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Abstract 21 

The intensity of forest degradation is linked to landowners´ decisions on 22 

management of their shifting cultivation systems. Understanding the processes involved 23 

in this land use type is therefore essential for the design of sustainable forest 24 

management practices. However, knowledge of the processes and patterns of forest 25 

transition that result from this practice is extremely limited. In this study we used 26 

spatially-explicit binary logistic regression to study the proximate factors that relate to 27 

forest degradation by combining biophysical and socio-economic variables. Our study 28 

region is within the Ayuquila Basin, in Western Mexico, a typical fragmented tropical 29 

dry forest landscape dominated by shifting cultivation. Through a survey and semi-30 

structured interviews with community leaders we obtained data on the forest resources 31 

and on the uses that people make of them. Detailed forest cover maps for 2004 and 2010 32 

were produced from high-resolution SPOT 5 data, and ancillary geographical data were 33 

used to extract spatial variables. The degree of social marginalization of each 34 

community and the ratio of forest area to population size were the main factors 35 

positively correlated with the probability of the occurrence of forest degradation. 36 

Livestock management and use of fence posts by the communities were also positively 37 

associated with forest degradation. Among biophysical factors, forest degradation is 38 

more likely to occur in flatter areas. We conclude that local drivers of forest degradation 39 

include both socioeconomic and physical variables and that both of these factors need to 40 

be addressed at the landscape level while developing measures for activities related to 41 

REDD+.  42 

 43 
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1. Introduction  46 

Determining the proximate and underlying causes of deforestation and forest 47 

degradation of tropical forests is a key prerequisite for the development of activities for 48 

REDD+ (Reducing Emissions from Deforestation and Forest Degradation) (Salvini et 49 

al., 2014). Developing countries participating in REDD+ are encouraged to report on 50 

human-induced activities that are linked to greenhouse gas (GHG) emissions from 51 

forest land (UNFCCC, 2010; Hosonuma et al., 2012). The identification of these 52 

activities and locating them in a spatially explicit manner may be of utmost importance 53 

for effective REDD+ interventions (Kissinger et al., 2012). While there is considerable 54 

understanding of the processes causing deforestation (Geist & Lambin, 2002), 55 

knowledge of drivers that cause changes in forest carbon stocks in forests that remain 56 

forests (i.e. degradation) is quite limited, especially for tropical dry forests (TDFs) 57 

(Murdiyarso et al., 2007).  58 

Tropical dry forests have not received as much attention as humid forests in the 59 

context of REDD+, mainly because they have lower carbon stocks and increments per 60 

area (Blackie et al., 2014). Nonetheless, TDFs cover extensive areas (approx. 42% of 61 

the tropics and subtropics worldwide (Murphy & Lugo, 1986; Miles et al., 2006)), and 62 

may potentially play an important role in climate change mitigation. They are notably 63 

important ecosystem in the Neotropics, where they cover an area of approx. 520,000 64 

km
2
 (Portillo-Quintero & Sánchez-Azofeifa, 2010), that corresponds to more than half 65 

of the global total extent of TDFs (Miles et al., 2006). Moreover, TDFs provide a 66 

variety of ecosystem services (Maass & Balvanera, 2005) and although holding lower 67 

values of species richness than rainforests, they have particularly high levels of 68 

endemism and beta biodiversity (Gentry, 1995).  69 



Despite their importance in providing ecosystem services, TDFs are among the most 70 

threatened ecosystems in the Neotropics (Miles et al., 2006). They have suffered high 71 

conversion rates and the remaining areas are heavily degraded and fragmented (Trejo & 72 

Dirzo, 2000; Sánchez-Azofeifa et al., 2005). This is because TDFs often support high 73 

human population densities, with many people depending on forest land and forest 74 

resources (hereafter forest resources) for their livelihoods (Sunderlin et al., 2008); 75 

particularly through shifting cultivation (Saikia, 2014), but also to provide fuelwood, 76 

charcoal, house-building materials, fence posts and non-timber forest products (NTFP) 77 

(Maass & Balvanera, 2005). In addition, commercial logging and cattle grazing 78 

frequently affect the structure and composition of TDFs (Sanchez-Azofeifa & Portillo-79 

Quintero, 2011). 80 

This paper presents an analytical framework to identify drivers of forest degradation 81 

in TDFs and other variables that are correlated with it. Satellite imagery that provides 82 

data at a scale fine enough to detect forest degradation due to shifting cultivation is used 83 

together with on-the-ground data on the local use of forest resources. It is important to 84 

stress that, in our analysis, shifting cultivation (here meaning slash-and-burn agriculture, 85 

subsistence farming and swidden cultivation, following the terminology of Mertz 86 

(2009)) is considered to cause forest degradation rather than deforestation because its 87 

cycle of operation involves clearance followed by regrowth of forest that creates a 88 

landscape with lower biomass density that still qualifies as forests, in contrast to 89 

deforestation that implies a permanent conversion of land cover from forest to non-90 

forest (Houghton, 2012). As a result, landscapes where shifting cultivation is practiced 91 

are complex mosaics made up of patches that are losing or gaining forest carbon stocks 92 

(Mertz et al., 2012). However, although there can be carbon gains at the landscape level 93 

during particular periods of time, in their early development stages the resulting 94 



secondary forests on average usually hold lower carbon stocks than mature forests 95 

(Read & Lawrence, 2003; Lawrence et al., 2005; Becknell et al., 2012). Furthermore, 96 

lower capacity to store carbon and modified species composition have been observed in 97 

secondary forests as an area is subject to more cycles of clearance and recovery 98 

(Lawrence et al., 2010). Therefore, they must be considered as degraded forests in the 99 

REDD+ context, both in terms of carbon stocks and regarding their ecological 100 

characteristics. However, since most of the discussion on forest degradation have been 101 

on selective logging (Putz & Redford, 2010); the inclusion of shifting cultivation as a 102 

driver of forest degradation within REDD+ is unclear, and this has significant 103 

consequences on countries carbon stock estimations (Pelletier et al., 2011). The core 104 

questions relies on whether fallows are classified or not as forest land; while the IPCC 105 

(Penman et al., 2003) considered fallows as land under predominantly agricultural use, 106 

in reality it is a stage of forest re-growth. Most importantly, the methods used by most 107 

countries do not distinguish secondary growth due to shifting cultivation from other 108 

types of secondary forest (Houghton 2012). Consequently, we argue that these stage of 109 

secondary re-growth should be considered degraded forest, because it is not a 110 

permanent loss of forest cover to be classify as deforestation and it holds less carbon 111 

density. 112 

In order to capture the pattern of forest clearance and subsequent regrowth of forests 113 

carbon stocks, observations and analysis at suitably fine spatial and temporal scales are 114 

required. Previous studies which analyzed multiple dates are limited by coarse and 115 

medium spatial resolution (Li et al., 2014) and may not be adequate to detect patches of 116 

small-area agriculture (+2 ha) with short cycles of forest clearance and regrowth (3-6 117 

years). Many studies have used spatial scales that are too coarse to detect degradation 118 

related to shifting cultivation, e.g. Bonilla-Moheno et al., (2013) used data from 119 



MODIS with a pixel size of around 250 m. Multi-date medium resolution Landsat data 120 

(30 m) have been used in combination with detailed field inventories to detect shifting 121 

cultivation in rainforests where clearings are on average + 2 ha (Pelletier et al., 2012). 122 

Clearings and fallows were classified using spectral unmixing analysis, a technique that 123 

has been successfully applied to the detection of selective logging mostly in moist and 124 

wet tropical forests (Asner et al., 2005; Souza et al., 2005). However, in TDF coarser 125 

spatial and temporal resolution limits the capacity to differentiate between natural open 126 

forest areas that have never been cleared and degraded forest or forest recovering after 127 

clearance via secondary regrowth, because of overlapping spectral signatures. So far, to 128 

the best of our knowledge, only one study (Hurni et al., 2013) has managed to delineate 129 

landscape units in which shifting cultivation prevails, by using higher spatial resolution 130 

(10 m pixel) satellite data. Nonetheless, this analysis was only done for a single date, 131 

i.e. it does not examine change over time. 132 

The scale of analysis is also extremely important in evaluating the human factors 133 

that could potentially influence the observed patterns of forest degradation defined by 134 

cycles of regrowth and clearance. Typically, proximate causes of forest cover change 135 

are hypothesized and tested from national census datasets or data that are aggregated at 136 

regional or municipal level because they are readily available. As a result, these 137 

analyses may be of limited utility in evaluating local processes in dynamic socio-138 

ecological systems such as shifting cultivation landscapes (Geoghegan et al., 2004). 139 

Only a few studies (e.g. Roy Chowdhury, 2006; Getahun et al., 2013) have integrated 140 

community-level information or analyzed it across scales from household to regional 141 

(e.g. Overmars and Verburg 2005). Likewise, regional studies that evaluate factors that 142 

affect forest degradation at a landscape level are rare (Saikia, 2014). 143 



This situation is not desirable in the context of REDD+ because on-the-ground 144 

projects are implemented at a landscape level, and activities are undertaken by 145 

individuals and communities on their own parcels of land. To tackle efficiently the 146 

causes and consequences of forest degradation, analysis at a scale compatible with the 147 

degradation processes is needed. For example, in Mexico, where some studies have 148 

claimed that as much as 80% of the forest area is on communal land managed by rural 149 

agrarian communities (Bray et al., 2006), data at the community level is required 150 

(Skutsch et al., 2013). These agrarian communities are in any case the target group of 151 

most REDD+ programs in Mexico (Estrada, 2010) since the policy of the Mexican 152 

government is to use REDD+ as a strategy to promote cross-sectoral rural development, 153 

as well as to foster the sustainable management of forest ecosystems (SEMARNAT, 154 

2010).  155 

In this paper we use as a case study a landscape in Western Mexico that contains 156 

large areas of TDF in which shifting cultivation is the traditional way of growing crops. 157 

We address three main questions: 1. Can the patterns of forest cover change in TDF be 158 

associated with forest degradation at the landscape scale? 2. Which factors determine 159 

forest degradation in a TDF landscape under a shifting cultivation system? 3. Can 160 

variation in the use of, or demand for, forest resources and forest land by communities 161 

provide an indication of the probability of forest degradation in a TDF socio-ecological 162 

landscape? To explore these questions, a detailed forest cover map was produced 163 

through an approach that allows land cover changes due to shifting cultivation to be 164 

tracked. Next, the information derived from the interpretation of this map was used in a 165 

statistical model that allows the identification and quantification of the probability of 166 

forest degradation from an integrated set of biophysical and socio-economic variables. 167 

Finally, we further explore the relationship between the use of forest resources such as 168 



firewood and poles, and forest degradation associated with shifting cultivation, to 169 

explore the utility of using demand for forest resources as an indicator for monitoring 170 

forest degradation in the context of REDD+. 171 

2. Materials and Methods  172 

2.1 Study Site  173 

The study was carried out in the Ayuquila Watershed (~19°25' - 20°10.0"N, 104°3' - 174 

103°3'W), in the state of Jalisco, Mexico. The study area embraces 10 municipalities 175 

and has an area of about 4,000 km². The southern boundary of the study area is formed 176 

by the Sierra de Manantlán Biological Reserve (Fig.1), which is known for its high 177 

biodiversity and which protects a water catchment providing water for more than 178 

400,000 people (Cuevas et al., 1998). Due to its importance for water, biodiversity and 179 

other ecosystem services, and because the municipalities are already working together 180 

on environmental planning under a Junta Intermunicipal del Rio Ayuquila (JIRA), the 181 

area was selected as a REDD+ Early Actions Area by the Mexican government 182 

(SEMARNAT, 2010). 183 



 184 

Figure 1. Regional map of the study area showing the 29 sampled communities 185 

(“ejidos”) within Ayuquila Watershed, Jalisco, Mexico. 186 

The study area has a complex topography that ranges from 260 m to 2500 m above 187 

sea level. The average annual precipitation is 800-1200 mm, and occurs mainly between 188 

June and October; and the range of average monthly temperatures is 18-22 °C (Cuevas 189 

et al., 1998). The topographical and climatic conditions have created a variety of 190 

vegetation formations. High altitude areas are dominated by pine and oak-pine forests. 191 

At intermediate elevations, and where appropriately moist conditions are present, small 192 

patches of cloud forest are found. Lower elevations are dominated by TDF (selva baja 193 

(Rzedowski, 1978)). Trees in this vegetation type typically lose their leaves in the long 194 

dry season. In the undisturbed state, these deciduous and semi-deciduous forests have a 195 

height range of 4-15 m and a high number of endemic plant species (Gentry, 1995). In 196 

terms of population dynamics, the XI, and XII Population Censuses of Mexico show 197 



that the communities within the study area have not experienced major population 198 

changes in the last two decades (INEGI, 2000, 2010a).  199 

2.2 Description of the Land Use System  200 

The landscape is composed of a mosaic of TDF patches within a matrix of 201 

agricultural land. Most of the tropical dry forest is found within ejidos, which are 202 

settlements with a communal land tenure system. Ejidos implement a type of 203 

decentralized forest management where decisions regarding land use and management 204 

of common resources are taken in a General Assembly, which is chaired by the ejido 205 

leader and is composed of all those people in the community that have rights to the land 206 

(ejidatarios). Generally, rights to the land are established when the ejido is formed and 207 

can only be inherited by one person in a family. All the activities are discussed and 208 

approved in a General Assembly and, therefore, ejido leaders can be seen as key 209 

informants with respect to the use of resources in the ejido. 210 

Land is, in principle, a communal resource. Within each ejido, there is an agreed 211 

division of land uses with defined areas for permanent agriculture and for shifting 212 

cultivation, as well as areas of forest. Forest is usually managed communally, although 213 

in some ejidos an informal privatization of this common land has occurred with each 214 

ejidatario managing several parcels. The main agricultural products in the ejidos in the 215 

study area is maize (which is either produced in the shifting cultivation system within 216 

the forested areas or in areas which have been permanently cleared for agriculture), and 217 

to a lesser extent sugar cane, avocado, and agave (all of which are planted exclusively in 218 

permanent agricultural lands).  219 

Allocation of land use within the ejido is partly related to topography: permanent 220 

agriculture takes place in the low and flat areas, while hilly and stony areas are 221 



commonly used for shifting cultivation. The parcels under shifting cultivation, known as 222 

coamiles, have an average size of 2.5 ha and the majority of the crops are grown for 223 

subsistence (i.e. maize production is primarily for consumption within the household). 224 

Coamiles are typically cultivated for two-three years and then left abandoned for a 225 

fallow period that varies from three to eight years (Borrego & Skutsch, 2014). During 226 

this fallow period secondary vegetation regenerates naturally, as a mixture of shrubs and 227 

trees. When a patch of land is selected again at the start of a cultivation cycle, this 228 

secondary vegetation is cleared. Crops are then sown when the rainy season starts 229 

(June/July) and harvested six months later. Afterwards, livestock are kept on the land 230 

and fed with the crop residues before the land is abandoned to the fallow period. During 231 

the wet season, cattle move around the ejido, browsing on the regenerating fallows and 232 

forest lands. Consequently, there is a relationship between the number of cattle that an 233 

ejidatario can own and the area of shifting cultivation. In some cases, ejidos may only 234 

be able to support that quantity of cattle that can be maintained during the dry season 235 

fed on the crop residues of shifting cultivation areas. In addition to cattle grazing, 236 

regenerating fallows and forest areas are also the source of fence posts and fuelwood 237 

(Fig. 2). 238 

239 
Figure 2. Illustration of the shifting cultivation system practiced within tropical dry 240 



forests in western Mexico, based on information from field interviews. The grey boxes 241 

show a typical sequence of land cover changes in a parcel found in the area, and the 242 

white boxes show the location of the livestock.  243 

2.3 Data 244 

To investigate the relationship between different factors involved in forest 245 

degradation we conducted a community-level survey (described in section 2.3.2 below), 246 

together with a parallel analysis of TDF cover change. Our method to assess the 247 

probability of forest degradation uses two sets of data: 1) biophysical variables derived 248 

from remote-sensing image analysis; 2) socio-economic variables derived from the 249 

community-level survey and ancillary information. The independent variables described 250 

in Table 1 are hypothesized to be explanatory of forest cover change, which we consider 251 

to be a proxy response variable representing forest degradation in shifting cultivation 252 

landscapes. The selection of these variables was based on previous participatory 253 

mapping exercises done in five of the surveyed ejidos and field interviews. 254 

2.3.1 Spatial Variables 255 

Forest Cover Change Map as a Proxy of Forest Degradation 256 

Temporary forest cover change was analyzed to provide an indirect measure of 257 

forest degradation. We assumed that having excluded permanent agriculture, this map 258 

reflected the temporary forest cover changes in TDF that are indicative of a shifting 259 

cultivation system with clearance and regrowth, and that this regime as a whole can 260 

represents a form of forest degradation. 261 

This forest cover map was based on SPOT5 imagery for the years 2004 and 2010. 262 

The study area was covered by four scenes corresponding to the dry season (Table S1), 263 



when there is the best discriminatory capacity for change detection in dry forests 264 

(Kalacska et al., 2008). The images were atmospherically and geometrically corrected 265 

to facilitate detection of change over time. Atmospheric correction was performed using 266 

FLAASH as implemented in Envi 4.7 (Exelis Visual Information Solutions). The 267 

geometric correction achieved an accuracy of less than one pixel (10 x 10 m) and 268 

images were re-sampled using the nearest neighbour method. Images were mosaicked 269 

and co-registered to obtain a pixel-to-pixel correspondence between the two dates 270 

(Table S1). 271 

The classification of tropical dry forests and shifting cultivation landscapes is a 272 

difficult task, because of the overlapping spectral signature that these land covers have 273 

as well as the temporal dimension. Therefore, a previous step was to mask out land 274 

cover types not of interest for this study, mainly permanent agriculture and vegetation 275 

types different from TDF. This mask was created by segmenting the 2010 image 276 

(criteria minimum region size of 1500 pixels, using the mean shift segmentation 277 

algorithm). Firstly, segments that match what was classified as permanent crop, urban, 278 

bare, permanent pasture, or pine and oak forest land according to maps produced by the 279 

National Institute for Geography and Statistics (1:250,000) (INEGI, 2010b) were 280 

excluded. This allowed us to remove the bulk of the permanent agricultural areas. Then, 281 

any segments found above 1500 m.a.s.l. were removed, because they are outside the 282 

distribution range of TDF in the study area. To further refine the mask, we used image 283 

visual interpretation in combination with random field GPS points and ancillary data. 284 

Segments were checked against Google Earth historical images (2000-2012), and if the 285 

segment had no visible vegetation over that period it was excluded. Segments were 286 

differentiated based on their spatial context: permanent agriculture usually covers large 287 

continuous areas of flat land (<10° slope) that is usually planted with agave, sugar cane 288 



or maize; whereas shifting cultivation is carried out on hilly areas and on smaller parcels 289 

that are embedded in forest vegetation. The visual interpretation of the images was 290 

ground-truthed during one year of fieldwork in 2011-12.  291 

The final mask was applied to the 2004 and 2010 images. Masked images were 292 

classified using the Random Forests algorithm (Liaw & Wiener, 2002; Horning, 2012), 293 

because of its outstanding performance (Rodriguez-Galiano et al., 2012; Mellor et al., 294 

2013). For the image classification, the following vegetation and textural indices were 295 

calculated: a) Homogeneity index of band 2 and 3 using a 3 X 3 pixel moving window; 296 

b) Normalized Vegetation Index (NDVI), c) Canopy Index (CI) and d) Soil Modified 297 

Adjusted Index (SAVI) (Table S2). The final images used as input for the Random 298 

Forests model consisted of the four SPOT5 bands, three spectral indices (NDVI, CI, 299 

SAVI) and the homogeneity index for band 2 and band 3. The selected spectral indices, 300 

mainly NDVI and SAVI, are widely used to enhance the contrast between soil and 301 

vegetation, while CI which includes the short wave infrared band (SWIR) has been 302 

shown to be suitable for estimating vegetation biophysical characteristics especially 303 

above-ground biomass (Eckert & Engesser, 2013). The use of the homogeneity index 304 

based on the Red and Near Infrared Band has proved useful for estimating successional 305 

stages in TDF (Gallardo-Cruz et al., 2012), and was therefore used in our analysis. Each 306 

image was classified into three classes: tropical dry forests (>10% crown cover); 307 

shifting cultivation (<10% crown cover), i.e. land that was actively being used for the 308 

cultivation phase; and others (shadows and clouds). Training samples were selected on 309 

each of the classes based on 243 random GPS field points acquired during field work 310 

during 2011-2012.The classified images from 2010 were validated with 94 randomly 311 

selected field points. All the image classification and validation procedures were carried 312 



out using a combination of Qgis 2.2 (QGIS Development Team, 2012) and R 3.0.0 (R 313 

Core Team, 2013).  314 

Finally, the area of regrowth and clearance of TDF was estimated for the whole 315 

landscape and for each community. The information derived from this map was used to 316 

extract the response variable used in the statistical model. 317 

Other Biophysical Variables 318 

Other potential explanatory variables were derived from ancillary data, namely 319 

altitude, slope, distance to the closest major town (population > 3000) and distance to 320 

the nearest road. These variables were selected because they have been used in the 321 

identification of factors associated with vegetation changes in previous studies (Crk et 322 

al., 2009). Both altitude and slope were derived from a 30 X 30 m resolution digital 323 

elevation model (CEM 2.0 from INEGI) and slope percentage was mapped using a 3 X 324 

3 pixel moving window. The distance to the nearest main town was calculated for each 325 

point using the tool Hubdistance, available in Qgis 2.2 This tool iterates until it finds the 326 

shortest ellipsoidal distance to the closest hub (a town in this case) from a defined point 327 

(see sampling procedure in the next section). The distance to the nearest road was 328 

calculated as the perpendicular distance between a defined sampling point and the road, 329 

this was done using the Near Tool in ArcMap10.0.  330 

2.3.2  Socio-economic variables 331 

The socio-economic data were acquired through a survey carried out in 2012 in 29 332 

ejidos of the Ayuquila basin (Fig. 1). The selected ejidos were those with ≥ 20% TDF 333 

cover as reported in the INEGI IV Vegetation Map (INEGI, 2010b); their mean TDF 334 



cover was 43.6% (+ S.D. 18%). The boundary of the land area of each ejido was 335 

obtained from the National Rural Agrarian Registry (RAN). 336 

Socio-economic variables were obtained by household surveys and semi-structured 337 

interviews. The survey was informed by previous fieldwork in the area that included 338 

participatory mapping in five communities and informal interviews with community 339 

leaders. This previous work provided information on how the population of the ejidos 340 

used their forest land and what resources were obtained from this forest that could 341 

potentially be associated with forest degradation. A detailed description of how the 342 

survey was designed and applied is provided in Borrego & Skutsch (2014). Over the 29 343 

ejidos, the survey of 300 households provided data from which a number variables 344 

could be calculated at ejido level, namely parcel size cultivated per year, total number of 345 

livestock, fuelwood loads and number of fence posts used per year (Table 1). The semi-346 

structured interviews with the ejido leaders included questions on management 347 

practices, main economic activities and the farming system. Information on the 348 

population size and marginalization index of each ejido was derived from the national 349 

Census of Households and Population 2010 (CONAPO, 2012). Marginalization index 350 

variables were used as dummy variables (Table 1).  351 

Table 1.  Description of the explanatory variables tested in the statistical model for 

prediction of forest degradation (bold letters indicate the variables included in the final 

model). 

Variable Description (Unit) Mean  S.D. Spatial 

Unit 

Elevation
1 Metres above sea level (masl) 1163.4 261.5 Pixel 

Slope
1
 Slope percentage (%) 35.2 18.0 Pixel 

Slope_Elev
1
 Slope*Elevation (interaction 

variable) 

42959.2 27363.1 Pixel 



 352 

2.4 Sampling procedure for analyses 353 

A total of 2000 random points were established within the 29 selected ejidos to 354 

derive both dependent and explanatory variables for the statistical model. The number 355 

of sampling points selected for each ejido was proportional to its estimated TDF area 356 

according to the INEGI Vegetation Map (INEGI, 2010b). We used a random sampling 357 

Dist
2
 Topographic distance to nearest 

main town (km) 

10.6 4.9 Pixel 

Road
3
 Topographic distance to nearest 

road (m) 

947.8 721.7 Pixel 

Livestock
4
 Number of cows  

 

1991.8 1743.7 Ejido 

Fence
4
 Number of posts harvested per 

year (a post length is about 1.5 m) 

1467.2 1032.1 Ejido 

Fuel
4
 Average number of fuelwood 

loads harvested (a load comprises 

ca. 50-60 small branches) 

392.0 408.7 Ejido 

Parcel_S
4
 Average parcel size cultivated 

(ha) 

 

6.2 2.9 Ejido 

Ejidatarios
4
 Number of registered farmers 

with land rights  

 

107 97.8 Ejido 

Parcel_T
4
 Number ejidatarios  x parcel size 

(interaction variable, proxy for 

total  cultivated land) 

 

836.9 775.2 Ejido 

TDF:Pop
5&6

 Ratio between total TDF area and 

the total population  in the ejido  

 

9.6 14.2 Ejido 

MMI
6
 Medium Marginalization Index: 

an indicator based on income, 

education, housing, and 

population density  

 

9.7 2.1 Ejido 

HMI
6
 High Marginalization Index: an 

indicator based on income, 

education, housing, and 

population density  

6.8 0.4 Ejido 

Data Sources: 1 = CEM-DEM- Instituto Nacional Estadística y Geografía (INEGI) (30 X 30 m), 2 = 

Population map from Instituto Nacional Estadística y Geografía (INEGI) (1:50,000); 3= Road 

Network from INEGI (1:50 000));4 = Questionnaire survey (this study); 5 = Land Use and 

Vegetation Map (2010) from INEGI (1:250 000); 6 = Household census (CONAPO 2010). 



procedure (so that the distance between neighboring pairs of points varies) and 358 

evaluated spatial autocorrelation of the dependent variable in our statistical model using 359 

three tests: Moran I, a geographical representation of model residuals and a semi-360 

variogram of model residuals. To test if there was any spatial autocorrelation, these tests 361 

were run for both the random grid and for a set of 2000 points selected randomly from a 362 

300 m X 300 m grid. No difference in the value of the three tests was found, therefore 363 

the random points data set was used for the remaining analyses. Sampling points that 364 

fall in areas with cloud cover were eliminated from the analysis, therefore the model 365 

was developed using 1952 points. Sampling points were selected using the Research 366 

Analysis Tool available in Qgis 2.2 and spatial autocorrelation was analyzed using the 367 

ape (Paradis et al., 2004), gstat (Pebesma, 2004) and sp (Pebesma & Bivand, 2005) 368 

packages in R 3.0.0. 369 

2.5 Data analyses 370 

For each of the 1952 sample points the environmental/socio-economic variables 371 

described in Table 1 and the response variable were extracted to model the probability 372 

of forest degradation in TDF. The probability that a pixel will be degraded depends on 373 

choices made by the ejidatarios within a decision context (e.g. farmers’ preferences, 374 

economic returns etc.) so the dependent variable can be considered an unobserved 375 

variable 
*

iy
 corresponding to the observed outcomes, in this case TDF cover change per 376 

pixel, that do not directly reveal information on farmers' preferences or economic 377 

returns. Consequently in this analysis there are two possible outcomes: a) forest 378 

degradation (coded as 1), i.e. there has been a change between cover classes from TDF 379 

to shifting cultivation (or vice versa) and b) no change in cover class (coded as 0). As 380 

was explained in the introduction section above, due to the complex mosaic landscape 381 



of the study area we considered any change in a pixel, both TDF cover clearance and 382 

regrowth, as an indicator of forest degradation. The outcome is a discrete dependent 383 

variable measured on a nominal scale. Statistically, the output corresponds to a binary 384 

model in which the unit of observation is a pixel 
*y and is assumed to be a linear 385 

function of a set of explanatory variables as follows:   386 

  nni xxxy ...22110

*
 387 

where 
*

iy  is the probability of a pixel being degraded; 0  is the intercept capturing 388 

features that do not depend on a given pixel’s characteristics; n ,..., 21  represent 389 

coefficients estimated through regression analysis; nxxx ,..., 21  are explanatory variables; 390 

and   is the residual error. 391 

If we assume that the residuals have a logistic distribution the probability of forest 392 

degradation 1Y  can be written as: 393 
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 394 

and the model can be estimated with the maximum likelihood approach (Menard, 2010).   395 

The use of logistic regression to model probability of land cover changes is a well-396 

established technique (Overmars & Verburg, 2005; Roy Chowdhury, 2006). The 397 

magnitude and direction of n ,..., 21  indicate the importance and effect of each 398 

factor in the probability of forest degradation.  399 

(2) 

(1) 



One potential source of error in logistic regression analysis is collinearity of 400 

variables. We tested for correlation between independent variables (Table S3), and in 401 

cases where correlations > 0.8 were detected between a pair of variables, only the 402 

variable with the strongest impact on the model was retained, as recommended by 403 

(Menard, 2010).  404 

Models were evaluated by tests of goodness of fit by using log-likelihood, based on 405 

deviance residuals of the null and fitted models and the Akaike Information Criteria 406 

(AIC) to compare between models and select the final one. Prediction accuracy of the 407 

model was evaluated by estimating the area under the receiver’s operational curve 408 

(AUC-ROC) using an independent dataset (Pontius & Schneider, 2001). The magnitude 409 

of the effect of each variable on the probability of forest degradation was estimated 410 

using marginal effects based on the mean values of each variable. Finally, we evaluated 411 

the relative importance of each of the variables in the final model by comparing the 412 

difference in the values of log-likelihood. All the statistical analyses were performed in 413 

R 3.0.0., using the ROCR package for ROC analysis.  414 

Pearson correlation analysis was used to explore how the variation in the 415 

use/demand of forest resources by the ejidos (i.e. input variables for the model) related 416 

to the change in TDF cover. This analysis was done to further evaluate if a higher 417 

intensity of demand for forest resources is linked with regrowth or clearance of TDF 418 

cover and therefore whether these variables can be used as a practical indicator in this 419 

context.  420 

3. Results  421 

3.1 Patterns of regrowth and clearance for the tropical dry forest cover 422 



Approximately 65% of the study area showed no change in TDF cover between 423 

2004 and 2010, and was therefore presumed not to have been used for shifting 424 

cultivation at all. About 35% of the study area (which was made up of 20 936  ha of 425 

TDF clearance, 24 090 ha of regrowth, and the areas under shifting cultivation (Table 426 

3)) can be considered as degraded TDF. From this, 24% underwent transition (cover 427 

clearance or gain) (Fig 3 & Table 2), indicating that it had been used for shifting 428 

cultivation between these dates but was not being cultivated in these particular years 429 

and 11% was classified as under the cultivation phase of shifting cultivation in both 430 

dates (Table 3). The areas classified as shifting cultivation on both dates (i.e 11% of the 431 

study area), most probably were cultivated in 2004, then left to rest and started a new 432 

cultivation cycle shortly before 2010. As the area of clearance and gain of forest cover 433 

is similar (Table 3), forest cover in the region may be considered stable in the long run, 434 

despite the fact that at least 24% of the area was undergoing cover change. This highly 435 

dynamic pattern of TDF cover is replicated in most of the 29 individual ejido: with 17 436 

experiencing a transition in TDF cover on more than 20% of their area, a further six on 437 

15-20% of their area, but none experiencing a net loss of TDF cover of more than 15% 438 

of their total area, and only four having a net loss between 10 and 15% (Table S4).  439 



 440 

Figure 3. Tropical dry forest (TDF) and shifting cultivation (SC) land cover in the 441 

Ayuquila Basin, Jalisco, Mexico. a) TDF and shifting cultivation cover in 2004, b) TDF 442 

and shifting cultivation cover in 2010, c) Change in cover between TDF and shifting 443 

SC 

TDF 

Clearance 

Regrowth 



cultivation 2004-2010. Overall accuracy for 2010 = 98%, kappa coefficient equals 444 

0.973, Minimum mapping Unit (MMU) = 0.9 ha (3 X 3 pixels) .  445 

Table 2. Estimated areas of tropical dry forest (TDF) and shifting cultivation cover 446 

for 2004 and 2010 in the Ayuquila Basin, Jalisco, Mexico.  447 

Land Cover Type 2004 (Ha) 2010 (Ha) 

TDF 140 836 143 990 

Shifting cultivation 44 583 41 429 

 448 

Table 3. Area estimated for each transition between land cover types in the 449 

Ayuquila Basin, Jalisco, Mexico.  450 

 451 

 452 

 453 

 454 

 455 

3.2 Factors influencing and related to forest degradation  456 

Alternative models using socioeconomic and biophysical data for the 29 ejidos as 457 

explanatory variables for the probability of TDF degradation were developed. The 458 

variables livestock and fuelwood were highly correlated (r= 0.81, p <0.001) (Table S3), 459 

therefore only livestock number was used for model development. We selected the 460 

model that had the highest log-likelihood ratio and lowest AIC and residual deviance. 461 

Transition 2004-2010 Area (Ha)  %  

No change, TDF 119 901 64.7 

No change, shifting cultivation 20 493 11.1 

Change, shifting cultivation to TDF 

(forest regrowth) 

24 090 13.0 

Change TDF to shifting cultivation 

(forest clearance) 

20 936 11.3 



The selected model included eight variables, plus an interaction term between slope and 462 

elevation (Table 4). The evaluation of model residuals showed a slightly positive spatial 463 

autocorrelation (Moran's I = 0.015, p <0.001). However, as the model residuals and 464 

semi-variogram revealed no spatial structure (Fig. S1 & Fig. S2), no further adjustment 465 

of the model was made to account for spatial structure, as the use of spatial 466 

autoregressive models is not recommended for logistic regression (Dormann, 2007). 467 

Both biophysical and socioeconomic variables were significantly associated with the 468 

probability of TDF degradation (Table 4). The model results indicated that for every 1% 469 

increase in slope there is a decrease of 0.84% in the probability of forest degradation 470 

and that slope is the most important biophysical factor for determining if an area will be 471 

used for shifting cultivation. In the case of distance from a parcel of land to nearest 472 

main town, for every increase of one kilometer, there is a decrease in the probability of 473 

forest degradation of almost 0.5%. There is interaction between slope and elevation; 474 

although probability of forest degradation decreases with slope, it increases at higher 475 

elevations with small slopes angles, which may be linked to the use of flat areas on 476 

hilltops for shifting cultivation which is common in our study area. Of the 477 

socioeconomic variables, the one with the strongest relationship to the probability of 478 

forest degradation was found to be “high degree of marginalization” of the community. 479 

Comparison of the relative size of the marginalization index variables, showed that both 480 

highly marginalized communities and medium marginalized communities have a greater 481 

probability of forest degradation (12.3% and 8.4% respectively) than communities with 482 

a low index of marginalization. The model showed that a higher ratio of TDF to 483 

population size decreased the probability of degradation; this means that the more TDF 484 

that is available person, the lower the pressure will be on TDF (Table 4). The results 485 

also revealed that the number of fence posts used per year and the number of livestock 486 



were both positively correlated with the likelihood of forest degradation. The value of 487 

the livestock and fence coefficients (0.002% and 0.005%) indicate the marginal impact 488 

of one unit change in these variables.  489 

Variables were ranked according to their importance (i.e. their contribution to the 490 

log-likelihood value of the model estimation). The relative effect showed that the 491 

biophysical variables, which were observed at pixel level, contributed altogether to 39% 492 

of the log-likelihood value of TDF degradation, and community-level information 493 

explained around 61% (Table 5). Among the biophysical variables Slope and 494 

Slope_Elev combined explained 34 % of the variance of the model; while among the 495 

socio-economic variables, the number of fence posts ranked highest, accounting for 496 

21% of the log-likelihood value, followed by the high marginalization index (17%). 497 

Table 4. Model results and estimated probability of occurrence of TDF degradation 498 

as a function of a series of potentially explanatory variables in the Ayuquila Basin, 499 

Jalisco, Mexico (for variable names see Table 1). 500 

Variable Name Estimated coefficient 

(b) 

S.E. p Marginal effect 

 

Slope -0.06121 0.01119 0.0000 -0.8424 

 

Dist -0.03539 0.0161 0.0281 -0.4870 

 

Road -0.00036 0.0001 0.0010 -0.0050 

 

TDF:Pop -0.01778 0.0067 

 

0.0075 -0.2447 

Fence  0.00033 0.0001 0.0001 0.0046 

 

Livestock 0.00017 0.0001 0.0032 0.0024 

 

HMI  0.89220 0.2189 0.0000 12.2787 

MMI  0.61050 0.2498 0.0145 8.4019 

Parcel_T -0.000415 0.0002 0.0180 -0.0057 



Slope_Elev 0.00004 0.00001 0.0000 0.0005 

Constant -1.38800 0.3052 0.0000 -19.1020 

n = 1952, S.E. = standard error of estimation of the model, model log likelihood ratio = -763.76 

(df = 11); AUC = 66.35; residual deviance = 1527.5; null deviance = 1605.2;AIC = 1549.5 

 501 

Table 5. Contribution of explanatory power for each variable in the statistical model 502 

in the Ayuquila Basin, Jalisco, Mexico (for variable names see Table 1). 503 

Variables Change in Log 

Likelihood (df) 

% Explained by 

each Variable 

 

Variable 

Importance 

Rank 

Intercept -802.6 

 

  

Slope + Slope_Elev -789.3 (3) 

 

34.1 1 

Fence 

 

-768.9 (9) 20.8 2 

HMI -780.8 (6) 17.1 

 

3 

Parcel_T 

 

-763.7 (11) 7.6 4 

TDF:Pop 

 

-777.0 (8) 7.0 5 

Livestock 

 

-766.71 (10) 5.7 6 

Dist -788.0 (4) 3.2 

 

7 

MMI -779.7(7) 2.8 

 

8 

Road -787.47 (5) 1.6 9 

Total  100  

 504 

The model’s goodness of fit (AUC = area under the curve) was 0.66 (Fig. 4), which 505 

means that it can correctly predict changes from TDF to shifting cultivation and vice 506 

versa with a probability of 0.66, which is better than that predicted only by chance 507 

(AUC =0.5) (Gellrich et al., 2007).  508 



 509 

Figure 4.  Receivers operating characteristic (ROC) curve for  the probability of 510 

TDF degradation in the Ayuquila Basin, Jalisco, Mexico. Overall model  prediction 511 

accuracy evaluated by AUC = 66%.  512 

The number of livestock observed in each ejido correlated positively with the 513 

amount of TDF regrowth and TDF clearance (Fig 5), although its contribution to the 514 

log-likelihood value is less important than the number of fence posts (Table 4). There 515 

are around 6 ejidos that have large amounts of TDF change (points that deviate strongly 516 

from the regression line), as well as high levels of both livestock and fuelwood loads 517 

(Fig. 5a & 5b), which implies that these communities have a greater demand for forest 518 

resources and forest land. The observed positive association between TDF change and 519 

livestock suggests that the number of livestock is a good indicator of the intensity of use 520 

of the forest resources and might be a proxy that could be used in monitoring forest 521 

degradation in this type of socio-ecological landscape.   522 

 523 



Figure. 5. Correlations between the resources used and the amount of TDF cover 524 
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change for 29 ejidos in the Ayuquila Basin, Jalisco, Mexico: a) number of livestock 525 

versus forest clearance; b) number of livestock versus forest regrowth; c) number of 526 

fuelwood loads extracted per year versus forest clearance; d) number of fuelwood loads 527 

harvested per year versus forest regrowth; e) number of fence posts harvested per year 528 

versus clearance; f) number of fence posts harvested per year versus regrowth               529 

(* p<0.05, df = 27). 530 

4. Discussion  531 

4.1. Monitoring and detection of forest degradation in shifting cultivation landscapes 532 

In this study we characterized changes in TDF cover, showing that they can be 533 

statistically associated with forest degradation caused by the practice of shifting 534 

cultivation. The fact that there were similar amounts of forest regrowth and clearance 535 

over a 6-year period, both at the community and landscape levels, suggests that these 536 

landscapes under shifting cultivation are essentially sustainable, at least in terms of 537 

forest cover area and thus levels of above-ground carbon stock that can be associated 538 

with forest cover. This implies that presumably carbon emissions from forest clearance 539 

were offset by forest regrowth, however further work is clearly needed to test this; since 540 

carbon balance on shifting cultivation systems will depend on multiple factors. For 541 

instance, management practices such as the use of fire for clearing, and other ecological 542 

factors like the carbon sequestration capacity of forest regrowth; will play a role in 543 

determining carbon emissions. Several authors have reported rapid accumulation rates 544 

of above-ground biomass (AGB) during TDF regrowth after complete clearance 545 

(Lawrence et al., 2005; Álvarez-Yépiz et al., 2008; Lebrija-Trejos et al., 2008); and age 546 

of land abandonment has been found to explain up to 46% of the variation in AGB for 547 

TDF (Becknell & Powers, 2014). Recent studies indicate, furthermore, that shifting 548 



cultivation can conserve and even increase carbon stocks in the soil (Salinas-Melgoza et 549 

al., 2015). On the other hand, in terms of their structure and composition of species (and 550 

also probably functional traits), secondary TDFs formed after clearance are very 551 

different from their old-growth counterparts (Chazdon et al., 2007) with a much lower 552 

average biomass density (Marín-Spiotta et al., 2008; Kauffman et al., 2009). In this 553 

sense they can be considered degraded, although their delivery of ecosystem services 554 

and value as habitat for biodiversity is still higher than many other land cover types. 555 

We have provided evidence that shifting cultivation, as practiced within the ejidos, 556 

contributes to forest degradation but not to a net loss of forest cover. In our  study area, 557 

shifting cultivation systems represent a form of local equilibrium, with a balance in 558 

rates of forest degradation (clearance) and recovery at the landscape scale, and as a 559 

result the potential for no net carbon emissions being produced in the long-term 560 

(Houghton, 2012). However, this situation could easily change if management practices 561 

within the ejido, government policies or markets favor an intensification of the 562 

agricultural practices, causing a shortening of the fallow periods or the cultivation of 563 

cash crops as has occurred in other areas (Dalle et al., 2011; van Vliet et al., 2012).  564 

The methodology of the present study, a combination of high resolution image 565 

segmentation and a robust classification method (Rodriguez-Galiano et al., 2012) based 566 

on spectral-textural information from the image, was successful in detecting small 567 

patches under shifting cultivation and enabling quantification of both the clearance and 568 

regrowth transitions of TDF subject to shifting cultivation management. As such, we 569 

suggest it might be a valuable tool for more widespread use to quantify forest 570 

degradation. Nevertheless, we recognize that using forest area cover change as a proxy 571 

of forest degradation could lead to underestimation, because further reductions in tree 572 



density can happen within the forest area, as has been found in arid and semi-arid 573 

ecosystems (le Polain de Waroux & Lambin, 2012). To improve the analysis, a 574 

classification of the canopy cover density could be integrated with the forest cover 575 

change analysis, however this will require even higher resolution data (~1 m) and the 576 

development of algorithms that can count tree crowns for TDF, which can be 577 

challenging due to seasonal leaf phenology and variability of forest structure (Arroyo-578 

Mora et al., 2005). Another adequate approach that might improve the detection of 579 

dynamics of shifting cultivation in TDF and its link to forest degradation, could be the 580 

use of multiple date time series of medium resolution images. Further research that 581 

compare the results of analyzing multiple dates of medium resolution and analyzing 582 

only two dates of high resolution image data should be attempt, in order to provide 583 

guidance on monitoring methods that might be more adequate for TDF.  584 

The difficulties of detecting forest degradation that occurs under the canopy, such as 585 

overgrazing, excessive fuelwood collection and small-scale selective harvesting for 586 

timber, with satellite data have been widely acknowledged (GOFC-GOLD, 2013). We 587 

tried to overcome this limitation by associating the effect of these factors with the cycles 588 

of clearance and regrowth within a shifting cultivation landscape. These activities are 589 

possibly occurring in those parts of the TDF that showed no change in forest cover 590 

(65%), therefore part of this area could be considered low degradation. It is possible that 591 

the estimate of degradation that our method produces is not well correlated with these 592 

below-canopy impacts. Ideally, measurements of the amount of biomass actually 593 

extracted should be made. Though challenging, further research should be undertaken to 594 

investigate on-the-ground data of spatial variation in rates of grazing and wood 595 

extraction (ideally at a pixel level) with satellite data, to find out whether the latter 596 

detects the impact on forest structure and composition of the former (Romero-Duque et 597 



al., 2007; Chaturvedi et al., 2012). This is especially important in the context of 598 

REDD+, since avoiding degradation should not prohibit the use of forest resources but 599 

rather encourage change towards sustainable use.  600 

The landscape-scale forest cover dynamics observed in the present study might have 601 

important implications for national and international forest environmental policy. In 602 

Mexico, there is a financial incentive for farmers to continue to clear regenerating forest 603 

from previously cultivated land because of the rules of the subsidy Program of Direct 604 

Payments to the Countryside (PROCAMPO), which makes payments per hectare of 605 

agricultural land. If the fallows are left uncut and advanced secondary forest develops, 606 

the government will classify it as abandoned land that is no longer used for agriculture 607 

and therefore the ejidatarios will lose their subsidies from PROCAMPO. Moreover, 608 

according to the modification of the legal Mexican Forest Code, once the land is 609 

designated as forest (when it is an advanced regenerated state), any tree harvesting in 610 

such areas will require a management plan (Román-Dañobeytia et al., 2014). However, 611 

in addition to that, leaving the fallow to recuperate for long periods is not favored by 612 

farmers for logistical/labor reasons. As several farmers mentioned during our field 613 

interviews: "We need to clear the area because it grows too fast, in two-three years it is 614 

too tall, and then we cannot clear it". However, more detailed socio-economic and 615 

policy-oriented research is required to determine the effects of current forest and 616 

agricultural policies on the shifting cultivation cycles observed in complex TDF 617 

landscapes, such as those of the current study, and how they will affect the 618 

sustainability of shifting cultivation systems.  619 

4.2 Drivers of forest degradation in tropical dry forest  620 



We examined the importance of different biophysical and socio-economic variables 621 

to explain change in forest cover, which itself can be used as a proxy for forest 622 

degradation in a mosaic landscapes with shifting cultivation. Amongst the tested 623 

biophysical variables, slope was most closely related to forest degradation. Flatter areas 624 

had a higher probability of being used for shifting cultivation, but this is slightly 625 

influenced by elevation, such that there is a higher probability of degradation in flat 626 

areas on hilltops. Several studies have reported greater forest clearance on areas with 627 

less steep slopes (e.g. Newton & Echeverria, 2014), which can be attributed to better 628 

soil quality and less investment in labor than for steep slopes, where indeed most of the 629 

remaining unconverted TDF is found (Becknell et al., 2012). This might have 630 

implications for management decisions related to land use planning that aim to enhance 631 

carbon stocks and avoid forest degradation in the landscape, because better 632 

environmental conditions that might increase net carbon sequestration of the landscape 633 

will be found on less steep terrain. 634 

With reference to the tested socio-economic variables, as with all explanatory 635 

models, care needs to be taken not to confuse correlation with cause. The modeling 636 

results demonstrated that areas with a higher degree of marginalization had a higher 637 

probability of forest degradation. The marginalization index, which is a standard tool 638 

used to guide social policy in Mexico, is built on eight variables related to economic 639 

factors and education level of the entire population living in an ejido (CONAPO, 2012). 640 

Our findings suggest that ejidos characterized by lower incomes and low education 641 

levels, as well as less available TDF per person (those with higher population densities), 642 

are more dependent on clearing land for shifting cultivation. However, the causal order 643 

here needs to be considered carefully. Are communities carrying out shifting cultivation 644 

because they are marginalized (poor) and depend on it for subsistence, or are they poor 645 



because they are carrying out shifting cultivation? This question cannot be answered 646 

from our data but is important for the development of policy. In order for ejidos to 647 

participate in carbon mitigation projects the opportunities and constraints of each 648 

community should be carefully evaluated, so that poorer communities can also benefit 649 

from projects (Tschakert et al., 2006). Furthermore, as discussed by Borrego & Skutsch 650 

(2014), there are marked differences within an ejido population in the proportion of 651 

income obtained from shifting cultivation and benefits derived from the TDF, by larger 652 

and by smaller operators. 653 

Individual tests found evidence of significant positive correlation between the 654 

number of livestock or of fuelwood loads or (less strongly) fence posts and TDF cover 655 

change per ejido. Again, the relationship between number of cattle and fence post 656 

extraction with area dedicated to shifting cultivation should not necessarily be seen as 657 

causal since these could also be by-products (effects) of other processes. Moreover, the 658 

model selection procedure for probability of TDF cover change per sample pixel 659 

showed that these variables only had a weak relationship (and because of its high 660 

correlation with the number of livestock, fuelwood was not included as a separate 661 

explaining variable). It is possible that the effect of these variables is confounded with 662 

other variables included in the model, especially those related to socio-economic 663 

characteristics that distinguish the ejidos. In this area, livestock are used as a liquid asset 664 

that can be converted in an emergency; owning cattle requires capital and therefore only 665 

higher-income ejidatarios will be able to own several animals (Borrego & Skutsch, 666 

2014), and the proportion of community members in this group are reflected in the 667 

marginalization indexes evaluated.  668 



Statistical models are useful to determine the relative importance and interaction of 669 

possible agents of forest degradation, especially because it is feasible to incorporate 670 

many context-specific data, in this case information on livestock, harvested forest 671 

products, the ratio between TDF area and local population size etc. (Roy Chowdhury, 672 

2006). However, there are many factors that interact and which together have an 673 

influence on the socio-ecological systems shaping the use of TDF resources. As with 674 

any model, the initial set of factors to be included will determine the outcome. For this 675 

reason, it is crucial that the context in which forest degradation is taking place is well 676 

understood on the ground (Mon et al., 2012). For Mexico, future assessment of drivers 677 

of forest degradation and appropriate interventions to address it should include 678 

information on the different types of payment for ecosystem services and on other major 679 

market and subsidy incentives influencing decisions by land users, as well as factors 680 

influencing rural population density, e.g. through migration, that might be important in 681 

certain areas.  682 

In Mexico REDD+ interventions promoting maintenance or enhancement of carbon 683 

stocks will probably be directed to ejidos, and there will therefore be a need for 684 

monitoring protocols that can effectively evaluate local interventions (Danielsen et al., 685 

2011; Mertz et al., 2012) and that do not themselves impose major costs (Morales-686 

Barquero et al., 2014). The approach of collecting field data through interviews in 687 

combination with analysis of remotely sensed data, as tested in the present study, can be 688 

used to support the evaluation of REDD+ or other policy interventions. At a regional 689 

level keeping records of activities related to agriculture that drive forest degradation, 690 

such as the density of livestock, human populations and the size of agricultural parcels, 691 

is easier and less costly than obtaining precise estimates of AGB.  It is important that if 692 

monitoring of land use activities is used instead of, or complementary to, AGB 693 



measurements, that such an analysis include both biophysical and socioeconomic data. 694 

This is important as these two types of information contributed almost equally to the 695 

explanation of spatial variation in the occurrence of forest degradation, in our study.  696 

4.3 Shifting cultivation in the context of REDD+ 697 

Views on the sustainability of shifting cultivation are contested (Sunderlin et al., 698 

2008; Mertz et al., 2012; Fox et al., 2013) and this debate needs to be revisited in the 699 

context of REDD+ and the opportunities for climate change mitigation offered by 700 

modification of shifting cultivation practices acknowledged. Traditionally, shifting 701 

cultivators have been blamed for deforestation and there is a negative view towards this 702 

type of agriculture that argues in favor of land allocation to more intense agricultural 703 

systems in order to spare other land for conservation (Chandler et al., 2013). However, 704 

secondary forests that derive from fallow systems recover carbon stocks and foster 705 

natural regeneration of some commercial TDF species (Valdez-Hernández et al., 2014). 706 

Moreover shifting cultivation is the source of livelihoods for many smallholder farmers 707 

and represents the primary source of food security for many rural households (Padoch & 708 

Pinedo-Vasquez, 2010; Fox et al., 2013). Therefore, in many circumstances prohibiting 709 

shifting cultivation and promoting a transition to a combination of intensified permanent 710 

agriculture systems and set-aside protected forest land is not socially nor environmental 711 

desirable (van Vliet et al., 2012).  712 

To maintain or enhance the sustainability of these systems, REDD+ interventions 713 

should target areas with higher potential for carbon sequestration for protection or, 714 

where necessary, active restoration (Hardwick et al., 2004). Promoting longer fallow 715 

periods may be valuable to avoid the depletion of the carbon sequestration capacity of 716 

shifting cultivation systems (Lawrence et al., 2010). The restriction of livestock 717 



browsing to certain areas within the shifting cultivation landscape would promote forest 718 

regrowth and carbon stock enhancement in other protected areas, though with a high 719 

risk of spillover leakage effects to other areas (Hett et al., 2012). Incentives that seek to 720 

increase yield from shifting agricultural systems through improve management practices 721 

and new technologies without increasing carbon emissions (e.g. climate smart 722 

agriculture) should also be part of REDD+ interventions (Olander et al., 2012), as has 723 

been demonstrated in the case of coffee agroforestry systems by Noponen et al.(2013). 724 

If, as a result, ejidatarios are able to produce enough maize for their own consumption 725 

and to feed their cattle on a smaller area of cultivated land, it is likely that a greater land 726 

area within the ejido can be allocated to carbon sequestration and fallow periods will be 727 

longer. This change could be incentivized, for example, by credit programs and 728 

subsidized fertilizers and seeds, and promoted through agricultural extension programs 729 

(Angelsen & Rudel, 2013).  730 

Although there are options by which shifting cultivation can contribute to climate 731 

change mitigation, designing REDD+ payments to include shifting cultivation schemes 732 

poses multiple challenges. First, the consideration of shifting cultivation as a contributor 733 

to forest degradation will depend on the definition of forest that is applied in each 734 

country (Houghton, 2012), and on the time period at which the baseline is set. Second, 735 

designing payment systems for REDD+ to compensate for avoiding degradation by 736 

removing shifting cultivation is likely to run into problems in fulfilling the criterion of 737 

equity; unless they are well designed they risk removing the source of food security and 738 

livelihood of the most vulnerable community members without adequate compensation, 739 

especially in highly marginalized ejidos. Third, the impacts on the overall carbon 740 

budget of applying alternative agriculture management practices needs to be better 741 

understood, as well as the effects of such practices on local livelihoods, because so far 742 



there is little empirical evidence of effects of alternative management practices (Palm et 743 

al., 2010). Fourth, including shifting cultivation in REDD+ interventions will require 744 

cross-sectoral coordination. For instance Mexico already has in place a system that 745 

subsidizes agriculture (PROCAMPO) and a payment for ecosystem services program.  746 

Both have potential for use  in REDD+, but this will mean a joint work plan from 747 

institutions involved in the agriculture and the forestry sector. Despite these challenges, 748 

shifting cultivation has the potential to provide a good synergy between carbon, 749 

biodiversity and food security, if policies are well designed and take into consideration 750 

the above mentioned factors  among other issues. 751 

5. Conclusions  752 

This study illustrates the value of integrating socio-economic and biophysical 753 

information to model potential drivers and correlates of forest degradation. Human 754 

decisions on how to use forest resources shape TDF landscapes, and form patterns that 755 

can be linked to specific activities. The assessment of patterns of forest change with 756 

high resolution satellite imagery allowed determination of the dynamics of small-scale 757 

agriculture in the area, and revealed that, over the time period studied, clearance and 758 

regrowth of TDF was balanced; indicating that possibly no net emissions were 759 

produced. Further work to test the impact of shifting cultivation systems on carbon 760 

stocks and carbon stock change in TDF, and to evaluate its long-term sustainability 761 

particularly in relation with carbon emissions, is clearly needed.  762 

The approach of collecting field data through interviews and combining these with 763 

spatial analysis of remotely sensed data at the appropriate scale can be used to develop 764 

monitoring protocols aimed at evaluating REDD+ or other policy interventions at a 765 

landscape level. By identifying the activities that are linked to forest degradation, easy-766 



to-measure indicators can be developed. Once the appropriate scale of analysis has been 767 

identified, this approach can be extended to other areas of TDF with a mosaic landscape 768 

structure dominated by cyclical patchy forms of land use (e.g. many African woodlands, 769 

(Lambin, 1999)) and similar types of degradation process (e.g. selective logging or 770 

fuelwood collection). The integration of socio-economic and biophysical variables, as 771 

carried out in the present study, is essential to understand the impact of the use of the 772 

land and forest resources of TDF landscapes. Finally, socio-ecological landscapes such 773 

as TDF dominated by shifting cultivation are complex to analyze and there are still 774 

important knowledge gaps as regard to their dynamics. These interesting socio-775 

ecological systems will continue to be a challenge for carbon mitigation policies for 776 

some time.  777 
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Table S1. Spot 5 image data used in the study. 

 

  

Image Reference Name Row - 

Path 

Date of 

acquisition 

RMSE  

(pixels) 

Number of 

Ground Control 

Points 

E55773100401311J2A00009 577-310 31.01.2004 0.66 45 

E55783100401212J2A09009 578-310 21.01.2004 0.47 14 

E55783110401212J2A05007 578-311 04.01.2004 0.42 13 

E55793110403282J2A08002 579-311 28.03.2004 0.92 16 

E55773101001282J2A06002 577-310 28.01.2010 0.86 13 

E55783101002242J2A09017 578-310 24.02.2010 0.23 52 

E55783111002242J2A06020 578-311 24.02.2010 0.19 31 

E55793111011162J2A00035 579-311 11.16.2010 0.18 25 
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Table S2 . Vegetation indices used in the study. 

Index Algorithm Reference 

 

Homogeneity Index *  
   

        

   

     

 

Haralick et al., 

(1973)  

Canopy Index**           Vescovo & Gianelle 

(2008) 

Normalized Difference 

Vegetation Index** 
     

     

     
 

Rouse et al. (1973) 

Soil Adjusted 

Vegetation Index ** 
     

       

            
         

Huete (1988) 

* Is calculated based on the grey level co-occurrence matrix (GLCM), each element of the GLCM 

indicates the relationship between grey levels of pixels in specific directions or distances.  Pij indicates the 

probability in that cell of finding the reference value i in combination with a neighbour pixel. j. 

** G = green band (Spot 5 band 1), R = red band (Spot 5 band 2), NIR = near infrared band (Spot 5 band 

3) and SWIR = short wave infrared (Spot 5 band 4).  
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Table S3 Pearson correlation coefficient values (r) for the numeric variables used in the statistical  model for estimating probability of forest degradation in 

Ayuquila Basin, Jalisco, Mexico  (Variable explanations and names are provided in Table 1) . 

 

 Elevation Fuelwood Fence Livestock Dist Slope Ejidatarios Pop:TDF Parcel_ S Road 

Elevation 1.000 -0.207 -0.299 -0.249 0.119 0.356 -0.145 -0.070 -0.313 0.460 

Fuelwood -0.207 1.000 0.442 0.811 -0.351 -0.171 0.571 -0.231 0.635 -0.143 

Fence -0.299 0.442 1.000 0.399 -0.260 -0.031 0.580 -0.183 0.623 0.011 

Livestock  -0.249 0.811 0.399 1.000 -0.309 -0.212 0.581 0.054 0.672 -0.169 

Dist  0.119 -0.351 -0.260 -0.309 1.000 0.141 -0.523 0.113 -0.466 0.096 

Slope 0.356 -0.171 -0.031 -0.212 0.141 1.000 -0.147 -0.076 -0.196 0.384 

Ejidatarios -0.145 0.571 0.580 0.581 -0.523 -0.14 1.00 -0.286 0.052 -0.135 

Pop:TDF -0.070 -0.231 -0.183 0.054 0.113 -0.076 -.286 1.000 -0.270 -0.099 

Parcel _S -0.313 0.635 0.623 0.672 -0.466 -0.196 0.052 -0.270 1.000 -0.194 

Road 0.460 -0.143 0.011 -0.169 0.096 0.384 -0.135 -0.099 -0.194 1.000 



  Table S4.  Area (ha) of tropical dry forest found in each community of the Ayuquila Basin, Jalisco, Mexico. 

 

ID Name Area analyzed 

(ha) 

Ejidatarios Number of 

Households 

Population No land 

cover 

change (ha) 

TDF cover 

lost (ha) 

TDF cover gain 

(ha) 

Net  change in 

TDF cover 

(2004-2010, ha) 

1 Agua Hedionda y Anexos 902 57 

 

50 237 531.3 220.4 91.1 -129.2 

2 Ahucapan  841 129 271 985 668.5 79.9 89.7 9.8 

3 Ayuquila 456 60 230 862 341.6 49.0 64.4 15.4 

4 Ayutita 614 40 98 334 390.9 139.7 74.7 -64.9 

5 

Chiquihuitlan y Agua 

Salada 3724 148 

 

60 237 2507.4 681.5 343.6 -337.9 

6 Coatlancillo  1558 45 159 565 1112.3 226.3 212.7 -13.6 

7 El Ahucate 291 23 72 242 245.0 25.0 20.0 -5.0 

8 El Chante 1074 240 524 1880 853.5 112.0 105.9 -6.2 

9 El Jardin  577 45 40 175 435.8 61.2 75.3 14.1 

10 El  Limon 1360 450 961 3102 1099.0 89.0 169.0 80.0 

11 El Palmar 322 90 15 234 286.5 23.7 11.3 -12.4 

12 El Rodeo 1502 32 41 161 1174.7 101.9 175.8 73.9 

13 El Temazcal  5403 81 33 116 4469.1 475.5 443.3 -32.1 

14 La Laja 1591 50 114 454 1168.9 182.4 210.2 27.8 

15 Lagunillas 808 98 242 836 694.4 74.9 37.2 -37.6 

16 Las Pilas 456 47 94 387 325.4 45.0 85.0 40.0 

17 Los Mezquites 1427 57 72 301 1109.0 135.0 159.0 24.0 

18 Mezquitan 500 64 230 885 416.8 19.2 62.1 42.9 

19 San Agustin 935 140 102 342 762.7 139.9 28.8 -111.2 

20 San Antonio 1650 90 158 669 1211.5 194.4 233.2 38.8 

21 San  Buenaventura  1267 26 46 158 1178.0 14.7 74.3 59.7 

22 San Clemente 1328 212 310 1182 960.2 264.7 99.6 -165.0 

23 San Jose de las Burras  2494 150 134 541 1876.8 176.3 415.9 239.6 
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24 San Juan Jiquilpan  1144 130 455 1789 881.7 106.1 140.1 34.0 

25 San Miguel  668 45 132 446 626.7 18.1 21.3 3.2 

26 Tecomatlan  802 53 35 129 710.0 41.0 45.0 4.0 

27 Tonaya 4826 282 955 3497 3823.4 505.1 446.1 -59.0 

28 Tuxcacuesco  2051 165 405 1538 1380.0 404.0 203.0 -201.0 

29 Zenzontla 2400 67 60 381 1943.0 231.0 194.0 -37.0 

 

Total  42971.0 3116  6098  22665 33184.2 4836.6 4331.6 -505.0 



Fig S1. Geographic representation of residuals for the probability model of forest 1078 

degradation for the Ayuquila Basin, Jalisco, Mexico.1079 
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Fig S2. Semivariogram of residuals for the probability model of forest degradation 1081 

for the Ayuquila Basin, Jalisco, Mexico1082 
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