, see Table S2) 

 

In the DFT calculations, EAs are sometimes approximated by the LUMO energies (EA = –E
LUMO

) in 

accordance with DFT-Koopman’s theorem. In addition to such estimation, we also calculated vertical 

and adiabatic electron affinities, 			��
��� and 		��

��� (Table 1). Both vertical and adiabatic EA values 

are in excellent linear relationship with the computed 		����
���  energies, while better coincidence in 

absolute values is observed with the vertical ionization potentials, 			��
��� (average deviations of ca. –

0.1 eV, Figure 5 and SI, Figures S19 and S20). Comparison of the DFT data with CV experiments 

indicates that 		����
���  and 		��

��� show reasonably good linear correlations with the experimental 

		����
��  

values obtained from the cyclic voltammetry experiments, while for 		��
��� the deviations are 

somewhat larger (Figure 5). In all the cases, the slopes are slightly higher than unity and increased 

positive deviations are observed for weaker acceptors Fon and 4CN-Fon, implying an underestimation 

of the EA by the DFT calculations. Small deviations from linear dependence between the CV data and 

computational estimations of orbital energies are partially due to the known fact of overestimation of 

conjugation by hybrid functionals
61-65

 affecting the computed LUMO energies as well as adiabatic EA 

values. Yet, reasonably good linear correlations between the experiments and the theory allow using 

computational methods in the design of fluorene acceptors with predictable EAs. Therefore, in the 

following we will use −	����
��  as the acceptor EA.  
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Figure 5. Comparison of experimental and calculated B3LYP/6-31+G(d) LUMO energy levels 

(ionization potentials) for the studied electron acceptors. Green line represents a bisection of equal 

energies between the axes (as such, the best quantitative coincidence with experimental data is for 

	EA�
��� calculated values). Solid lines show linear fits to the respective data sets. 

 

3.4. Steady-State Absorption  

Figure 6a plots optical absorption spectra of the MEH-PPV:acceptor blends. For the sake of 

simplicity, the blends are named after the respective acceptor. With increase of the acceptor EA, i.e. 

with lowering of the effective HOMO–LUMO energy gap, the blends show characteristic signatures of 

a ground-state polymer:acceptor CTC previously identified for MEH-PPV:TNFon blends.
8-11,13

 First, 

an absorption tail begins to form in the polymer bandgap, i.e. at wavelengths longer than 600 nm 

(Figure 6b). Second, the absorption maximum is progressively shifted to the red (Figure 6a) for 

acceptors with EA higher than that of 4CN-NFon. This indicates that the majority of the conjugated 

chains are involved in the CTC.
13

 For acceptors with high EA, an additional CTC absorption band is 

formed (most clearly seen for TeNFon), in accordance with the Mulliken model which predicts that the 

CTC absorption should be progressively red-shifted with increasing of the acceptor EA.  
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Figure 6. (a) Normalized absorption spectra for MEH-PPV:acceptor films. The spectra are shifted 

vertically for clarity; the acceptor EA increases from top to bottom. The spectrum of a pristine MEH-

PPV film is also shown at the top for comparison. (b) Absorption at the red tail of the spectrum (650 

nm; chosen arbitrarily) relatively to the maximum absorption as a function of acceptor EA. The red 

curve shows the fit to an ad hoc function ��$%&�−' ∙ 	�) * +),
	to highlight the initial exponential 

growth followed by the saturation.  

 

The absorption spectra in Figure 6a indicate that the polymer forms easily observable CTCs with the 

acceptors having an EA equal or higher than that for DNFon. For acceptors with a relatively low EA 

(4CN-NFon, NFon, 4CN-Fon and Fon) the only CTC signature is a weak absorption in the polymer 

gap (Figure 6b) that increases exponentially with acceptor EA. Interestingly, the CTC absorption 

ceases to be a monotonic function of EA at the position of DNFon. As follows from Figure 6b, the 

fluorenone acceptors (i.e. with carbonyl oxygen at the C-9 bridged atom of the fluorene moiety, Figure 

Page 16 of 36

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 17

1) form stronger absorbing CTCs than their dicyanomethylenefluorene-derivatized counterparts with 

comparable EAs (cf. for pairs NDF/TNFon and DDNF/TeNFon). Therefore, EA is not the only 

variable that governs the CTC properties even for acceptors with similar molecular structure.  

 

3.5. Photoinduced Charge Generation and Recombination  

While absorption data are indispensable in studying formation of the ground-state CTCs, they do not 

provide any information on the excited-state dynamics, i.e. on the processes of charge separation and 

recombination. For this, a visible-pump IR-probe arrangement
20

 was used where the magnitude of PIA 

signals in the region of LE polaron absorption (at 2.94 µm) monitors the concentration of photoinduced 

charges on the polymer.  

Figure 7 shows isotropic PIA transients for all the MEH-PPV:acceptor blends recorded at an 

excitation wavelength of 560 nm. This excitation wavelength was chosen at the lower-energy side of 

the absorption spectra (Figure 6a) to minimize deposition of excessive excitation energy. As is clear 

from Figure 7a, the initial charge photogeneration for all the samples is extremely fast and occurs 

within the apparatus time resolution of ~100 fs, regardless of the acceptor. Therefore, we conclude that 

the polaron generation in the blends occurs faster than 100 fs, and hence forward donor-to-acceptor 

electron transfer is almost immediate upon optical excitation and does not depend on the driving force 

for charge separation (acceptor EA). In contrast, the decaying parts of the transients are strongly 

acceptor-dependent with the relaxation timescale changing from ~50 ps for Fon to ~1 ps for DTNF. 

These timescales are attributed to the charge recombination (or back electron transfer from the acceptor 

to the polymer) process.  

We briefly comment on the origin of the PIA signal from the film of pristine MEH-PPV. Ideally, 

such excitation should be of entirely excitonic nature so that no polarons are produced. However, a 

number of MEH-PPV excitons quickly dissociate into charge species which assignment was actively 
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debated in the past (see for instance Ref. 66. Here we use the PIA signal from the pristine MEH-PPV 

film only as a reference for the charge recombination in the blends not affected by CTC formation. 

 

  
 

Figure 7. (a) Normalized isotropic PIA transients for the MEH-PPV:acceptor blends at an excitation 

wavelength of 560 nm and probe wavelength of 2.94 µm. Dots represent experimental data while solid 

curves show bi-exponential fits with the parameters listed in Table S3 in the Supporting Information. 

The transients are shifted vertically for clarity; the corresponding zero signal levels are shown by 

dashed lines. Note the logarithmic scaling of the delay axis after the break. The PIA signal from the 

pristine MEH-PPV film (black) is shown as a reference. (b) Charge recombination rate in blends of 

MEH-PPV:acceptor as a function of EA. The solid curve represents the best fit to the experimental data 

(dots) according to Eq.6. The dashed and dotted lines are asymptotes for the acceptor-to-polymer and 

intrapolymer recombination channels, respectively. The inset presents deviations of the experimental 

values from the best fit at the linear scale. 
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To quantify the dynamics, the transients were fitted by a bi-exponential function (Figure 7a, solid 

lines) with fit parameters presented in Table S3 (see Supporting Information). Two recombination rates 

most probably correspond to different donor-acceptor configurations or/and partial electron transfer. In 

any case, for the majority of the acceptors, the amplitude of the dominating exponential functions 

exceeds 90% and is always higher than 80%. We took the weighted average of the two time constants 

as the characteristic time of the charge recombination.  

Figure 7b summarizes the relation between the charge recombination rate, k, and the acceptor EA. 

The intermolecular recombination rate mostly follows the exponential trend with some deviations for 

low-EA acceptors. This deviation originates from a second, intrapolymer (i.e. between units of the 

same and/or different polymer chains) channel of charge recombination that is characteristic for 

pristine MEH-PPV. The charge recombination rate that accounts for the both donor-acceptor and 

intrapolymer channels is therefore expressed as follows: 

,1exp 0k
E

EA
kk ET +








−








∆

⋅=         (6)
 

 

where ETk  is the proportionality coefficient, E∆
 

is a characteristic energy, and 0k  is the rate of the 

intrapolymer charge recombination. The fit to the experimental data resulted in the following values: 

110101.2 −−⋅= pskET , eVE 2.0=∆ , and 1

0 018.0 −= psk .  

The linear dependence of the logarithm of the charge recombination rate, ln(k), on EA has been 

observed in many small-molecule ground-state CTCs, both in solution
6,7

 and solid phase.
26,67

 The 

obtained value of 11 5 −− =∆ eVE of the slope of the exponential factor is also similar to previous 

studies of small-molecule CTCs. For instance, Gould et al.
6
 reported the slope value of ~5 eV

–1
 in a 

series of CTCs formed between cyanoaromatic acceptors and methyl-substituted benzene donors. 

Hubig et al. found
7, 26

 the slope to vary from 2 eV
–1

 in benzene–methylviologen mixtures up to 3.6 eV
–1

 

in CTCs between large aromatics and TCNB (tetracyanobenzene) acceptor.  
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In the Marcus model,
68

 an increase of the charge recombination rate with increasing EA (the driving 

force) corresponds to the so-called inverted regime.
69-71

 Various interpretations of the Marcus model 

were proposed to obtain a linear dependence of the experimentally observed ln(k) on EA for charge 

recombination in various small-molecule CTCs. As follows from the Marcus equation,
68

 such linear 

dependence of ln(k) appears when the reorganization energy becomes much larger than the driving 

force for charge recombination. As the latter is always higher than 0.5 eV for the examined CTCs, this 

leads in our case to unreasonably high reorganization energy, by a factor of 5 higher than imposed by 

kT. On the other hand, the linear EA dependence of ln(k) can be assigned to the energy gap law for 

radiationless transitions in polyatomic molecules as was explained for small-molecule CTCs adsorbed 

on porous glass at different temperatures.
67

 These are quantum transitions between (nearly) 

degenerated vibrational levels that belong to the ground and excited electronic states of the molecule
72

 

(that is a photoexcited CTC in our case). Note that these transitions are not thermally activated as the 

classic Marcus model implies (for detailed discussion of the inverted Marcus and the energy gap 

models, see Refs.
69,70

).Therefore, we suggest that in the conjugated polymer CTCs the charge 

recombination mechanism is very similar to that observed earlier in small-molecule CTCs. 

The data in Figure 7a suggest that the acceptor EA is the prime factor that governs charge 

recombination rate for the CTCs used herein. Nonetheless, the fluorenone acceptors are characterized 

by slightly higher relaxation rates than the dicyanomethylenefluorene ones of similar EAs (compare, 

for instance, pairs of NDF/TNFon and DDNF/TeNFon). This shows that other CTC parameters such 

as the molecular orbital overlap, the donor-acceptor distances, packing motif etc. that enter the pre-

exponential factor in Eq. 6, are also important. 

From Figure 7b one can readily establish the EA (which is, in the first approximation, directly linked 

to the driving force for charge recombination) where the donor-acceptor recombination channel begins 

to dominate over the intrapolymer one (~50 ps for pristine MEH-PPV). This energy can be estimated 

by equalizing the rates of donor-acceptor and intrapolymer charge transfer, i.e. as the abscissa of the 
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crossing point between the dashed and dotted lines in Figure 6b, which results in ~3.6 eV. Figure 8 

presents PIA anisotropy transients for the MEH-PPV:acceptor blends. The initial anisotropy value of 

~0.3 is virtually independent of the acceptor. This means that the transient dipoles of photoexcitation 

(i.e. blend absorption) and probe (i.e. polaron absorption) remain unaffected by CTC formation. The 

long-time behavior strongly depends on the acceptor: for DNFon and acceptors with higher EA the 

transient anisotropy does not change appreciably from its initial value. In contrast, for the acceptors 

with lower EA (Fon, NFon, and 4CN-NFon), the anisotropy decreases with time in a similar fashion 

as for MEH-PPV, although to a lower extent. The anisotropy dynamics are ascribed to polaron 

migration on the polymer: as the polaron samples polymer segments with various orientations, the 

memory of the initial direction of the polaron transition dipole moment is more and more lost. 

Therefore, we conclude that the polarons are more mobile in the blends with acceptors of low EA, 

while they are more localized in the blends with the acceptors of higher EA. The border line, as found 

above in the isotropic PIA and steady-state spectroscopy data, is drawn at EA of the DNFon acceptor.  

 

 
 

Figure 8. PIA anisotropy transients for the MEH-PPV:acceptor blends at an excitation wavelength of 

560 nm and probe wavelength of 2.94 µm. The transients are delay-limited because of deteriorating 

signal-to-noise ratio due to short lifetimes in the blends with high-EA acceptors. 
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Based on our optical experiments, we propose the following model of charge dynamics in polymer-

acceptor blends with ground-state CTCs (Figure 9). For low-EA acceptors, namely Fon, NFon, and 

4CN-NFon, the CTC concentration in the polymer phase is relatively low while the majority of 

acceptor molecules form their own phase (Figure 9a). As a consequence, a part of the photoexcitations 

that are characteristic of pristine polymer is mobile, but another part – those of CTCs – is localized. 

The fraction of the former decreases for acceptors with high EA which results in the red-wing 

absorption (Figure 6a), accelerated recombination rate (Figure 7), and lowered anisotropy values 

(Figure 8). Acceptors with high EA form CTCs that are more dispersed in the conjugated polymer 

(Figure 9b; see also discussion on the absorption spectra, Figure 6) so that a polymer photoexcitation 

always occur near an acceptor molecule that immediately receives the photoexcited electron. Such 

complexation, in turn, planarizes MEH-PPV segments thereby increasing the conjugation length within 

these fragments of the polymer backbone (and consequently delocalization of the photoexcitation) that 

in turn facilitates an efficient charge separation processes. As a consequence, the polaron stays in the 

vicinity of its birth place which results in a time-independent anisotropy. Note that in this case the 

intrapolymer recombination channel (the second term in Eq. 6) becomes irrelevant and therefore the 

recombination rates approach the exponential behavior (Figure 7b). Most probably, the previously 

observed self-organization of the polymer chains in crystalline domains due to the CTC formation
14

 

adds another dimension to this scenario; a more detailed investigation on this issue is underway.  
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Figure 9. Impression of the MEH-PPV:acceptor blend charge dynamics for acceptors with low (a) and 

high (b) EAs. Very few of low-EA acceptors form CTCs (red pucks) with polymer chains (blue) while 

most of acceptors aggregate in their own phase (shadowed in light red). This results in mobile 

(extended green) and more localized (green) photoexcitations. In contrast, almost all high-EA acceptors 

form CTCs with polymer chains resulting in localized excitations only. 

 

4. CONCLUSIONS 

The ground-state CTCs formed between the MEH-PPV conjugated polymer donor and a series of 

fluorene electron acceptors with varying electron affinity have been studied using a combined platform 

of synthetic chemistry, DFT calculations, and time-resolved spectroscopy. The acceptor EAs were 

engineered by attaching a variety of electron withdrawing functional groups (cyano, nitro, and 

carbonyl) to the fluorene core to systematically modify the LUMO–HOMO energies of the acceptors. 

Both energies were calculated using a DFT method at the B3LYP/6-31+G(d) level of theory and 

compared with measurements of acceptor’s electrochemical reduction potential obtained from cyclic 

voltammetry. The experimental and theoretical values demonstrated excellent agreement.  

The formation of the ground-state CTCs in polymer-acceptor blends has been identified by optical 

absorption spectroscopy through the appearance of an additional absorption in the polymer bandgap. 
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Visible-IR PIA spectroscopy has been further employed to study excited-state charge separation and 

recombination dynamics. In all the blends, charge photogeneration is extremely fast (<100 fs), while 

charge recombination shows noticeably different dynamics ranging from 1 to 50 ps. The acceptor-to-

polymer recombination rates exhibit an exponential scaling with the acceptor EA with parameters that 

are similar to those reported earlier for small-molecule CTCs. Transient anisotropy data have indicated 

that in the CTCs with acceptors of relatively high EA, the mutual orientation of photoexcited and 

polaron transient dipole moments is retained, whereas in the low EA acceptors the two dipole moments 

become less correlated.  

The experimental data have been discussed in terms of a charge dynamics model where the low EA 

acceptors form relatively sparse CTCs with the polymer chain and most of the acceptor molecules stay 

phase-separated from the polymer. In contrast, the high EA acceptors are thought to be rather dispersed 

in the polymer due to pronounced CTC formation. As a result, in the first case photoexcitations are 

fractioned between delocalized polymeric and more localized CTCs ones while in the second case 

photoexcitations are localized around the point of their creation.  

The effect on the acceptor EA on the charge recombination dynamics has clear implications for 

organic solar cells. The charge-transfer state with the hole at the donor and the electron at the acceptor, 

both near the interface, has been recognized as a key intermediate state on the route from photon 

absorption to free charges in various donor-acceptor combinations.
27,31,42,73

 Our results demonstrate that 

acceptors with a higher EA (i.e. those providing a stronger driving force for charge separation) result in 

an exponentially increased recombination rate from the CTC state which leads to reduction of the long-

lived separated charges. These two opposite trends should be carefully balanced in designing the novel 

organic bulk heterojunctions.  
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Supporting Information 

Synthesis and characterization of studied fluorene acceptors with respective 1H and 13C NMR 

spectra, UV-visible absorption spectra of the acceptors, DFT calculations for fluorene acceptors and 
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