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Abstract.  The ‘landscape of fear’ model, recently advanced in research on the non-lethal effects 16 

of carnivores on ungulates, predicts that prey will exhibit detectable antipredator behavior not 17 

only during risky times (i.e., predators in close proximity) but also in risky places (i.e., habitat 18 

where predators kill prey or tend to occur).  Aggregation is an important antipredator response in 19 

numerous ungulate species, making it a useful metric to evaluate the strength and scope of the 20 

landscape of fear in a multi-carnivore, multi-ungulate system.  We conducted ungulate surveys 21 

over a two-year period in South Africa to test the influence of three broad-scale sources of 22 

variation in the landscape on spatial patterns in aggregation: 1) habitat structure, 2) where 23 

carnivores tended to occur (i.e., population-level utilization distributions) and 3) where 24 

carnivores tended to kill ungulate prey (i.e., probabilistic kill site maps).  We analyzed spatial 25 

variation in aggregation for six ungulate species exposed to predation from recently reintroduced 26 

lion (Panthera leo) and spotted hyena (Crocuta crocuta).  Although we did detect larger 27 

aggregations of ungulates in ‘risky places’, these effects existed primarily for smaller-bodied 28 

(<150kg) ungulates and were relatively moderate (change of ≤4 individuals across all habitats).  29 

In comparison, ungulate aggregations tended to increase at a slightly lower rate in habitat that 30 

was more open.  Lion, an ambush (stalking) carnivore, had stronger influence on ungulate 31 

aggregation than hyena, an active (coursing) carnivore.  In addition, places where lions tended to 32 

kill prey more strongly affected ungulate aggregation than places where lions tended to occur, 33 

but an opposing pattern existed for hyena.  Our study reveals heterogeneity in the landscape of 34 

fear and suggests broad-scale risk effects following carnivore reintroduction only moderately 35 

influence ungulate aggregation size and vary considerably by predator hunting mode, type of 36 

predation risk, and prey species. 37 
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INTRODUCTION 40 

Examinations of predator-prey ecology have focused on direct, lethal predation effects on 41 

prey (Lima 1998), but recent work has expanded this view by quantifying non-lethal “risk 42 

effects” (i.e., altered prey behavior due to risk; Creel and Christianson 2008).  These risk effects, 43 

which have been well-described in aquatic systems (e.g., Peacor and Werner 2001), are now 44 

being assessed in vast carnivore-ungulate systems.  From this research, we understand that 45 

ungulates employ a variety of strategies to manage their interactions with carnivores.  These 46 

include migrating to areas with lower carnivore densities (Hebblewhite and Merrill 2007), 47 

selecting habitat that provides cover (Valeix et al. 2009a, Thaker et al. 2011), and aggregating 48 

into larger groups as a means of additional vigilance, dilution, and defense (Hamilton 1971, 49 

Dehn 1990, Hebblewhite and Pletscher 2002).  Predation-sensitive migration and habitat 50 

selection has been relatively well-documented in a variety of carnivore-ungulate systems (e.g., 51 

Hebblewhite and Merrill 2007, Valeix et al. 2009a), although understanding the demographic 52 

consequences of these behaviors remains a challenge.  Comparatively, the factors shaping 53 

ungulate aggregation are more poorly understood, largely due to the complexity of herding 54 

behavior in heterogeneous environments (Pays et al. 2007, Fortin et al. 2009).  For instance, 55 

whereas larger aggregations of ungulates can reduce predation risk via dilution, they can also 56 

result in decreased foraging efficiency (Molvar and Bowyer 1994).  In addition, larger 57 

aggregations offer improved predator detection, but they are also more easily detected by 58 

predators (Caro 2005).  Given that aggregation is one of the most common antipredator strategies 59 

employed by ungulates (Caro 2005), a more thorough understanding of the degree to which 60 
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spatial variation in risk from multiple carnivores influences ungulate aggregation is crucial to 61 

both predator-prey and behavioral ecology.   62 

Several ungulate species in African systems modulate their group size in response to 63 

carnivore predation risk (Valeix et al. 2009b, Thaker et al. 2010, Creel et al. 2014).  Whereas 64 

evidence suggests that ungulates aggregate when faced with predation risk in temporal 65 

dimensions (e.g., Valeix et al. 2009b), it is unclear how spatial aggregation patterns relate to 66 

predation risk.  The “landscape of fear” model of predator-prey interactions (Laundré et al. 2001) 67 

predicts that antipredator processes such as aggregation will be detectable not only during risky 68 

times (i.e., when carnivores are in the immediate vicinity) but also in risky places (i.e., where 69 

carnivores typically occur or kill prey; Valeix et al. 2009a, Valeix et al. 2009b, Thaker et al. 70 

2011, Creel et al. 2014).  Although the landscape of fear theory has been presented as a 71 

framework for understanding broad-scale ecosystem dynamics (Ripple and Beschta 2004), the 72 

strength and scope of carnivore-induced risk effects are highly variable.  For example, in African 73 

ecosystems, prey body size (Hopcraft et al. 2010), climate (Riginos 2015), and forage quality 74 

(Anderson et al. 2010) have been found to influence ungulate behavior as much or more than 75 

predation risk, while other work suggests interactive and context-specific effects of these factors 76 

(Sinclair and Arcese 1995).  Furthermore, risk effects depend on predator hunting mode, with 77 

ambush predators generally eliciting the strongest prey responses (e.g., Schmitz 2008, Thaker et 78 

al. 2010).   79 

Here, we aim to clarify the relative contribution of multiple forms of landscape-level 80 

predation risk on patterns of aggregation for six species of African ungulates exposed to multi-81 

carnivore predation.  A key objective of our study is to contextualize the top-down influence of 82 

carnivores on ungulate aggregation by comparing its effect size with that of an established 83 
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relationship between ungulate aggregation size and habitat structure (i.e., aggregations tend to be 84 

larger in more open habitat; Evans 1979, Gerard and Loisel 1995, Pays et al. 2007, Thaker et al. 85 

2010, Marino and Baldi 2014). In addition, our study evaluates the hypothesis that carnivore risk 86 

effects on ungulates will vary by hunting mode and by prey species, as has been indicated in 87 

predator-prey systems across a diversity of taxa (Preisser et al. 2007).   88 

To these ends, we conducted surveys over a two-year period in South Africa to quantify 89 

average ungulate aggregation size.  We then compared spatial variation in ungulate aggregation 90 

to two types of risk associated with the primary carnivores in this system: 1) the probability of 91 

carnivore occurrence (population-level utilization distributions (UDs)) and 2) the probability of 92 

carnivore kill occurrence (probabilistic kill site maps).  Given that both aggregation size and 93 

predation risk vary by ungulate species (Thaker et al. 2011, Gervasi et al. 2013), we developed 94 

this assessment at the level of each ungulate species.  95 

METHODS 96 

Study Area  97 

We assessed spatial patterns in ungulate aggregation in the 132 km2 fenced Main Camp 98 

section of Addo Elephant National Park, South Africa (Addo; 33°30’S, 25°45’E; Appendix A).  99 

The dominant habitat type in Addo is thicket with grassland sections in the east that are 100 

derivative of an agricultural history (Tambling et al. 2012).  Unlike typical African savanna 101 

ecosystems, Addo lacks pronounced wet and dry seasons (e.g., average wet and dry season 102 

rainfall only differs by ~20mm; South African Weather Service, unpublished data).  Using 103 

digital vegetation maps provided by South African National Parks, we identified six habitat types 104 

within Addo, including bushclump, gully thicket, thicket, Zuurkop woodland, long grassland, 105 

and short grassland (South African National Parks, unpublished data).  The two primary 106 
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carnivores in the study area, lion (Panthera leo) and spotted hyena (Crocuta crocuta), were 107 

reintroduced in the Main Camp following a 100-year absence (Hayward and Hayward 2006).  108 

All lions (4M, 2F) and four hyenas (3M, 1F) were unrelated and were reintroduced in late 2003; 109 

an additional four unrelated hyenas (2M, 2F) were reintroduced in the winter of 2004 following a 110 

period of disease testing (see Hayward et al. 2007a, 2009).  One leopard (Panthera pardus) also 111 

occurred in the study area but was not included in the analysis due negligible predation on the 112 

ungulate species of interest. 113 

Ungulate surveys 114 

Between December 2003 and November 2005, we conducted surveys to describe spatial 115 

variation in aggregation size for Cape buffalo (Syncerus caffer; hereafter buffalo), eland 116 

(Tragelaphus oryx), greater kudu (Tragelaphus strepsiceros; hereafter kudu), red hartebeest 117 

(Alcelaphus buselaphus caama), warthog (Phacochoerus africanus) and zebra (Equus quagga).  118 

These species occurred across the entire study area and were common prey of lion and hyena in 119 

Addo (Hayward 2006, Hayward et al. 2007b).  We conducted vehicle-based surveys on a 120 

network of 51 transects (ݔҧ transect length = 913 m, range 567 – 1,029 m; Appendix A).  We 121 

conducted surveys three hours preceding and following dawn and dusk, using spotlights when 122 

necessary.  These time periods correspond with peak activity times for lions and hyenas in Addo 123 

(Hayward and Hayward 2006).  We conducted 30 surveys per year on randomly selected days 124 

and varied the start location for surveys to eliminate temporal bias at any given location.  We 125 

recorded aggregation size at the start, middle, and end points of each transect.  The same 126 

observer conducted each survey alongside a scribe.  Detections occurred without the aid of 127 

binoculars, although counts were confirmed using binoculars.  In most cases (i.e., >80%), only 128 

one aggregation of a given species was present at a transect point during a given survey. When 129 
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multiple, distinct groups of the same species were seen at a given location, we first corrected 130 

group size via distance sampling to accommodate variation in visibility by regressing the log of 131 

group size against the estimated detection probability in each habitat type (Buckland et al. 2001).  132 

We then summed group sizes to obtain species-specific aggregation sizes.  We considered groups 133 

distinct when individuals were closer to other members of their group than the nearest peripheral 134 

members of another group.  We counted all individuals (i.e., adults and juveniles) and assumed 135 

counts close to the line were accurately recorded (Buckland et al. 2005).  Thus, aggregations 136 

represent all individuals of the same species at a transect point at a given time, whether one 137 

distinct aggregation or an aggregation of two or more groups in close proximity to the transect 138 

point. 139 

Carnivore occurrence models 140 

We developed population-level UDs for lions and hyenas to model predation risk as a 141 

function of carnivore occurrence (Hebblewhite and Merrill 2007, Valeix et al. 2009, Thaker et al. 142 

2011).  We VHF-tracked the entire lion population (N = 6) and 75% (N = 6) of the adult hyena 143 

population for two years following release in Addo.  Both lions and hyenas were consistently 144 

tracked throughout the two-year study period via continuous, 96-hour follows conducted on 145 

average once every six weeks; opportunistic observations of carnivore locations and kills were 146 

also recorded outside these times (see Hayward et al. 2009).  As with ungulate surveys, carnivore 147 

location data were primarily collected during times when lions and hyenas were most active (i.e., 148 

within 3 three hours of dawn and dusk; Hayward and Hayward 2006, Hayward et al. 2009).  In 149 

this way, we attained an average of 48 locations (SD = 18) per hyena (N = 285 total locations for 150 

6 hyenas) and 103 locations (SD = 23) per lion (N = 615 total locations for 6 lions).  Beginning 151 

in November 2003, we partitioned lion locations into three, four-month periods per year through 152 
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October 2005: summer (November – February), autumn/early winter (March – June), and late 153 

winter/spring (July – October).  We then mapped population-level lion UDs for each period to 154 

account for temporal variation in lion ranging patterns following reintroduction (i.e., range 155 

expansion; Hayward et al. 2009).  Given the lower sample size of hyena locations (N = 285), we 156 

developed a pooled UD representing population-level hyena space use over the two-year period 157 

(Seaman et al. 1999).  We developed UDs in R (R Development Core Team 2011) using a 158 

bivariate plug-in matrix (Gitzen et al. 2006).  We depicted the interpolated density estimates as 159 

UD percentiles at a 30m2 resolution such that the highest percentile (100) represented the very 160 

core of the UD, while the lowest percentile (1) represented the periphery.  Areas not 161 

encapsulated by any portion of the UDs had a value of 0, representing a negligible probability of 162 

carnivore occurrence. 163 

Kill occurrence models 164 

We identified carnivore-killed ungulates via continuous follows and incidental sightings.  165 

We distinguished lion kills from those of hyenas based on observations of hunts and kills, signs 166 

and direct observations of feeding on fresh carcasses.  We saw no indication of intraguild 167 

scavenging between lions and hyenas during continuous follows and have no other evidence of 168 

its occurrence, as both species were at low densities during our study period. 169 

We used the locations of killed ungulates to develop probabilistic spatial models of kill 170 

occurrence throughout the study area as a function of landscape characteristics, which were 171 

assigned using a lattice comprised of 250m2 cells in ArcMap Version 10.  We identified relevant 172 

landscape covariates a priori for both lion and hyena kill occurrence models.  These included the 173 

proportion of each habitat type and the length of hard edge within a cell, in addition to the 174 

Euclidean distance from kill site to fenceline, waterholes (N = 11), and campsites (N = 2).  Given 175 
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that lions use cover to ambush prey (Loarie et al. 2013) and frequently kill near edge habitat 176 

(Prins and Iason 1989), we defined hard edge as the boundary between open (short and long 177 

grassland) and closed habitats (gully thicket, thicket, Zuurkop woodland, and bushclump).  We 178 

included the fenceline, waterhole, and campsite covariates to account for increased carnivore 179 

hunting success near fences (Davies-Mostert et al. 2013), variation in ungulate water dependency 180 

(Valeix et al. 2009b) and carnivore/ungulate avoidance of anthropogenic infrastructure (Howe et 181 

al. 2013).  For lions, we evaluated both a pooled model (using all locations of lion-killed 182 

ungulates) and species-specific models (e.g., using only locations of lion-killed buffalo to 183 

develop a lion-buffalo kill occurrence map) for ungulate species with sufficient sample size of 184 

kill sites (N ≥ 25; buffalo, kudu, and warthog).  However, preliminary model analyses using 185 

Akaike’s Information Criterion corrected for sample size (AICc) indicated that, for each ungulate 186 

species, the pooled model of lion-killed ungulates was better supported by the data than species-187 

specific models.  Therefore, we used the pooled model in subsequent analyses for all six 188 

ungulate species.  For hyena, we did not have sufficient sample sizes to evaluate species-specific 189 

models, thus we built the hyena kill occurrence model using pooled locations of all hyena-killed 190 

ungulates. The smaller sample size of hyena-killed ungulates was unsurprising given that hyenas 191 

exhibit non-specific predation tendencies and lower preference for our focal ungulate species 192 

than lions (Hayward 2006). 193 

Using a case-control design, we compared the landscape covariates of the locations of 194 

each recorded lion (N = 172) or hyena (N = 50) kill site to landscape covariates associated with 195 

20 random locations in k strata, where each stratum is a matched set consisting of the kill 196 

location and 20 random locations (Hosmer and Lemeshow 2000, Manly et al. 2002).  We 197 

enforced a minimum distance of 500m such that none of the random controls were associated 198 
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with the exact habitat conditions of the kill sites (Gervasi et al. 2013).  We used a mixed effects 199 

logistic regression procedure and modeled the kith stratum as a random effect.  We evaluated all 200 

linear, non-interacting combinations of the a priori covariates described above and ranked 201 

models according to AICc weight (wi; Burnham and Anderson 2002).  Given that our primary 202 

goal was prediction, we averaged parameter estimates over all models with a cumulative AICcwi 203 

of 0.95 (Burnham and Anderson 2002:150).  We used the resultant averaged parameter estimates 204 

to produce an odds ratio of kill occurrence (Keating and Cherry 2004) that took form: 205 

ሺ߯|߯ோ ሻߖ ൌ exp ሾߚଵሺ߯ଵ െ ߯ோ ሻ ൅ ଶሺ߯ଶߚ െ ߯ோ ሻ൅ . . . ൅ ߚ௡ሺ߯௡ െ ߯ோ ሻሿ (1) 206 

where ߖሺ௫ሻ is the relative probability of kill occurrence in a given 250 m cell, ߯௡ is the covariate 207 

value of that cell, and ߯ோ is the mean covariate value of all cells in the study area.  Given that 208 

predation events are rare throughout the study area, we can interpret the odds ratio as an 209 

approximation of the relative probability of kill occurrence (Keating and Cherry 2004), where 210 

 ሺ߯|߯ோ ሻ = 1.0 represents the mean probability of kill occurrence.  Values lower or higher than 211ߖ

1.0 represent changes in the odds ratio of kill occurrence (e.g., ߖሺ߯|߯ோ ሻ = 2.0 indicates a 212 

location with twice the relative probability of kill occurrence than the mean; Fig. 1).   213 

To assess the predictive ability of the kill occurrence models, we conducted k-folds cross 214 

validation tests (Boyce et al. 2002).  We divided the  data between training and testing portions 215 

maintaining an 80:20 ratio and fit kill occurrence models using the training data and validated 216 

the predictions with the testing data.  We conducted this test five times and partitioned the 217 

predictive output into 10 categories.  We compared the training and testing data using Spearman-218 

rank correlation coefficients (rs; Boyce et al. 2002). 219 

Ungulate aggregation models 220 
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We used the average ungulate aggregation size for each species at each transect point and 221 

within each period as the response variable in our ungulate aggregation models.  We fit spatially-222 

explicit mixed effects linear regression models to predict spatial variation in average ungulate 223 

aggregation in relation to carnivore occurrence and kill occurrence.  These models took the form: 224 

௜ܻ௝ ൌ ௜௝ߚܺ ൅ ௝ݑܼ ൅ ݁ (2) 225 

where ௜ܻ௝ is the log-transformed average ungulate aggregation size at the ith transect point in 226 

period j,  ܺߚ௜௝ is a vector of the predictor covariates at the ith transect point in time period j (only 227 

lion UDs were separated by period), and ܼݑ௝ is the random effect term for each time period in 228 

the assessment (3 periods in each year such that Nj = 6).  For all models, we accounted for spatial 229 

autocorrelation among the ith transect points by using an exponential covariance structure, as 230 

determined by AICc (Zuur et al. 2009).  Prior to model fitting, we examined multicollinearity to 231 

avoid excessive covariate correlation (0.7 tolerance level).   232 

We took a two-step information theoretic approach to model selection to balance 233 

precision and bias in our final models (Burnham and Anderson 2002).  In the first step of model 234 

selection, we built a global model a priori that included carnivore UDs, carnivore kill 235 

occurrence, amount of hard edge (linear length in meters), and degree of openness (proportion of 236 

open habitat within a 250m2 cell).  We included hard edge and openness covariates due to 237 

associations between open habitats, increased visibility, and aggregations of African ungulates 238 

(Evans 1979, Gerard and Loisel 1995, Pays et al. 2007, Creel et al. 2014, Marino and Baldi 239 

2014).  We then evaluated models developed from all possible linear combinations of these six 240 

covariates.  Interaction terms were not considered due to lack of clear justification and a desire to 241 

keep the candidate model set as small as possible (Burnham and Anderson 2002:17).  We ranked 242 

models based on AICc and assessed models based on AICcwi (Burnham and Anderson 2002). 243 
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Aggregations of a given species might be influenced by the presence of other ungulates 244 

(Scheel 1993). Accordingly, the second step of our model selection process tested whether the 245 

top model for each ungulate species could be improved by the sequential addition of covariates 246 

representing aggregations of other ungulate species at the ith transect point in the jth period.  247 

These covariates were not considered in the first step of the model selection process because we 248 

could not hypothesize ungulate species associations in an a priori fashion and because an all 249 

combinations approach would have undermined model parsimony by resulting >2000 candidate 250 

models (Burnham and Anderson 2002:174).  Thus, we assessed whether the fit of the top-ranking 251 

model from the first model selection step could be improved by the iterative addition of 252 

covariates representing the other ungulate species, as assessed by a significant likelihood ratio 253 

test (α = 0.05 cutoff; Zuur et al. 2009).  We concluded this process when the addition of 254 

parameters no longer improved model fit and ranked final models using AICc and AICcwi.  We 255 

averaged parameter coefficients across all models within 1/8th AICcwi of the top-ranking model 256 

(Burnham and Anderson 2002:171).  We calculated the relative importance of covariates Xj by 257 

summing Akaike weights across models where covariate j occurred (Burnham and Anderson 258 

2002:168).  Finally, we plotted model-averaged coefficients for all parameters with a 259 

significance of α ≤ 0.01 to examine covariate effect size.   260 

RESULTS 261 

We recorded 4,964 observations of ungulates, 615 lion locations, and 285 hyena locations 262 

during the two-year survey period.  Population-level lion UDs varied by time period, with home 263 

range expansion occurring over the two-year reintroduction period (Appendix B).  Population-264 

level hyena UDs were focused around denning sites in the southwestern portion of the Main 265 

Camp (Appendix B).  Ungulate aggregation distributions were right-skewed; mean aggregation 266 

sizes for the six species ranged from 2.8 to 16.7, with warthog forming the smallest aggregations 267 



Moll et al.  13 
. 

and buffalo forming the largest (Appendix C). We located 172 lion-killed ungulates and 50 268 

hyena-killed ungulates.  For both lion and hyena, kudu was the most commonly killed ungulate 269 

(34.3% [N = 59] of all lion kills and 40.0% [N = 20] of all hyena kills) and zebra was the least 270 

common (1.7% [N = 3] of all lion kills and 2.0% [N = 1] of all hyena kills).   271 

Both the lion and hyena kill occurrence models revealed substantial spatial variation in 272 

kill occurrence across the study area (Fig. 1).  The k-folds cross validation tests indicated a good 273 

fit of the models to the data, with an average correlation among the training and testing data of rs 274 

= 0.921 and rs = 0.916 for the lion and hyena models, respectively.  For the lion model, the 275 

relative probability of lion kill occurrence was positively associated with length of hard edge and 276 

proportion gully thicket and negatively associated with distance to campsites; the highest 277 

probability of lion kill occurrence was where gully thicket habitat formed a hard edge with open 278 

habitat (Appendix D, Fig. 1).  For the hyena model, the relative probability of hyena kill 279 

occurrence was negatively associated with distance to waterhole and distance to fenceline and 280 

positively associated with length of hard edge (Appendix E).  Hyena kill occurrence was greatest 281 

in open habitat (Fig. 1).  282 

For each ungulate species, the addition of covariates representing aggregations of the 283 

other ungulate species failed to improve the top model and thus those covariates are absent in 284 

final model sets.  Buffalo aggregation size was best described by a univariate model representing 285 

degree of openness and the open covariate was the most important covariate in the model set 286 

(Table 1, Fig. 2a).  No covariate was significantly associated with buffalo aggregation size at the 287 

α < 0.05 level (Appendix F).  For eland, hyena occurrence featured as a covariate in each of the 288 

top four models (Table 1) and had the highest relative importance in the model set (Fig. 2b).  For 289 

kudu and hartebeest, the top four models for both species featured the open, lion kill occurrence, 290 
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and hyena occurrence covariates and these three covariates had the highest relative importance 291 

over the model set (Table 1, Fig. 2c,d).  In the case of kudu, lion kill occurrence and proportion 292 

open habitat were both highly significant predictors of aggregation size (P < 0.0001, Appendix 293 

F).  For example, kudu aggregations increased from an average of ~2 individuals in completely 294 

closed habitat to ~ 4.5 individuals in completely open habitat (Fig. 3a).  Similarly, as the odds 295 

ratio of lion kill occurrence increased twelve-fold from 0.5 to 6.0, the average aggregation size of 296 

kudu increased from ~2 individuals to ~5 (Fig. 3b).  For red hartebeest, these two covariates 297 

(proportion open habitat and lion kill occurrence) were also highly significant (P < 0.01, 298 

Appendix F) and showed a similar positive association.  For example, average hartebeest 299 

aggregations increased from an average of ~3 individuals in completely closed habitat to ~5 300 

individuals in completely open habitat (Fig. 3c) and from ~3 individuals to ~7 as the odds ratio 301 

of lion kill occurrence increased from 0.5 to 6.0 (Fig. 3d).  For warthog, the open and lion kill 302 

occurrence covariates featured in all of the top four models (Table 1) and both had a relative 303 

importance near 1.0 over the model set (Figure 2e).  The positive association between warthog 304 

aggregation size and lion kill occurrence was highly significant (P = 0.01, Appendix F); as the 305 

odds ratio of kill occurrence increased from 0.5 to 6.0, warthog aggregations increased from an 306 

average of ~2 individuals to ~3 (Fig. 3e).  Finally, for zebra the open and edge covariates 307 

featured in all of the top four models (Table 1) and these two metrics both had a relative 308 

importance near 1.0 over the model set (Fig. 2f).  Of these, the open covariate had a highly 309 

significant (P < 0.01) positive association with zebra aggregation size; zebra aggregations 310 

increased from an average of ~3 individuals in completely closed habitat to ~4 in completely 311 

open habitat (Fig. 3f). 312 

DISCUSSION 313 
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A recent wave of research has advanced our understanding of non-lethal effects of 314 

carnivores on ungulates, but generalizing these risk effects over broad terrestrial scales has 315 

proven difficult (e.g., see Kauffman et al. 2010).  Over a two-year period, we found that ungulate 316 

aggregation size was positively associated with increased predation risk and habitat openness, 317 

but the effects of both of these factors were moderate and varied by carnivore hunting mode and 318 

prey species (Preisser et al. 2007).  The final models predicting ungulate aggregation size were 319 

largely multivariate and often contained several important covariates (Fig.2), highlighting the 320 

idea that no single influence drives ungulate aggregation (Creel et al. 2014).  Given that top 321 

predators were absent from Addo for 100 years preceding our study and that reintroduced 322 

carnivores existed in low densities, the risk effects we observed might be smaller in magnitude 323 

when compared to systems with non-naïve prey (Berger 2001) or high predator densities (Peacor 324 

and Werner 2001).  Moreover, given the coarse-grain scale of our study (i.e., population-level 325 

spatial tendencies of carnivore occurrence and kill sites over two years), we view our 326 

conclusions as relevant to broad spatial scales of predation risk rather than finer-scaled responses 327 

(e.g., increased vigilance as a predator approaches; Périquet et al. 2010). Therefore, despite the 328 

established general principle that prey tend to aggregate in response to heightened predation risk 329 

(Caro 2005), application of this antipredator defense strategy is scale-specific and dependent 330 

upon habitat structure, the type and duration of predation risk, prey naiveté, and the ungulate 331 

species in question.  We do not view our study as an explicit test of top-down versus bottom-up 332 

effects on ungulate aggregation. However, given the correlation between habitat structure and 333 

forage availability and quality, our study suggests that complex top-down effects act in tandem 334 

with bottom-up habitat features to shape prey response to predation risk (Jarman 1974, Anderson 335 

et al. 2010, Hopcraft et al. 2010). 336 
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Our results suggest that, like a complex physical landscape, the landscape of fear can be 337 

highly heterogeneous.  We note two sources of variation in the landscape of fear in Addo: 1) 338 

carnivore identity, and 2) the nature of predation risk.  In our study, spatial variation in lion kill 339 

occurrence was a more important factor for predicting ungulate aggregation size than lion 340 

occurrence, the latter having generally low importance (Fig. 2).  Others have found the presence 341 

of lions influences ungulate behavior, either by increasing vigilance (Hunter and Skinner 1998, 342 

Périquet et al. 2010), altering habitat selection and space use (Valeix et al. 2009a, Thaker et al. 343 

2010, 2011), or limiting access to quality forage (Barnier et al. 2014).  Taken in context with our 344 

results, this suggests that ungulates employ multiple strategies to mitigate interactions with lions.  345 

For example, whereas ungulates might prefer more open habitats and increase vigilance in 346 

response to fine-scale risk (e.g, a lion in close proximity; Valeix et al. 2009b), they might 347 

aggregate in especially dangerous locations at broader scales (Thaker et al. 2010, this study).  348 

Moreover, in the face of consistent, long-term (i.e., >3 years) exposure to predation, some 349 

ungulates might form large herds (i.e. > 100 individuals; Tambling et al. 2012) or migrate to 350 

areas of lower risk (Hebblewhite and Merrill 2007).   351 

In contrast with these lion-related effects, the influence of hyena on ungulate aggregation 352 

was weaker and more strongly linked to where hyenas tended to occur rather than where they 353 

tended to kill (Fig. 2).  This difference appears to be driven in part by the opposing patterns of 354 

kill occurrence of lions and hyenas in our study (Fig. 1).  Given that covariates for lion and 355 

hyena kill occurrence often occurred in top models together (Table 1) but did not always have 356 

opposing coefficients (Appendix F), the effect of the opposing patterns in kill occurrence on 357 

ungulate aggregation likely arose from differences in hunting behavior rather than as a mere 358 

artefact of negatively correlated spatial kill patterns between lions and hyenas. Thus, our results 359 
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corroborate the disparity of influence from active (coursing) versus ambush (stalking) predators 360 

that has been shown in smaller systems (e.g., Schmitz 2008).  Creel et al. (2014) found that 361 

African ungulate group size was more influenced by hyena presence than lion presence and 362 

suggested ambush predators might have weaker effects in carnivore-ungulate systems than in 363 

invertebrate systems (e.g., Schmitz 2008).  Our study sheds light on this discrepancy by 364 

decomposing risk from carnivores with differing hunting modes into two distinct expressions, 365 

namely, where they tend to occur and where they tend to kill.  With this level of resolution, our 366 

results suggest that the active carnivore (hyena) tends to influence ungulate aggregation via 367 

occurrence while the ambush carnivore (lion) tends to influence via a tendency to kill in specific 368 

locations.  However, as in Creel et al. (2014), the influence of these factors varied considerably 369 

among our focal ungulate species, highlighting the need for additional research to test this 370 

generalization in carnivore-ungulate systems 371 

Habitat structure was also associated with ungulate aggregation for several species.  Early 372 

research posited that ungulates aggregated in open habitat to decrease predation risk via dilution 373 

(Jarman 1974).  However, more recent theoretical (Gerard and Loisel 1995) and experimental 374 

(Pays et al. 2007) studies have shown that open areas facilitate aggregation simply by virtue of 375 

improved visibility and conspecific detection.  In our study, the degree of habitat openness 376 

consistently featured in the top models for most species (Table 1, Fig. 2).  However, with respect 377 

to lion kill occurrence, open habitat was relatively safe (Fig. 1).  Therefore, our work 378 

corroborates the notion that predation and openness can act independently to shape group size in 379 

ungulates (Marino and Baldi 2014), although these factors might be interactive for some species 380 

(Thaker et al. 2010).  The edge formed between open and closed habitat is especially dangerous 381 

for African ungulates (Prins and Iason 1989).  However, the amount of hard edge was generally a 382 
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less important aspect of habitat structure for ungulate aggregation compared to the level of 383 

openness (Fig. 2), emphasizing the importance of visibility over access to cover, as has been 384 

reported for other African ungulates (Riginos 2015).   385 

Our models for buffalo suggest that neither predation risk nor habitat structure were 386 

strongly related to aggregation size (Table 1, Appendix F).  This lack of effect corroborates the 387 

notions that buffalo “basically ignore lions” (Prins and Iason 1989:290) and that risk-induced 388 

behavioral modifications are weaker in large-bodied ungulates (Hopcraft et al. 2012).  Rather 389 

than aggregating, buffalo might shift habitat selection to avoid risky areas (Valeix et al. 2009a, 390 

2009b), a pattern that has also been recorded for giraffe (Giraffa camelopardalis; Creel et al. 391 

2014).  Recent work in Addo using long-term (i.e., 14 years) data found that, following lion 392 

reintroduction, small buffalo herds amalgamated into a large herd that provided protection for 393 

juvenile buffalo; however, this change required more than three years to take place (Tambling et 394 

al. 2012).  Hence, behavioral adaptations in ungulates following reintroduction might need 395 

several years to actualize for naïve prey (Berger 2001). Understanding how risk effects vary over 396 

time, especially in relation to naïve ungulate prey facing reintroduced carnivores, is an important 397 

topic for future research. 398 

Species-specific strategies for minimizing predation risk are poorly understood in multi-399 

carnivore systems (Thaker et al. 2011, Creel et al. 2014).  We noted distinct responses among six 400 

ungulate species.  The two largest ungulates, buffalo and eland, showed the least response to risk 401 

and had the highest model uncertainty (Table 1, Fig. 2, Appendix F).  These two species had the 402 

largest aggregations on average (Appendix C) and both can successfully defend against lion 403 

attacks (Caro 2005), thus their response to predation risk is perhaps more closely tied to a few 404 

very large herds capable of self-defense rather than smaller aggregations of individuals 405 
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throughout the study area (Tambling et al. 2012).  Moreover, the lack of risk effects on buffalo, 406 

eland, and zebra (Fig. 2a,b,f) support the conclusion of Sinclair et al. (2003) that the influence of 407 

top-down predation rapidly declines as prey body size increases beyond 150kg (zebra, the 408 

smallest of these three species, has an average body size of 175kg; Stuart and Stuart 2000).  The 409 

final models for red hartebeest, kudu and warthog (Table 1, Fig. 2c,d,e; Appendix F), further 410 

corroborate stronger influence of predation risk on small-bodied (<150kg) ungulates (Sinclair et 411 

al. 2003, Hopcraft et al. 2012).  However, whereas the associations between lion predation and 412 

aggregation in these three smaller-bodied species were significant (P ≤ 0.01, Appendix F), the 413 

magnitude was moderate (Fig. 3b,d,e).  For example, the greatest degree of association between 414 

spatial aggregation and lion kill occurrence among these three species was in red hartebeest, with 415 

aggregations increasing from ~3 to ~7 individuals on average across the full range of risk (e.g., 416 

the odds ratio of lion kill occurrence in the most dangerous locations was >10 times that of the 417 

safest places, Fig. 1, Fig. 3d).  Nominal effects of predation risk on ungulate group size have 418 

similarly been reported in both experimental (Hunter and Skinner 1998) and observational 419 

studies (Valeix et al. 2009b, for exception see Thaker et al. 2010).  However, more pronounced 420 

risk effects might be expected in systems with non-naïve prey or higher predator densities 421 

(Peacor and Werner 2001).  For instance, lion density in our study was 0.045 lions/km2, which is 422 

lower than systems such as Kruger National Park (0.07 lions/km2) or the Serengeti (0.14 423 

lions/km2; Hayward et al. 2007c).  Similarly, prey response to risk might be more pronounced at 424 

finer spatial scales (e.g., when a predator is in the immediate vicinity of prey).  Risk effects from 425 

wide-ranging carnivores vary over spatial scales (Hebblewhite and Merrill 2007), suggesting 426 

that, like many ecological processes, comparisons of risk effects are likely scale-dependent 427 

(Levin 1992).  Accordingly, our inferences apply at a relatively coarse spatiotemporal scale (i.e., 428 
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analogous to Johnson’s (1980) second or third order) and do not necessarily preclude stronger 429 

risk effects at finer-scales.   430 

Our findings highlight the complexity inherent in broad-scale, multi-carnivore, multi-431 

ungulate systems and suggest that understanding the strength and scope of carnivore risk effects, 432 

along with associated implications for ungulate demography and ecosystem function, remains a 433 

substantial challenge.  Moreover, evaluating the numeric prey response to reintroduced predators 434 

is also important, both for understanding patterns in ungulate aggregation (Hebblewhite and 435 

Pletscher 2002) and predicting the long-term impacts of top predators on trophic interactions 436 

(Peterson et al. 2014).  Hence, we view our findings of moderate, coarse-grain risk effects on 437 

naïve prey over a two-year period as reason to echo the call of Tambling et al. (2012) for robust, 438 

long-term monitoring of African carnivore reintroductions in order to place non-lethal behavioral 439 

responses within the context of the numeric and functional responses in multi-predator, multi-440 

prey systems.  Studies that disentangle the effects of ‘risky times’ (carnivores in close proximity) 441 

and ‘risky places’ (locations of probable carnivore occurrence or kills) at multiple spatial scales 442 

(sensu Johnson 1980) would be particularly insightful.  Lastly, we encourage researchers to build 443 

upon our study by incorporating explicit measures of forage into evaluations of carnivore risk 444 

effects on ungulates. 445 
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Table 1.  Models describing aggregation of ungulates exposed to multi-carnivore predation in the 624 

Main Camp section of Addo Elephant National Park, South Africa (2003-2005) after a two-step 625 

information theoretic model selection procedure.  Top four models shown for clarity. 626 

  Model covariates†  k ΔAICc wi 

Buffalo Open 6 0 0.13 

 
HyenaKill 6 1.23 0.07 

 
Open  + LionKill 7 1.43 0.06 

 
Null (Intercept only) 5 1.45 0.06 

Eland LionKill  + HyenaUD 7 0 0.07 

 
LionUD  + HyenaUD  7 0.35 0.06 

 
HyenaUD 6 0.42 0.05 

 
LionKill + LionUD + HyenaUD  8 0.48 0.05 

Kudu Open + Edge + LionKill + LionUD + HyenaKill + HyenaUD  11 0 0.21 

 
Open + LionKill + LionUD + HyenaKill + HyenaUD  10 0.37 0.17 

 
Open + Edge + LionKill + HyenaKill + HyenaUD  10 0.79 0.14 

 
Open + LionKill + LionUD + HyenaUD   9 1.78 0.09 

Red 

hartebeest 

Open + Edge + LionKill + HyenaUD   9 0 0.36 

Open + Edge + LionKill + HyenaKill + HyenaUD   10 1.28 0.19 

 
Open + LionKill + HyenaUD  8 1.7 0.15 

 
Open + Edge + LionKill + LionUD + HyenaUD  10 2.11 0.13 

Warthog Open + LionKill  7 0 0.28 

 
Open + LionKill + HyenaUD  8 1.84 0.11 
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Open + Edge + LionKill 8 1.93 0.11 

 
Open + LionKill + LionUD  8 1.94 0.11 

Zebra Open + Edge  7 0 0.2 

 
Open + Edge + LionKill  8 0.76 0.14 

 
Open + Edge + LionUD 8 1.49 0.1 

 
Open + Edge + HyenaKill 8 1.57 0.09 

Notes: k = number of model parameters; wi = AICc weight for the ith model.   627 

†Covariate definitions: Open = proportion open habitat, Edge = length of hard edge, LionKill = 628 

odds ratio of lion kill occurrence, LionUD = lion UD percentile, HyenaKill = odds ratio of hyena 629 

kill occurrence, HyenaUD = hyena UD percentile.630 
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FIGURE LEGENDS 631 

Figure 1.  Odds ratios of lion and hyena kill occurrence of six ungulate species (buffalo, eland, 632 

kudu, red hartebeest, warthog, and zebra) at 250m2 resolution in the Main Camp section of Addo 633 

Elephant National Park, South Africa (2003-2005).  The odds ratio scale of predation applies to 634 

both maps, but given the higher prevalence of lion predation, risky areas in the lion map are 635 

riskier than similarly colored areas in the hyena map.  Green and red/purple areas represent the 636 

lowest and highest odds ratios of kill occurrence, respectively.  Open habitat is identified by the 637 

overlaid dashed polygons; all other habitat was classified as closed. 638 

Figure 2.  Relative importance of covariates in final model sets describing ungulate aggregation 639 

in Addo Elephant National Park, South Africa (2003-2005).  The numbers above each bar are 640 

relative importance values of a given covariate rounded to two decimal places. 641 

 642 

Figure 3.  Statistically significant (α ≤ 0.01) spatially-explicit mixed effects regression trends 643 

derived from model-averaged coefficients from models describing ungulate aggregation in Addo 644 

Elephant National Park, South Africa (2003-2005).  Shaded areas represent 95% confidence 645 

intervals.  646 
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Figure 1. 647 

648 
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Figure 2. 649 

 650 
Covariate definitions: Open = proportion open habitat, Edge = length of hard edge, LionKill = 651 

odds ratio lion kill occurrence, LionUD = lion UD percentile, HyenaKill = odds ratio of hyena 652 

kill occurrence, HyenaUD = hyena UD percentile.    653 
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Figure 3.  654 

 655 


