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Highlights: 

1) We compare lumped and distributed hydrologic models at 41 catchments in northwest USA. 

2) Distributed model performs better in catchments with low moisture homogeneity. 

3) Spatial variability of precipitation phase is important in homogenous catchments. 
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Abstract 1 

Spatial variability of climate can negatively affect catchment streamflow predictions if it is not 2 

explicitly accounted for in hydrologic models.  In this paper, we examine the changes in 3 

streamflow predictability when a hydrologic model is run with spatially variable (distributed) 4 

meteorological inputs instead of spatially uniform (lumped) meteorological inputs.  Both lumped 5 

and distributed versions of the EXP-HYDRO model are implemented at 41 meso-scale (500 – 6 

5000 km
2
) catchments in the Pacific Northwest region of USA.  We use two complementary 7 

metrics of long-term spatial climate variability, moisture homogeneity index ( ) and 8 

temperature variability index ( ), to analyze the performance improvement with distributed 9 

model.  Results show that the distributed model performs better than the lumped model in 38 out 10 

of 41 catchments, and noticeably better (>10% improvement) in 13 catchments.  Furthermore, 11 

spatial variability of moisture distribution alone is insufficient to explain the observed patterns of 12 

model performance improvement.  For catchments with low moisture homogeneity ( ), 13 

 is a better predictor of model performance improvement than ; whereas for catchments 14 

with high moisture homogeneity ( ),  is a better predictor of performance 15 

improvement than .  Based on the results, we conclude that: (1) catchments that have low 16 

homogeneity of moisture distribution are the obvious candidates for using spatially distributed 17 

meteorological inputs, and (2) catchments with a homogeneous moisture distribution benefit 18 

from spatially distributed meteorological inputs if they also have high spatial variability of 19 

precipitation phase (rain vs. snow). 20 

 21 

Keywords: Hydrologic model, climate variability, streamflow, catchment 22 
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1 Introduction 23 

Meteorological inputs such as precipitation, air temperature, and potential 24 

evapotranspiration in spatially lumped hydrologic models consist of one-dimensional time series 25 

data.  These data are obtained either from a single meteorological station located within the 26 

catchment [Segond et al., 2007; Vaze et al., 2011], from spatial interpolation of multiple 27 

meteorological stations in the region [Arnaud et al., 2002; Chaubey et al., 1999; Tobin et al., 28 

2011], or from an areal mean of meteorological data grids that cover the catchment’s drainage 29 

area [Koren et al., 1999; Patil and Stieglitz, 2014].  An important assumption in these models is 30 

that the one-dimensional inputs are uniformly distributed over the entire catchment.  Numerous 31 

studies have shown that the quality of meteorological data used has a direct influence on the 32 

quality of modeled streamflow predictions [Andréassian et al., 2001; Bárdossy and Das, 2008; 33 

Faurès et al., 1995; McMillan et al., 2011; Obled et al., 1994; Vaze et al., 2011].  Andréassian et 34 

al. [2001] studied the impact of rain gage density on streamflow predictability at three 35 

catchments in France and found that the performance of rainfall-runoff models was directly 36 

proportional to the rain gage density used to generate the rainfall input.  Oudin et al. [2006a] 37 

studied the effect of random and systematic errors in climate input data on streamflow 38 

predictions at 12 US catchments and found that random errors in rainfall series significantly 39 

affect the model performance; however, systematic errors in potential evapotranspiration series 40 

had greater impact on model performance than random errors.  In Australia, Vaze et al. [2011] 41 

observed improved performance in hydrologic models when rainfall estimates were obtained 42 

from a gridded meteorological dataset compared to a single rain gage or a Thiessen weighted 43 

average of multiple rain gages. 44 
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Regardless of the data preparation technique, a spatially uniform representation of 45 

meteorological inputs has the potential to introduce significant uncertainty in catchments with 46 

high spatial variability of climate, and can negatively affect streamflow predictability [Bárdossy 47 

and Das, 2008; Chaubey et al., 1999; Moulin et al., 2009; Shen et al., 2012].  Spatial variability 48 

in rainfall can affect the estimation of hydrologic properties such as peak flow magnitude and 49 

timing, stream flow volume, and soil moisture condition [Arnaud et al., 2002; Beven and 50 

Hornberger, 1982; Krajewski et al., 1991; Nicótina et al., 2008; Tramblay et al., 2011].  On the 51 

other hand, spatial variability in air temperature can affect the estimation of properties such as 52 

snow cover extent, snow storage magnitude, and snowmelt timing [Jefferson, 2011; Leibowitz et 53 

al., 2012; Nolin and Daly, 2006; Sproles et al., 2013].  Nonetheless, the degree to which spatial 54 

variability of climate affects catchment streamflow predictions is not fully understood. 55 

Hydrologic models that use spatially distributed meteorological data (henceforth referred 56 

to as distributed models) are better equipped than those that use spatially uniform meteorological 57 

data (henceforth referred to as lumped models) to handle the spatial variability of climate.  58 

However, studies that have compared the lumped and distributed models provide a mixed picture 59 

on the perceived advantage of distributed models.  For instance, model comparisons using 60 

theoretical approaches (e.g., virtual experiments) have typically been more favorable towards 61 

distributed models [Andréassian et al., 2004; Krajewski et al., 1991; Wilson et al., 1979; Zhao et 62 

al., 2013].  Andréassian et al. [2004] introduced the concept of chimera watersheds in which 63 

multiple combinations of the data from real watersheds are used to create a large number of 64 

virtual ‘chimera’ watersheds so that more heterogeneity can be obtained than is present in the 65 

existing data.  Using these chimera watersheds, Andréassian et al. [2004] showed that distributed 66 

models provide much better simulation performance than lumped models.  Zhao et al. [2013] 67 
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performed virtual experiments on 60 catchments in southeast Australia by systematically varying 68 

the spatial variability of rainfall in each catchment (while still preserving the total rainfall 69 

volume).  The authors concluded that “for a given rainfall total, ignoring spatial rainfall 70 

variability will result in underestimation of the total streamflow volume and overestimation of 71 

evapotranspiration”.  In contrast, studies that have used real catchment data show that in most 72 

cases, only marginal improvements in streamflow predictions are obtained with distributed 73 

models compared to lumped models [Boyle et al., 2001; Das et al., 2008; Refsgaard and 74 

Knudsen, 1996; Vaze et al., 2011].  Reed et al. [2004] summarized multiple results from the 75 

Distributed Model Intercomparison (DMIP) initiative and concluded that in most of the DMIP 76 

catchments, lumped models performed equally well or even slightly better than the distributed 77 

models.  Similar results were shown by Khakbaz et al. [2012] in the newer DMIP 2 study.  Thus, 78 

in spite of numerous studies comparing lumped and distributed models, we still cannot fully 79 

differentiate the types of catchments that will truly benefit from the use of distributed models in 80 

order to achieve improved streamflow predictability. 81 

In this paper, our goal is to better understand the climatic conditions of catchments for 82 

which a distributed model does (or does not) provide better streamflow predictions than a 83 

lumped model.  Both lumped and distributed versions of the Exponential Bucket Hydrologic 84 

Model (EXP-HYDRO) [Patil and Stieglitz, 2014] are applied at 41 meso-scale catchments (500 85 

– 5000 km
2
) in the Pacific Northwest region of USA.  We begin with an a priori expectation 86 

that, in the absence of any additional information, the distributed model will have the same 87 

streamflow prediction capability as the lumped model at all catchments.  For each catchment, we 88 

then determine whether any improvement occurs with the use of the distributed model and 89 

analyze this performance improvement within the context of long-term spatial climate variability 90 
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in the catchment.  We characterize the spatial climate variability in all catchments by using two 91 

different metrics, viz., moisture homogeneity index and temperature variability index. 92 

 93 

2 Study Area and Data 94 

Our study area is in the Pacific Northwest (PNW) region of USA and covers the states of 95 

Oregon, Washington, and Idaho (Figure 1).  Within these three states, we select 41 catchments 96 

that satisfy the following two criteria: (1) they belong to either the HCDN [Slack et al., 1993] or 97 

GAGES [Falcone et al., 2010] database of the U.S. Geological Survey (USGS), and (2) their 98 

drainage areas are within the 500 to 5000 km
2
 range.  The selection from HCDN and GAGES 99 

databases is done to ensure that the hydrologic regimes of the catchments are minimally 100 

impacted by anthropogenic effects.  The specified range limit of drainage areas is to ensure that 101 

the catchments are large enough to detect spatial climate variability within them, but small 102 

enough to ignore the delays in streamflow response due to channel network routing.  The 103 

drainage area of the catchments varies from 518 km
2
 to 4956 km

2
, with the median drainage area 104 

of 865 km
2
.  The mean annual precipitation in the catchments varies from 540 mm to 3615 mm, 105 

with the median value of 1251 mm.  Of the 41 chosen catchments, 20 are located in Oregon, 7 106 

are located in Washington, and 14 are located in Idaho (see Figure 1). 107 

Climate of the PNW region is highly influenced by large scale atmospheric circulation 108 

patterns caused by the presence of Pacific Ocean to the west and the subsequent interaction of 109 

these patterns with the Cascade and Rocky Mountain ranges [Salathé et al., 2008].  This 110 

interaction creates a strong climate gradient in the west-to-east direction.  The western parts of 111 

the PNW, between the Pacific Ocean and the Cascade Mountains, experience high amounts of 112 

rainfall and mild temperatures due to the maritime climate influence [Wigington et al., 2013].  113 
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The eastern parts, between the Cascade and Rocky Mountains, are much drier because of the 114 

rain-shadow effect of the Cascade Mountains and experience more extreme intra-annual 115 

temperature differences.  Roughly two-thirds of the precipitation in the PNW occurs during the 116 

colder October to March period, while most of the region typically experiences dry summers.  117 

Annual precipitation amounts and temperature are further influenced by the long term climate 118 

trends caused by the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation 119 

(PDO) [Brown and Kipfmueller, 2011; Cayan, 1996].  Due to high elevations of the Cascades 120 

and the Rockies, a significant amount of precipitation (much of it snow) is captured in the 121 

region’s mountains.  As a result, the hydrology of major rivers in this region (e.g., Columbia, 122 

Snake, and Willamette) is dominated by snow accumulation in the winter season and snowmelt 123 

in the spring season [Hamlet and Lettenmaier, 1999; Regonda et al., 2005; Safeeq et al., 2013]. 124 

We use the daily streamflow data from USGS stream gages that are located at the outlet 125 

of all 41 catchments.  The time-span of the streamflow and meteorological input data is 20 years, 126 

ranging from water year 1971 to 1990 (i.e., 1
st
 October, 1970 to 30

th
 September 1990).  Daily 127 

data of the meteorological inputs (precipitation and air temperature) is obtained from the gridded 128 

observed meteorological dataset developed by Maurer et al. [2002].  This dataset has the spatial 129 

resolution of 0.125 degrees (about 100 km
2
 grid) and covers the entire continental United States.  130 

Given that our smallest study catchment has a drainage area of 518 km
2
, the ratio of the 131 

meteorological grid resolution to basin size is less than 0.2 for all catchments.  The methods used 132 

to obtain the lumped and distributed versions of precipitation and air temperature inputs from the 133 

gridded dataset for each catchment are described in Section 3.2.  Daily potential 134 

evapotranspiration inputs (both lumped and distributed version) are calculated directly from the 135 

daily air temperature data using Hamon’s formula [Hamon, 1963].  For calculation of the two 136 



9 

 

climate variability metrics at each catchment (see Section 3.3 for further details), we use the 30-137 

year (1971-2000) average values of precipitation, air temperature, and potential 138 

evapotranspiration that are derived from the long-term data of Climate Source, Inc. 139 

(http://www.climatesource.com/us/fact_sheets/fact_tmean_us_71b.html).  This commercially 140 

available data has a resolution of 400 m and covers the entire continental United States (see 141 

Wigington et al. [2013] for details). 142 

 143 

3 Methods 144 

3.1 Hydrologic model 145 

The EXP-HYDRO model was originally developed by Patil and Stieglitz [2014] as a 146 

spatially lumped hydrologic model that operates at a daily time-step.  In this paper, we have used 147 

the original lumped version of the model as well as a modified version that explicitly accounts 148 

for spatially distributed meteorological inputs (see section 3.2 for details).  Below, we provide a 149 

brief description of the model. 150 

The EXP-HYDRO model conceptualizes a catchment as a bucket store that receives 151 

water inputs in the form of liquid precipitation and snowmelt and has water outputs in the form 152 

of evapotranspiration, subsurface runoff, and capacity-excess surface runoff (Figure 2).  Daily 153 

precipitation is first classified as either rainfall or snowfall, depending on the day’s air 154 

temperature.  Snowfall accumulates separately into the snow accumulation bucket, whereas the 155 

rainfall is input directly into the catchment bucket.  Snowmelt from the snow accumulation 156 

bucket is modeled using a thermal degree-day model, and the melt runoff generated is used as an 157 

input to the catchment bucket.  The amount of evapotranspiration in the catchment is calculated 158 

as a fraction of potential evapotranspiration and depends on the ratio of actual water stored in the 159 
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catchment bucket on the given day to the catchment bucket’s storage capacity.  Subsurface 160 

runoff depends on the amount of water stored in the catchment bucket and is calculated using a 161 

TOPMODEL [Beven and Kirkby, 1979] type exponential equation.  Capacity-excess surface 162 

runoff occurs once the catchment bucket is filled to its capacity and there is still some excess 163 

amount of water from the rainfall and snowmelt inputs.  Catchment streamflow is calculated as 164 

the sum of subsurface runoff and capacity-excess surface runoff.  Detailed description of the 165 

mathematical formulas of this model can be found in Patil and Stieglitz [2014] and Patil et al. [in 166 

press]. 167 

There are six free calibration parameters in the EXP-HYDRO model: f, Smax, Qmax, Df, 168 

Tmax, and Tmin.  The parameter f (unit: 1/mm) controls the rate of decline in subsurface runoff 169 

from the catchment bucket as its storage level fluctuates.  Smax (unit: mm) is the maximum 170 

storage capacity of the catchment bucket.  Qmax (unit: mm/day) is the maximum subsurface 171 

runoff that occurs when the catchment bucket is full.  Df (unit: mm/day/°C) is the thermal 172 

degree-day factor that controls the rate of snowmelt from the snow bucket.  Tmax (unit: °C) is the 173 

air temperature above which snow starts melting, whereas Tmin (unit: °C) is the air temperature 174 

below which precipitation falls as snow.  We calibrate these parameters for each catchment with 175 

50,000 Monte Carlo simulations [Vaché and McDonnell, 2006].  Parameter ranges used for the 176 

random sampling of all six parameters are the same as those in Patil and Stieglitz [2014].  177 

Modeled streamflow values from the first year are used for model spin-up.  From the remaining 178 

19 years of record, streamflow values of the first 9 years (water year 1972 to 1980) are used for 179 

model calibration and those of the next 10 years (water year 1981 to 1990) are used for model 180 

validation.  Nash-Sutcliffe efficiency (NS) of square root transformed values of daily streamflow 181 

(see Oudin et al. [2006b]) is used as the objective function for calibration: 182 
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    (1) 183 

where,  and  are the predicted and observed streamflow values (L T
-1

) on the i
th

 day 184 

respectively,  is the mean of all observed streamflow values (L T
-1

), and n is the total 185 

number of days in the time series.  We also use the water balance error (WBE) metric, in 186 

addition to NS, for the evaluation of model performance: 187 

    (2) 188 

Following Das et al. [2008], the measure of model performance at a given catchment is obtained 189 

as an average of NS (and WBE) values from the calibration and validation model runs.  The 190 

same calibration procedure is used for both lumped and distributed versions of the model. 191 

3.2 Spatially lumped and spatially distributed model configuration 192 

Each catchment is considered as a single areal unit for the lumped model and as a 193 

collection of multiple smaller areal units for the distributed model.  Following Wigington et al. 194 

[2013], the smaller areal units within each catchment (henceforth referred to as landscape units) 195 

are delineated as first order sub-watersheds and incremental watersheds (Figure 3).  For each 196 

catchment, we first extract the stream network from the USGS National Elevation Dataset’s 30 197 

m DEM using a 25 km
2
 minimum drainage area threshold for channel initiation.  Landscape 198 

units are then delineated such that each unit consists of a single stream channel and a 199 

contributing local hillslope.  As such, the landscape units developed here are analogous to the 200 
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Representative Elementary Watersheds (REWs) of Reggiani et al. [1999] or the assessment units 201 

of Wigington et al. [2013]. 202 

For the lumped model, the daily precipitation and air temperature time series are obtained 203 

by calculating an areal average of the values from meteorological grids that are either fully or 204 

partially located within the catchment’s drainage area.  For the distributed model, the above 205 

procedure is repeated at each individual landscape unit to obtain the spatially variable 206 

precipitation and air temperature data in each catchment.  Thus, if a particular catchment has 20 207 

landscape units, then 20 distinct sets of the meteorological input data are created.  To obtain 208 

simulated stream flows, the lumped model is run in its original configuration with one-209 

dimensional meteorological input data [Patil and Stieglitz, 2014].  For the distributed 210 

configuration, the EXP-HYDRO model is first run independently at each landscape unit (with 211 

local meteorological input data).  The streamflow output from all landscape units is then 212 

aggregated to obtain catchment streamflow using the following formula: 213 

      (3) 214 

where,  is the streamflow at catchment outlet (L T
-1

), N is the total number of landscape 215 

units within the catchment, and  and  are the streamflow (L T
-1

) and drainage area (L
2
) 216 

respectively of landscape unit i (i = 1, 2, …, N).  It is important to note the following two 217 

assumptions that are made in the distributed model: (1) channel network routing is ignored, i.e., 218 

the runoff generated from a landscape unit is assumed to reach the catchment outlet on the same 219 

day, and (2) all six calibration parameters of the EXP-HYDRO model are assumed to be same in 220 

every landscape unit within the catchment.  Thus, the distributed EXP-HYDRO model presented 221 
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here is essentially the same as its lumped counterpart; the only difference being the spatially 222 

distributed meteorological inputs.  Moreover, since the lumped and distributed models are 223 

calibrated separately at each catchment, the optimal parameter values are likely to be different 224 

for either configuration. 225 

3.3 Metrics of spatial climate variability 226 

We use two different metrics to quantify the spatial variability of climate within a 227 

catchment: (1) moisture homogeneity index, and (2) temperature variability index.  Below, we 228 

describe how each of these indices is calculated for our study catchments. 229 

For the moisture homogeneity index ( ), we first classify the climate of each landscape 230 

unit based on the Feddema climate classification [Feddema, 2005].  This classification system 231 

uses a modified version of the Thornthwaite moisture index [Thornthwaite, 1948] as follows: 232 

    (4) 233 

where,  is the Feddema moisture index whose values vary between -1 and 1, and  and  234 

are the mean annual precipitation and potential evapotranspiration respectively (derived from the 235 

long-term data of Climate Source, Inc.; see Section 2).  Following Wigington et al. [2013], we 236 

calculate the  values of each landscape unit and classify the units into one of the following six 237 

moisture classes: “V” (very wet, ), “W” (wet, ), “M” (moist, 238 

), “D” (dry, ), “S” (semi-arid, ), and “A” (arid, 239 

).  The moisture homogeneity index  is then calculated as the percent areal 240 

coverage of the moisture class that has the maximum amount of area within the catchment.  241 

Thus, if a given catchment has completely homogeneous climate, all landscape units in that 242 
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catchment will belong to the same moisture class and the catchment will have an  value of 243 

100%.  Any value of  that is less than 100% is indicative of spatial variability of moisture 244 

within the catchment. 245 

For the temperature variability index ( ), we first obtain the mean annual temperature 246 

 for each landscape unit (derived from the long-term data of Climate Source, Inc.; see Section 247 

2).   (unit: °C) is then calculated for each catchment with the following formula: 248 

   (5) 249 

where, N is the total number of landscape units within the catchment. 250 

 251 

4 Results 252 

We first analyze the differences in simulation performance between the lumped and 253 

distributed versions of the EXP-HYDRO model at all 41 study catchments.  Figure 4a shows a 254 

1:1 comparison of the NS values obtained with the lumped and distributed models.  In most 255 

catchments (38 out of 41) the distributed model has improved NS values than the lumped model, 256 

although for 25 catchments the improvement is modest (< 10%).  NS values for the lumped 257 

model vary from 0.29 to 0.94, with a median value of 0.70.  On the other hand, NS values for the 258 

distributed model vary from 0.32 to 0.94, with a median value of 0.79.  The percentage 259 

improvement in NS values with the distributed model ranges from -0.12% to 49.67%, with a 260 

median improvement of 6.63%.  Out of the 41 catchments in total, 13 catchments show NS 261 

improvement of greater than 10% with the distributed model.  There are only three catchments 262 

for which the distributed model has lower NS values than the lumped model, but with very small 263 

amounts of deterioration (-0.12%, -0.11%, and -0.03%).  Figure 4b shows a 1:1 comparison of 264 

the WBE values obtained with the lumped and distributed models.  For the majority of 265 

MI

MI

TVI

T

TVI

),,,min(),,,max( 2121 NNTV TTTTTTI  



15 

 

catchments (with the exception of two outliers), the WBE values are located close to, and 266 

scattered on both sides of, the 1:1 line.  The two outlier catchments in Figure 4b are located in 267 

the eastern drier region of Oregon.  Both lumped and distributed models perform poorly at these 268 

catchments (NS < 0.4).  Therefore, we suspect that the big deviation of WBE values might be 269 

arising from poor parameter identification at these catchments, rather than any physical reason.  270 

The overall results from Figure 4 suggest that, unlike NS, there appears to be no systematic 271 

difference between the lumped and distributed model in terms of the WBE metric. 272 

Next, we examine the improvement in model performance achieved by the distributed 273 

model within the context of long-term spatial climate variability in a catchment.  For the purpose 274 

of this analysis, we define model performance improvement as the % improvement in NS 275 

obtained with the distributed model at each catchment.  The two metrics of spatial climate 276 

variability,  and , show considerable range among our study catchments.   varies from 277 

38.1% to 100%, with a median value of 78.7%; whereas  varies from 0.7 °C to 8.1 °C, with a 278 

median value of 3.5 °C.  Figures 5a and 5b show the relationship of % NS improvement with  279 

and , respectively.  Both these relationships are also fit with a non-linear quadratic model to 280 

determine how much of the variance in % NS improvement can be explained by each metric.  281 

High performance improvement is observed for catchments with low  values (i.e., low 282 

homogeneity of moisture distribution), and the amount of improvement declines with increasing 283 

 value (Figure 5a).  However, this declining pattern is observed only among catchments with 284 

relatively low moisture homogeneity ( ).  The relationship between % NS improvement 285 

and  becomes scattered for the more homogeneous catchments ( ).  The highest 286 

variability of % NS improvement is observed in completely homogeneous catchments (287 
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).  For the metric , greater improvement in model performance is observed for 288 

higher  values (Figure 5b).  Nonetheless, the relationship shows a high degree of scatter, 289 

especially for higher values of .  R
2
 value of the non-linear quadratic fit (red dashed line in 290 

Figures 5a and 5b) is 0.25 for the relationship of % NS improvement with  and 0.36 for the 291 

relationship of % NS improvement with . 292 

Since Figure 5a shows a noticeably different behavior for catchments with  293 

than for those with , we segregate them into two distinct groups, henceforth referred to 294 

as Group 1 ( , n = 21) and Group 2  ( , n = 20) catchments.  Figure 6 shows 295 

the location of both Group 1 and Group 2 catchments.  Group 1 catchments are mostly located in 296 

the central drier parts of the PNW; although there are a few along the Oregon Coast range and 297 

the Rocky Mountains.  Most of the Group 2 catchments are located in the wetter parts of the 298 

PNW, along the western sides of the Cascade and Rocky Mountain ranges; a few are located 299 

along the coastal mountains near the Pacific coast.  Mean annual precipitation varies from 540 300 

mm to 2340 mm (median = 935 mm) in Group 1 catchments, and from 812 mm to 3615 mm 301 

(median = 1690 mm) in Group 2 catchments.  We further examine the relationships of % NS 302 

improvement with  and  separately for each group.  Figures 7a and 7b show the 303 

relationship of % NS improvement with  and  respectively for the Group 1 catchments.  A 304 

distinct and inversely proportional relationship is observed between % NS improvement and  305 

(R
2
 = 0.46).  On the other hand, a directly proportional but weaker (R

2
 = 0.21) relationship is 306 

observed between % NS improvement and .  In sharp contrast, for Group 2 catchments 307 

(Figures 7c and 7d), we find that virtually no relationship exists between % NS improvement and 308 
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 (R
2
 = 0.04), whereas a strong non-linearly increasing relationship (R

2
 = 0.70) exists between 309 

% NS improvement and . 310 

 311 

5 Discussion 312 

Results show that the distributed version of EXP-HYDRO model performs better than its 313 

lumped counterpart in 38 out of 41 catchments, and noticeably better (>10% NS improvement) 314 

in 13 out of 41 catchments.  This finding clearly demonstrates the importance of incorporating 315 

spatially distributed meteorological inputs into hydrologic models, at least for certain types of 316 

catchments.  In a study similar to ours, Vaze et al. [2011] compared the lumped and distributed 317 

versions of four hydrologic models at 240 catchments in southeast Australia.  Contrary to our 318 

results, they found that only marginal improvement occurred with distributed models, and most 319 

of it in larger catchments (>1000 km
2
).  However, Vaze et al. [2011] did not simulate snow 320 

processes in their hydrologic models, and they also did not quantify the spatial climate variability 321 

in their study catchments.  Figure 8 shows the relationship of drainage area and % NS 322 

improvement for our study catchments.  This relationship is highly scattered and exhibits no 323 

particular trend, which suggests that drainage area does not necessarily inform us about spatial 324 

climate variability within a catchment. 325 

Within the context of the PNW region (Figure 6), the two metrics of spatial climate 326 

variability seem to provide complementary information.  Specifically, the moisture homogeneity 327 

index ( ) represents the spatial variability of wetness, i.e., the competition of precipitation 328 

input and evaporative demand, in a catchment.  On the other hand, the temperature variability 329 

index ( ) appears to represent the spatial variability of precipitation phase (rain vs. snow) in a 330 

catchment.  Figure 9 shows the relationship between  and the lowest observed mean annual 331 
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temperature (amongst all landscape units) within a catchment.  This relationship has a significant 332 

declining trend (R
2
 = 0.59, p < 0.01), and shows that catchments with high  values tend to 333 

have very low (near or below freezing) values of mean annual temperature in their coldest 334 

landscape unit.  This suggests that catchments with high  values (i.e., high temperature 335 

variability) are also likely to have high spatial variability of precipitation phase.  Interestingly, 336 

results show that neither  nor  alone is sufficient to explain whether a particular catchment 337 

will benefit from the use of a distributed model (Figures 5a and 5b).  However, the combined use 338 

of both these metrics provides a much better understanding of the types of catchments for which 339 

the distributed model provides better streamflow predictions.  A logical expectation would be 340 

that catchments with low moisture homogeneity (low ) will have the largest % NS 341 

improvement, and this improvement will reduce as we move towards catchments with more 342 

homogeneous moisture distribution (high ).  We do observe this trend, but only among the 343 

Group 1 catchments (Figure 7a).  Moreover, compared to ,  has a weaker relationship 344 

with % NS improvement for Group 1 catchments (Figure 7b).  This suggests that for catchments 345 

with relatively low moisture homogeneity, the spatial variability of wetness is a better indicator 346 

of performance improvement with a distributed model than the spatial variability of precipitation 347 

phase.  A completely opposite behavior is observed for Group 2 catchments ( ).  For 348 

these catchments,  has virtually no explanatory power of % NS improvement (Figure 7c), 349 

whereas  has a substantially higher explanatory power (Figure 7d).  This suggests that for 350 

catchments with high moisture homogeneity, the spatial variability of precipitation phase is a 351 

better indicator of performance improvement with a distributed model than the spatial variability 352 

of wetness. 353 
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Figure 10 shows the thirteen catchments for which more than 10% NS improvement is 354 

obtained with the distributed model.  Of these, the seven Group 2 catchments with high wetness 355 

homogeneity are located in wetter regions of the PNW (Olympic Peninsula, and the western 356 

flanks of the Cascade and Rocky Mountains) where all parts of the catchment receive high 357 

amounts of precipitation.  However, the steep elevation gradients in these regions create 358 

substantial spatial variability in air temperature [Jefferson, 2011; Leibowitz et al., 2012; Nolin 359 

and Daly, 2006].  This is reflected in the high  values observed at most of these catchments 360 

(Figure 7d).  While spatially uniform meteorological inputs might provide good enough estimate 361 

of precipitation amount in some cases, they are likely to miss the spatial variability of 362 

precipitation phase.  Use of lumped models in such catchments can lead to erroneous estimation 363 

of the amount of snow accumulation and the timing of snowmelt.  Thus, a spatially distributed 364 

representation of meteorological inputs appears to be important in catchments where 365 

heterogeneous precipitation phase is a significant factor (even if the same amount of 366 

precipitation occurs in the rain and snow dominated areas).  Capturing the spatial variability of 367 

precipitation phase is even more critical in the wet mountainous areas of the PNW because most 368 

climate change projections forecast a high vulnerability to the amount and the extent of snow 369 

accumulation in those parts [Nolin and Daly, 2006; Regonda et al., 2005; Salathé et al., 2008; 370 

Sproles et al., 2013].  It is worth mentioning here that several hydrologic modeling studies have 371 

also accounted for spatially variable precipitation phase by discretizing catchments in the vertical 372 

dimension based on elevation bands [Abdulla and Lettenmaier, 1997; Hartman et al., 1999; 373 

Parajka and Blöschl, 2008].  Although beyond the scope of our study, it would be interesting to 374 

compare how well the spatial variability of climate is represented when a catchment is 375 

discretized in the vertical dimension (elevation bands) instead of horizontal dimension (sub-376 
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catchments).  The six Group 1 catchments in Figure 10 are located in the drier central parts of the 377 

PNW.  Catchments in this region typically contain rivers that are fed by a smaller headwater area 378 

that receives most of the precipitation and flow downstream into a larger semi-arid landscape 379 

[Wigington et al., 2013].  Distributed models have an obvious advantage in these catchments 380 

because a lumped representation of the meteorological inputs is likely to misestimate both 381 

precipitation phase and magnitude. 382 

A number of assumptions and simplifications were made in our methods that could 383 

potentially influence the findings of this study.  For the distributed EXP-HYDRO model, we 384 

used the same parameter values in all landscape units.  This simplification essentially ignores the 385 

spatial variability of catchment properties such as land use, geology, and soil type, which can 386 

play an important role in the filtering of spatially variable rainfall input.  Numerous studies with 387 

event scale hydrologic models have shown that a catchment’s ability to dampen the rainfall 388 

signal is an important indicator of whether a distributed model will perform better during a 389 

spatially variable rainfall event [Arnaud et al., 2002; Obled et al., 1994; Segond et al., 2007; 390 

Smith et al., 2004].  It is not clear though whether (and how) the heterogeneous catchment 391 

properties will dampen the effects of spatially variable meteorological inputs for continuous 392 

streamflow prediction.  We also ignored channel network routing for the distributed EXP-393 

HYDRO model.  The assumption here was that the runoff generated from all landscape units 394 

reaches the catchment outlet on the same day.  While we did choose catchments within a limited 395 

range of drainage area (500 km
2
 to 5000 km

2
) to mitigate the effects of this assumption, it is 396 

possible that some catchments might benefit more than others by the use of distributed model 397 

with explicit channel network routing.  We used a gridded meteorological dataset [Maurer et al., 398 

2002] to generate both the lumped and distributed inputs for all catchments.  The spatial 399 
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resolution and quality of this dataset has a huge influence on how well we can characterize the 400 

spatial variability of meteorological inputs in our catchments.  While the Maurer et al. [2002] 401 

data has been used extensively in many hydrologic studies, it must be acknowledged that 402 

precipitation estimates are usually poorer at high elevations and in regions with fewer 403 

meteorological stations.  The choice of using two specific climate variability metrics (  and 404 

) also influenced the way in which our results were interpreted.  For , we were in many 405 

ways building on the hydrologic classification work of Wigington et al. [2013] and chose the 406 

areal dominance concept (of climate class) as a measure of homogeneity.  Alternate metrics such 407 

as Shannon's diversity index [Shannon, 1948] or the standard deviation of  could have served 408 

a similar function, but we chose  due to the high physical realism of its numerical values.  For 409 

, our goal was to highlight the maximum extent of the spatial temperature contrast within 410 

each catchment; especially because high elevation gradients in some parts the PNW create 411 

distinct elevation divides for snow vs. rain type precipitation in the winter months.  Alternate 412 

metrics such as the standard deviation of air temperature could have also provided a function 413 

similar to .  We only used one type of model structure (EXP-HYDRO) to test the effects of 414 

lumped and distributed meteorological inputs.  While the use of a different model might provide 415 

different quality of simulation performance, we think that similar findings (as of our study) are 416 

likely to be obtained by using other commonly used hydrologic models.  Moreover, studies with 417 

multi-model assessments over a large number of catchments have shown that the geographic 418 

patterns of hydrologic predictability tend to be more or less similar for models that include the 419 

same hydrological processes [Oudin et al., 2008; Vaze et al., 2011]. 420 

 421 
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6 Conclusions 422 

In this paper, we compared the streamflow simulation performance of lumped and 423 

distributed versions of the EXP-HYDRO model at 41 catchments in the Pacific Northwest region 424 

of USA.  Results showed that the distributed model performs better than the lumped model in 425 

most (38 out of 41) catchments.  Performance improvement using the distributed model (in 426 

comparison to the lumped model) was further analyzed with respect to two metrics of spatial 427 

climate variability in a catchment, viz., moisture homogeneity index ( ) and temperature 428 

variability index ( ).  We found that for catchments with low moisture homogeneity (429 

),  was a better predictor of model performance improvement than .  Such 430 

catchments are more likely to be located in dry regions with small headwater areas that supply 431 

most of the water.  A completely opposite trend was observed among catchments with high 432 

moisture homogeneity ( ), most of which were located in the wetter areas of the PNW.  433 

Based on the results presented this study, we conclude that the use of spatially distributed 434 

meteorological inputs in hydrologic models has the potential to substantially improve streamflow 435 

predictions, at least for certain types of catchments.  Catchments with highly variable moisture 436 

distribution are the obvious candidates for using spatially distributed meteorological inputs in a 437 

hydrologic model.  On the other hand, homogeneously wet catchments can greatly benefit from 438 

spatially distributed meteorological inputs if there is high spatial variability of precipitation 439 

phase.  Our assumption of spatially uniform model parameter values within a catchment ensured 440 

that any improvement obtained with the distributed model was solely based on the spatially 441 

distributed representation of meteorological inputs.  However, this assumption will have to be 442 

relaxed for future investigations of the effects of spatially variable land use, soil types, and/or 443 

geology on catchment streamflow predictions. 444 
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Figures: 628 

 629 

Figure 1: Location of the 41 study catchments.  Black triangles are the catchment outlets, 630 

whereas gray regions are the drainage areas. 631 

  632 
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 633 

Figure 2: Schematic representation of the EXP-HYDRO model. 634 
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 636 

Figure 3: Representation of the individual landscape units within a catchment. 637 
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 639 

Figure 4: A one-on-one comparison between lumped and distributed EXP-HYDRO model with 640 

a) Nash-Sutcliffe efficiency (NS), and b) Water Balance Error (WBE). 641 
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 643 

Figure 5: Relationship of model performance improvement with a) , and b)  .  Red 644 

dashed line is the regression fit using quadratic equation. 645 

  646 

MI TVI



37 

 

 647 

Figure 6: Location of the Group 1 ( ) and Group 2 ( ) catchments. 648 
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 650 

Figure 7: Relationship of model performance improvement with  and , shown separately 651 

for the Group 1 and Group 2 catchments.  Red dashed line is the regression fit using quadratic 652 

equation. 653 
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 655 

Figure 8: Relationship of model performance improvement with catchment drainage area. 656 
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 658 

Figure 9: Relationship between  and the lowest mean annual temperature within the 659 

catchment.  Red dashed line is the regression fit using quadratic equation. 660 
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 662 

Figure 10: Location of the catchments where distributed model shows more than 10% NS 663 

improvement.  Group 1 and Group 2 catchments are shown separately. 664 


