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ABSTRACT  16 

Anaerobic digestion (AD) is expanding rapidly in the UK. Previous life cycle assessment (LCA) 17 

studies have highlighted the sensitivity of environmental outcomes to feedstock type, fugitive 18 

emissions, biomethane use, energy conversion efficiency and digestate management. We 19 

combined statistics on current and planned AD deployment with operational data from a survey 20 

of biogas plant operators to evaluate the environmental balance of the UK biogas sector for the 21 

years 2014 and 2017. Consequential LCA was applied to account for all major environmental 22 

credits and burdens incurred, including: (i) substitution of composting, incineration, sewer 23 

disposal, field decomposition and animal feeding of wastes; (ii) indirect land use change (ILUC) 24 

incurred by the cultivation of crops used for biogas production and to compensate for bakery and 25 

brewery wastes diverted from animal feed. In 2014, the UK biogas sector reduced greenhouse 26 

gas (GHG) emissions by 551-755 Gg CO2e excluding ILUC, or 238-755 Gg CO2e including 27 

ILUC uncertainty. Fossil energy depletion was reduced by 8.9-10.8 PJe, but eutrophication and 28 

acidification burdens were increased by 1.8-3.4 Gg PO4e and 8.1-14.6 Gg SO2e, respectively. 29 

Food waste and manure feedstocks dominate GHG abatement, largely through substitution of in-30 

vessel composting and manure storage, whilst food waste and crop feedstocks dominate fossil 31 

energy credit, primarily through substitution of natural gas power generation. Biogas expansion 32 

is projected to increase environmental credits and loadings by a factor of 2.4 by 2017. If all AD 33 

bioelectricity replaced coal generation, or if 90% of biomethane replaced transport diesel or grid 34 

natural gas, GHG abatement would increase by 131%, 38% and 20%, respectively. Policies to 35 

encourage digestion of food waste and manures could maximize GHG abatement, avoiding the 36 

risk of carbon leakage associated with use of crops and wastes otherwise used to feed livestock. 37 

Covering digestate stores could largely mitigate net eutrophication and acidification burdens. 38 
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    INTRODUCTION 39 

Anaerobic digestion (AD) is an established technology to treat wet organic wastes that is 40 

increasingly being deployed as a renewable energy technology across Europe to convert a range 41 

of feedstocks into biogas and ultimately bioelectricity, bioheat or transport fuel. This has arisen 42 

largely in response to energy-related subsidies paid to AD operators, such as feed-in-tariffs 43 

(FITs) paid for bioelectricity and the Renewable Heat Incentive (RHI) paid for bioheat (OFGEM, 44 

2016). Up until 2014, almost all biogas produced in the UK was used to fuel combined heat and 45 

power (CHP) engines, producing bioelectricity eligible for a FIT subsidy of up to £0.10/kWh in 46 

2015 (OFGEM, 2015). In 2014, there were 32 small-scale plants (≤250kWe) with a cumulative 47 

installed capacity of 3.4MWe, 48 medium scale plants (>250kWe≤500kWe) with a cumulative 48 

installed capacity of 22.6MWe, and 72 large-scale plants (>500kWe) with a cumulative installed 49 

capacity of 136.0MWe (NNFCC, 2014). The overall efficiency of electricity generation can vary 50 

significantly across AD-CHP plants (Bacenetti et al., 2013), influencing their performance in 51 

terms of greenhouse gas (GHG) abatement and fossil fuel substitution. Similarly, the magnitude 52 

of eutrophication and acidification burdens arising largely from ammonia (NH3) emissions 53 

during the storage and field application of digestate are highly dependent on the type digestate 54 

storage infrastructure and method of digestate application (Boulamanti et al., 2013: Styles et al., 55 

2015a;b). However, up until now there has been little or no published information on the 56 

conversion efficiency of biogas feedstock into electricity, or on the methods of storing and 57 

spreading the residual digestate produced, for the UK biogas sector as a whole.   58 

A review of 15 attributional life cycle assessment (LCA) studies (Hijazi et al., 2016) found that 59 

biogas energy has a lower GHG intensity than fossil reference energy, but can increase 60 

acidification and eutrophication burdens. Whiting and Azapagig (2014) reported that biogas 61 
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produced from agricultural wastes resulted in significant GHG abatement when it substituted 62 

natural gas in CHP engines, but increased acidification and eutrophication burdens by 25 and 12 63 

fold, respectively. Whilst high biogas yields from maize have been found to support generation 64 

of bioelectricity with a considerably lower GHG intensity than grid-electricity in Germany and 65 

the UK (Whiting and Azapagig, 2014; Claus et al., 2014), maize biogas was also found to 66 

increase environmental burdens across eight out of 11 impact categories compared with natural 67 

gas (Whiting and Azapagig, 2014). However, fugitive emissions of methane (CH4) are highly 68 

variable (Adams et al., 2015), and may significantly reduce net GHG abatement achieved by 69 

crop-biogas. Furthermore, the aforementioned attributional LCA studies did not expand system 70 

boundaries to account for important indirect effects of AD system deployment, including the 71 

diversion of organic waste from alternative fates such as landfill or composting, and indirect land 72 

use change (ILUC) associated with the displacement of food crop production. Such effects could 73 

have an important influence on the environmental outcome of AD deployment at the national 74 

level, and may be captured by consequential LCA that accounts for indirect effects caused by 75 

market signals arising from an intervention (Weidema, 2001).  76 

Styles et al. (2015a) applied consequential LCA to highlight the risk of carbon leakage from 77 

ILUC when animal feed is diverted to biogas plants on dairy farms, building on the recognised 78 

need to expand LCA boundaries in order to accurately evaluate the environmental efficiency of 79 

biogas and other renewable energy options (Rehl et al., 2012; Tufvesson et al., 2013; Tonini et 80 

al., 2016). Numerous recent studies have indicated that crop-biogas may actually increase GHG 81 

emissions when replacing fossil energy, if ILUC is incurred (Tonini et al., 2012; Hamelin et al., 82 

2012; Styles et al., 2015b). LCA system boundaries have also been expanded to quantify 83 

significant GHG credits for biogas plants attributable to the avoidance of manure storage and 84 
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waste management (e.g. composting), and fertilizer replacement by digestate (Borjesson and 85 

Berglund, 2007; Bacenetti et al., 2013; Boulamanti et al., 2013). For example, despite limited 86 

bioenergy yields (Lijó et al., 2014a), the digestion of pig slurry can achieve GHG abatement of 87 

1.19 kg CO2e per kWh of electricity generated when avoided slurry storage emissions are 88 

accounted for as a credit (Bancenetti et al., 2013).  89 

Bywater (2011) characterized small-scale farm AD-CHP plants ≤ 250 kWe capacity in the UK, 90 

typically co-digesting animal manures and crops, with single-stage digestion and relatively short 91 

residence times, often storing digestate in pre-existing manure storage facilities. Larger AD 92 

plants usually digest waste and crop feedstocks, and are more likely to be optimized for 93 

electricity generation with e.g. two-stage digestion and longer residence times. Given recent 94 

findings on large differences in life cycle environmental performance for different types of 95 

feedstock and operating parameters, quantifying the overall environmental balance of AD 96 

deployment in the UK could provide useful insight for policy makers on the efficacy of policies 97 

relating to AD, in terms of climate change, energy security, and air and water pollution. 98 

Consequential LCA is the most relevant approach for such an evaluation because it accounts for 99 

direct and indirect environmental burdens and credits associated with the introduction of AD, 100 

considering process substitution (Weidema, 2001; Tufvesson et al., 2013; Tonini et al., 2016).   101 

A detailed statistical overview of the UK biogas sector has recently been provided by NNFCC 102 

(2014a;b), including information on regional deployment, plant scale, feedstock requirements 103 

and land requirements, alongside projected biogas capacity development up until 2017. 104 

However, that overview did not include information on design and operational parameters 105 

critical to environmental performance. We compiled a uniquely detailed profile of the non-106 

wastewater treatment plant (WWTP) biogas sector in the UK by combining plant size and 107 
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feedstock data (NNFCC, 2014a;b) with operational data obtained from a survey of UK biogas 108 

plants. We then applied consequential LCA to evaluate the net environmental balance of the 109 

sector, and to explore alternative scenarios of deployment. This paper presents results from the 110 

biogas plant survey, and describes how they were used to estimate the environmental profile of 111 

the UK biogas sector through consequential LCA.       112 

1. MATERIALS AND METHODS 113 

2.1 Goal, scope and boundary definition 114 

The aim of this study was to quantify the net environmental balance (burden change) 115 

associated with recent and projected deployment of AD in the UK, considering incurred and 116 

avoided processes and emissions. The study involved the development and application of the 117 

LCAD EcoScreen tool, applying a consequential LCA approach to calculate the life cycle 118 

environmental balance of AD in relation to a reference flow of one Mg of dry matter (DM) 119 

feedstock input, for a range of characterized feedstocks, plant operating characteristics and 120 

counterfactual (substituted) material flows. Major processes accounted for are shown in Figure 1. 121 

The construction and manufacture of buildings and equipment were excluded from the scope, as 122 

is typical for bioenergy carbon footprints (EC, 2009).   123 
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 124 

Figure 1. Simplified schematic representation of the major processes considered within the 125 

consequential LCA undertaken in this study, compared with an attributional LCA boundary.   126 

 127 

Results were expressed in relation to four environmental impact categories based on CML 128 

(2010) characterization factors: global warming potential (GWP) expressed as CO2e, 129 

eutrophication potential (EP) expressed as PO4e, acidification potential (AP) expressed as SO2e, 130 

and fossil resource depletion potential (FRDP) expressed as MJe. For example, 100-yr GWP 131 

factors for CH4 and N2O are 25 and 298, respectively. Scenario results were normalised against 132 

reported annual UK loadings for GWP (DECC, 2015), and against estimated UK loadings for 133 

EP, AP and FRDP after per capita extrapolation of EU loadings (Sleeswijk et al., 2008) based on 134 

EU 28 and UK population numbers of 510 million and 65 million, respectively (Eurostat, 2016).   135 

 136 
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2.2. Inventory compilation 137 

LCA was undertaken for 1 Mg DM across 16 types of feedstock, and a total of 77 permutations 138 

of feedstock and plant operating parameters, based on national quantities of biogas feedstocks 139 

and plant operating characteristics described in the subsequent sections. Table 1 summarises the 140 

framework methodology employed, modified from Styles et al. (2015a;b). Inputs accounted for 141 

in detailed attributional LCA studies found to be of minor relevance to the four impact categories 142 

studied, such as water, lubricating oil and sodium hydroxide (e.g. Poeschl et al., 2012), were 143 

disregarded; the aim was to accurately capture wider environmental effects of the sector as a 144 

whole.    145 

 146 

Table1. Methods applied within the LCAD EcoScreen tool to calculate activity data, emissions 147 

and environmental burdens in relation to a reference flow of one Mg feedstock dry matter      148 

Process Method and data to calculate primary emissions and burdens in relation to 

feedstock inputs 

 

In
cu

rr
ed

 p
ro

ce
ss

es
 

Cultivation Burdens = Mg DM x crop cultivation burdens assuming mineral fertiliser application 

(Table 2) x 1.11 (10% silage loss). 

Indirect land 

use change 

GWP and EP burdens = Mg DM / yield, Mg/ha x terrestrial C and N loss per ha at 

global agricultural frontier (Styles et al., 2015b), based on IPCC (2006) Tier 1 EFs. 

Transport Burdens = Mg DM / DM % of wet weight (Table 3) x 5 km/50 km for crops/wastes x 

Ecoinvent v3.1 burdens per tkm for tractor-trailer/16-32 tonne truck (Table 2). 

Digester 

leakage 

kg CH4 = Mg DM x m3/Mg CH4 yield (Table 3) x 0.67 kg/m3 x 1% digester loss 

(Adams et al., 2015).  

CHP 

combustion 

kg CH4 = Mg DM x m3/Mg CH4 yield (Table 3) x 0.67 kg/m3 – 1% digester loss x 

0.5% CHP slip.  

AP and EP burdens = MJ CH4 x natural gas CHP burdens from Ecoinvent v3.1 

(Table 2).  

Digestate 

storage 

kg CH4 = Mg DM x m3/Mg CH4 yield (Table 3) x 0.67 kg/m3 x 1.5% for medium and 

large plants; CH4 yield x 1.5%/4%/9% (closed/open tank/lagoon) for small plants.  

kg NH3-N = Mg DM x total N, kg/Mg x % total N as NH4-N (Table 3) x 

2%/10%/52% for closed tank/open tank/lagoon (Misselbrook et al., 2012). 

Indirect N2O-N = NH3-N x 0.01 (IPCC, 2006). 

Digestate Burdens = Mg DM / DM % of wet weight (Table 3) x 5 km (0 for manure digestate – 
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transport transported anyway) x burdens per tkm for tractor-trailer from Ecoinvent v3.1 (Table 

2). Assumes 1 Mg digestate per 1 Mg feedstock wet weight.  

Digestate 

application 

kg NH3-N and kg NO3-N = Mg DM x digestate NH4-N (Table 3) – storage NH3-N 

loss (above) x MANNER NPK EFs (Nicholson et al., 2013).   

kg N2O-N = Mg DM x total N, kg/Mg (Table 3) – storage NH3-N loss (above) x 0.01 

+ NH3-N x 0.01 + NO3-N x 0.0075 (IPCC, 2006). 

kg P leached = Mg DM x P content, kg/Mg (Table 3) x 0.01 (Withers, 2013).  

Fertiliser replacement credits = Mg DM x nutrient contents, kg/Mg (Table 3) – 

storage NH3-N loss (above) x MANNER NPK availability factors (Nicholson et al., 

2013) x fertilizer manufacture and application credits (described below). 

A
v
o
id

ed
 p

ro
ce

ss
es

 (
cr

ed
it

s)
 

Avoided 

manure 

storage 

Avoided kg CH4 = Mg DM x 800 kg/Mg volatile solids x CH4-producing capacity for 

manure type (IPCC, 2006) x 0.67 kg/m3 CH4 x CH4 conversion factor by system type 

(IPCC, 2006). 

Avoided kg N2O-N = Mg DM x total N, kg/Mg (Table 3) x storage system EFs 

(IPCC, 2006).  

Avoided kg NH3-N = Mg DM x total N, kg/Mg (Table 3) x % total N as NH4-N 

(Webb and Misselbrook, 2004) x storage system EFs (Misselbrook et al., 2012). 

Elaborated in SI 3.1. 

Avoided 

manure 

application 

Avoided kg NH3-N and kg NO3-N = Mg DM x total N, kg/Mg (Table 3) x % total N 

as NH4-N (Webb and Misselbrook, 2004) x MANNER NPK EFs (Nicholson et al., 

2013).  

Avoided kg N2O-N = Mg DM x total N, kg/Mg (Table 3) – storage NH3-N loss 

(above) x 0.01 + NH3-N x 0.01 + NO3-N x 0.0075 (IPCC, 2006). 

Avoided kg P leached = Mg DM x P content, kg/Mg (Table 3) x 0.01 (Withers, 

2013).  

Avoided fertiliser replacement credits = Mg DM x nutrient contents, kg/Mg (Table 3) 

– storage NH3-N loss (above) x MANNER NPK availability factors (Nicholson et al., 

2013) x fertilizer manufacture and application credits (described below).  

Avoided in-

vessel 

composting  

Avoided emissions, grid electricity use, fertiliser replacement and soil C 

sequestration as described in Styles et al. (2015b).. Elaborated in SI 3.2. Net credit 

values in Table 2. 

Avoided 

landfilling 

Avoided emissions, methane capture and grid electricity replacement credits as 

described in Styles et al. (2015a). Elaborated in SI 3.3. Net credit values in Table 2. 

Displaced 

animal feed 

Additional incurred burdens = Mg feedstock DM x Ecoinvent v3.1 burdens for 1 Mg 

wheat-based concentrate feed (Table 2). ILUC effect from compensatory production 

calculated as described above for crop feedstock. Elaborated in SI 3.4. 

Avoided 

field residue 

decompositi

on 

Avoided emissions, soil C sequestration and fertiliser replacement credits described 

in SI 3.5. Net credit values in Table 2.  

Avoided 

incineration 

with energy 

recovery  

Avoided burdens = 1 Mg DM animal processing waste x Ecoinvent v3.1 burdens for 

incineration, corrected for moisture content – credits for avoided natural gas 

electricity generation, elaborated in SI 3.6. Net credit values in Table 2. 

Avoided 

sewer 

disposal  

Avoided burdens of wastewater treatment including AD approximated to 

environmental burdens of on-site AD – elaborated in SI 3.7. Net credit values in 

Table 2. 

Avoided 

marginal 

grid 

Avoided burdens = Mg DM x m3/Mg CH4 yield (Table 3) x 0.67 kg/m3 – 1% digester 

loss – 0.5% CHP slip x 50 MJ/kg LHV x CHP elec. efficiency (35% or 40% for small 

& medium or large scale AD) – 6% parasitic load x natural gas combined cycle 
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electricity 

generation  

electricity generation burdens per MJ generated from Ecoinvent v3.1. Net credit 

values in Table 2. 

Avoided 

oil/gas  

heating  

Avoided burdens = Mg DM x m3/Mg CH4 yield (Table 3) x 0.67 kg/m3 – 1% digester 

loss – 0.5% CHP slip x 50 MJ/kg LHV x 45% CHP heat efficiency – 33% parasitic 

heat use x 30%/27%/0% utilisation rate small/medium/large scale AD) x oil/gas heat 

burdens per MJ heat from Ecoinvent v3.1. Net credit values in Table 2. 

Avoided 

NPK 

fertiliser 

manufacture  

Avoided burdens = Mg DM x nutrient contents, kg/Mg (Table 3) – storage NH3-N 

loss (above) x MANNER NPK availability factors (Nicholson et al., 2013) x 

Ecoinvent v3.1 burdens for ammonium-nitrate, triple superphosphate and potassium 

chloride expressed per kg N, P and K. Net credit values in Table 2. 

Avoided 

NPK 

fertiliser 

application 

Avoided kg NH3-N = avoided fertilizer N application (above) x 0.017 (Misselbrook 

et al., 2012).  

Avoided kg N leached = avoided fertilizer N application (above) x 0.10 (Duffy et al., 

2013).  

Avoided kg N2O-N = avoided fertilizer N application (above) x 0.01 + NH3-N x 0.01 

+ NO3-N x 0.0075 (IPCC, 2006). 

Avoided kg P leached = avoided fertilizer P application (above) x 0.01 (Withers, 

2013).  

 149 

Burden data for key inputs and processes are summarized in Table 2. Crop cultivation burdens 150 

were based on Styles et al. (2015b) for UK cultivation of maize and grass, and from Ecoinvent 151 

v3.1 (Weidema et al., 2013) for fodder beet, and for rye as a proxy for “other cereal silage” 152 

(Table 2). The effect of possible land transformation caused by displacement of food production 153 

by cultivation of biogas crops, or by additional cultivation of wheat to compensate for animal 154 

feed diverted to AD, was evaluated for the purposes of uncertainty analyses. The ILUC factors 155 

proposed in Styles et al. (2015b) for land transformation at the global agricultural frontier were 156 

applied to an area equivalent to 100% of the area occupied by the biogas or compensatory wheat-157 

feed crops. These factors equate to a GWP burden of 25 Mg yr-1 CO2e and an EP burden of 9.9 158 

kg yr-1 PO4e, respectively, per hectare transformed, based on IPCC (2006) default LUC factors 159 

(representing a worst case effect). Methodology and embodied burdens are further elaborated in 160 

the following sections, and in SI Section 3. 161 
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Table 2. Environmental burden data applied to key inputs and processes, for global warming 162 

potential (GWP), eutrophication potential (EP) acidification potential (AP) and fossil resource 163 

depletion potential (FRDP)    164 

Input/process 
Reference unit 

GWP 

kg CO2e 

EP 

kg PO4e 

AP 

kg SO2e 

FRDP 

MJe 

Crop cultivation burdens      

Fodder beet 

kg DM 

0.33 0.0022 0.0030 3.35 

Grass silage 0.39 0.0028 0.0025 1.93 

Maize silage 0.19 0.0016 0.0012 0.92 

Other cereal silage 0.31 0.0031 0.0029 2.83 

(Avoided) upstream burdens for inputs     

Ammonium nitrate-N  kg N 6.10 0.0068 0.024 55.7 

Triple superphosphate  kg P 0.889 0.020 0.016 12.5 

Potassium chloride K2O kg K 0.42 0.0007 0.0014 6.91 

Diesel upstream kg  0.69 0.0009 0.0062 51.6 

(Avoided) field emissions      

Fertiliser N application kg N 5.12 0.054 0.035 - 

Manure/digestate N 

application*  
kg N 

5.05-

6.92 

0.034-

0.230 

0.155-

0.525 
- 

P application kg P - 0.031 - - 

Tractor diesel combustion kg diesel 3.06 0.0005 0.002 - 

Tractor-trailer transport tkm 0.161 0.00025 0.0011 2.14 

16-32 tonne Euro IV truck 

transport  
tkm 0.134 0.00011 0.0005 1.75 

Biomethane combustion**       

CHP combustion kWhth  0.00004 0.00045  

EURO V car vkm  0.00003 0.0001  

Replaced fossil energy      

Marginal gas electricity 

generation kWhe 
0.40 0.00004 0.0010 6.55 

Coal electricity generation 1.02 0.0010 0.0015 16.9 

Oil heating 
kWhth 

0.33 0.00009 0.0006 4.50 

Gas heating 0.25 0.00006 0.0004 3.89 

EURO V Diesel car 
Vkm 

0.24 0.0002 0.0007 3.33 

EURO V Petrol car 0.28 0.0002 0.0008 3.83 

Replaced waste management***     

Animal feed (avoided 

wheat cultivation) 

kg DM 

biowaste 

-0.58 -0.0071 -0.0041 -3.04 

Field residue -0.16 0.0035 -0.0003 -0.51 

Landfilling  1.99 0.0006 0.0016 -6.01 

In-vessel composting 0.66 0.0032 0.0070 1.92 

Incineration  0.00 0.0009 0.0005 0.00 



 12 

*based on MANNER-NPK model (Nicholson et al., 2013); **CHP and upgrade methane slip 

accounted for separately. ***these counterfactual waste management options, avoided by AD 

treatment of various waste fractions, are explained in SI section 3.  

 165 

 166 

2.3. National AD feedstock profile  167 

The LCAD EcoScreen tool was run for the annual quantities of feedstock required for all UK 168 

non-WWTP biogas plants operational as of October 2014, reported by NNFCC (2014a;b). The 169 

apportionment of reported feedstock quantities across 16 types, and five main categories of 170 

feedstock material (Table 3), is summarized in SI Section 2. In line with the CLCA objectives, 171 

only net additional transport incurred for each feedstock was used to calculate biogas sector 172 

transport burdens. Thus, no additional transport burdens were incurred for manure feedstocks 173 

compared with baseline manure management, nor for onsite processing of wet wastes. Crops and 174 

other waste feedstocks incurred transport burdens of 5 and 50 km, respectively. In all cases 175 

except for manures it was assumed that digestates incurred additional transport burdens of 5 km 176 

for field application.    177 

 178 

Table 3. Quantities and characteristics of feedstocks digested in UK biogas plants, in declining 179 

order of magnitude, categorized according to five categories: food waste (FW), crop waste (CW), 180 

other waste (OW), crops (C) and manures (M)    181 

 Feedstock Digest

ate 

References 
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Food waste  FW 50 26 462,410 27 11.8 4.1 369 80 
WRAP (2010); Defra 

(2014) 

Maize silage C 5 30 158,130 14.1 6.2 3.8 332 37 FNR (2010) 

Other industrial 

waste 
OW 50 26 44,647 16.8 7.3 5.6 323 59 

FNR (2010); WRAP 

(2009) 

Other whole-crop 

cereal silage 
C 5 33 43,486 18.6 8.1 8.2 312 37 FNR (2010) 

Brewery waste OW 0 22 41,949 34 14.8 5.1 297 59 Wellinger et al. (2013) 

Cattle slurry M 0 10 40,296 40.7 17.8 14.9 140 75 Defra (2010) 

Crop waste CW 5 17 37,027 26 11.4 6.6 240 59 
Defra (2012); Deublein et 

al. (2008) 

Grass silage C 5 25 32,944 21.5 9.4 6.6 306 37 Styles et al. (2015a) 

Animal 

processing waste 
OW 0 15 26,338 20.4 8.9 19.4 199 59 

FNR (2010); Wellinger et 

al. (2013) 

Beet C 5 23 20,206 19.4 8.5 6.9 313 37 Styles et al. (2015b) 

Bakery waste OW 50 61 18,755 37 16.2 1.7 304 59 Poeschl et al. (2012) 

Pig slurry M 0 4 8,809 99.3 43.4 37.3 283 80 FNR (2010); Defra (2010) 

Poultry slurry M 0 10 6,979 55.4 24.2 62.2 225 75 FNR (2010); Defra (2010) 

Waste starch OW 0 3.3 6,200 45 19.6 23.2 703 59 
FNR (2010); Fang et al. 

(2011) 

Poultry litter M 0 40 5,943 50.2 21.9 34.6 225 75 FNR (2010); Defra (2010) 

Cheese 

processing 
OW 0 5 3,769 25 10.9 6.3 309 59 

FNR (2010); Wellinger et 

al. (2013) 

 182 

2.4. Plant operating assumptions 183 

As of April 2014, 138 non-WWTP AD plants were operational in the UK (NNFCC, 2014a). An 184 

anonymous postal questionnaire was sent to the 78 AD plants for which postal addresses could 185 

be found online. The questionnaire contained 30 questions over five sections, covering: 186 

feedstock characteristics and quantities; heat and electricity generation and use; digestate storage 187 

and application details; operational issues such as maintenance requirements; operator 188 
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perspectives on AD based on their experience. Twenty-four responses were received to the 189 

questionnaire survey relating to 26 biogas-CHP plants which were categorised according to size 190 

as per NNFCC (2014a): eight small plants (50-250 kWe); seven medium-sized plants (350-500 191 

kWe); 11 large plants (≥1000 kWe). Not all respondents answered all questions, leaving a 192 

reduced number of data points for some parameters. Key results from the survey are summarised 193 

in Table SI1.1 and Figure 2.  194 

Electricity conversion efficiency (Ƞelec) was estimated by dividing reported gross electricity 195 

generation (Gelec, MJ) by the lower heating value (LHV) of biomethane produced (LHVbiomethane, 196 

MJ), which was estimated based on feedstock inputs (Qfeedstock, Mg) for feedstocks i-n, using 197 

estimated default biomethane yields (Ybiomethane, m
3 Mg-1) reported in Table 3, a density of 0.67 198 

kg m-3 and a LHV of 50 MJ kg-1 for methane:  199 

Ƞelec = Gelec / [Σ(Qfeedstock i-n x Ybiomethane i-n) x 0.67 x 50].  200 

Values ranged from 0.27 to 0.57 (Figure 2), representing variation in actual net biomethane 201 

yields and CHP transformation efficiencies.   202 

 203 

 204 
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NB: Electricity conversion efficiency calculated as reported electricity output divided by 
LHV of default biomethane yields (Table 3) – high values indicate higher biomethane 
yields.   

 
Figure 2. Key operational parameters plotted against AD-CHP electricity generating capacity 205 

(kWe)   206 

Non-parametric Kruskal-Wallis analyses were undertaken in IBM SPSS Statistics 22 to test for 207 

differences in the distribution of values across AD plant size categories for the following 208 

parameters: estimated biomethane electricity conversion efficiency, parasitic electricity 209 
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requirement, parasitic heat requirement, and the fraction of CHP heat output that replaces fossil-210 

fuel heating. Statistically significant size effects were confirmed for electricity conversion 211 

efficiency (p = 0.007) and the fraction of CHP heat output replacing fossil fuel heating (p = 212 

0.015) (Table SI1.1; Figure 2). Median values for each size category were applied in the national 213 

LCA evaluation for these parameters. Estimated biomethane-to-electricity conversion 214 

efficiencies (Figure 2; Table SI1.1) indicate that biomethane yields vary from default values 215 

presented in Table 3 depending on plant size. Based on median conversion efficiencies (Table 216 

SI1.1) and assuming constant CHP electrical efficiencies of 35% and 40% for small and 217 

medium/large scale biogas plants, respectively (Bacenetti et al., 2013), biomethane yields in 218 

Table 3 were multiplied by 0.91, 1.10 and 1.19 in order to calculate biomethane yields for small, 219 

medium and large plants, respectively, in the national LCA. Fractions of CHP electricity and 220 

heat output required to run the AD plant (parasitic loads), were not statistically different across 221 

size categories (Table SI1.1), so overall median values were used for all sizes of biogas-CHP 222 

plant considered in the national LCA evaluation.  223 

 224 

2.5. Counterfactual fate of feedstock  225 

Table 4 summarises counterfactual fates of all feedstocks, or in the case of crop feedstocks, the 226 

land required to cultivate the crops. Modelling of counterfactual fates was largely based on 227 

Styles et al. (2015a;b) and Ecoinvent v3.1 (Weidema et al., 2013), and is elaborated in SI Section 228 

3. Table 1 and table 2 summarise methodology and results for key counterfactual (avoided) 229 

burdens. Important aspects are mentioned below.  230 
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Table 4. Feedstock quantities modelled according to specified permutations of counterfactual 231 

management and digestate storage options storage across three biogas-plant-size categories    232 

 Small (≤250 kWe) Medium (>250 ≤500 kWe) Large (>500 kWe) 
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Food waste    58,664 In-vessel 
composting 

Lagoon 275,937 In-vessel 
composting 

Lagoon 

   9,550 In-vessel 
composting 

Open tank 118,259 In-vessel 
composting 

Sealed 
tank 

Other industrial 
waste 

   5,664 In-vessel 
composting 

Lagoon 26,642 In-vessel 
composting 

Lagoon 

   922 In-vessel 
composting 

Open tank 11,418 In-vessel 
composting 

Sealed 
tank 

Bakery waste    2,379 Animal feed Lagoon 11,192 Animal feed Lagoon 

   387 Animal feed Open tank 4,796 Animal feed Sealed 
tank 

Brewery waste    5,322 Animal feed Lagoon 25,033 Animal feed Lagoon 

   866 Animal feed Open tank 10,728 Animal feed Sealed 
tank 

Crop waste 1,137 Field 
residues 

Gas-
tight 

4,611 Field 
residues 

Lagoon 21,690 Field 
residues 

Lagoon 

   751 Field 
residues 

Open tank 9,296 Field 
residues 

Sealed 
tank 

Cattle manure 
 

1,201 Crusted 
tank 

Open 
tank 

715 Crusted 
tank 

Open tank 4,129 Crusted 
tank 

Lagoon 

2,562 Open tank Open 
tank 

1,524 Open tank Lagoon 8,808 Open tank Lagoon 

4,243 Lagoon Open 
tank 

2,525 Lagoon Lagoon 14,589 Lagoon Lagoon 

Maize silage 5,016 Food/feed 
production 

Lagoon 19,425 Food/feed 
production 

Lagoon 91,369 Food/feed 
production 

Lagoon 

   3,162 Food/feed 
production 

Open tank 39,158 Food/feed 
production 

Sealed 
tank 

Other cereal 
silage 

1,379 Food/feed 
production 

Lagoon 5,342 Food/feed 
production 

Lagoon 25,126 Food/feed 
production 

Lagoon 

   870 Food/feed 
production 

Open tank 10,768 Food/feed 
production 

Sealed 
tank 

Grass silage 
 

   4,047 Food/feed 
production 

Lagoon 19,035 Food/feed 
production 

Lagoon 

1,045 Food/feed 
production  

Lagoon 659 Food/feed 
production 

Open tank 8,158 Food/feed 
production 

Sealed 
tank 

Poultry litter 
 

838 Manure 
heap 

Open 
tank 

429 Manure 
heap 

Lagoon 2,018 Manure 
heap 

Lagoon 

   70 Manure 
heap 

Open tank 865 Manure 
heap 

Sealed 
tank 

Poultry slurry 678 Pit storage Open 347 Pit storage Lagoon 1,632 Pit storage Lagoon 
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tank 

   56 Pit storage Open tank 700 Pit storage Sealed 
tank 

Fodder beet 641 Food/feed 
production 

Lagoon 2,482 Food/feed 
production  

Lagoon 11,675 Food/feed 
production  

Lagoon 

   404 Food/feed 
production  

Open tank 5,004 Food/feed 
production  

Sealed 
tank 

Animal 
processing 
waste 

   3,341 Incineration Lagoon 15,717 Incineration Lagoon 

   544 Incineration Open tank 6,736 Incineration Sealed 
tank 

Waste starch 
 

   787 Wastewater 
treatment 

Lagoon 3,700 Wastewater 
treatment 

Lagoon 

   128 Wastewater 
treatment  

Open tank 1,586 Wastewater 
treatment 

Sealed 
tank 

Cheese 
processing 
waste 

   478 Wastewater 
treatment 

Lagoon 2,249 Wastewater 
treatment 

Lagoon 

   78 Wastewater 
treatment 

Open tank 964 Wastewater 
treatment 

Sealed 
tank 

Pig slurry 
 

1,976 Pit storage Gas-
tight 

1,011 Pit storage Lagoon 4,756 Pit storage Lagoon 

   165 Pit storage Open tank 2,038 Pit storage Sealed 
tank 

 233 

Emissions of CH4, N2O and NH3 during manure storage were based on factors for specific types 234 

of storage system given in IPCC (2006) and Misselbrook et al. (2012) (Table 1). Cattle slurry is 235 

the dominant manure feedstock (Table 3). Data from the Defra farm practice survey indicate that 236 

15% of dairy farms store liquid cattle slurry in a crusted tank, 32% in an open tank, and 53% in a 237 

lagoon (Defra, 2014a). Counterfactual management of cattle slurry was apportioned across these 238 

system types using the above percentages (Table 4). According to Defra (2014a), most “Pigs & 239 

Poultry” farms store their manure in a tank, so it was assumed that all pig and poultry slurry 240 

going to AD was diverted from “pit storage” and “liquid storage”, respectively, as defined in 241 

IPCC (2006). It was assumed that all solid poultry litter going to AD was diverted from storage 242 

in manure heaps. Emissions and NPK fertilizer replacement for counterfactual manure spreading 243 

were calculated using the MANNER NPK model (Nicholson et al., 2013), assuming broadcast 244 

application in February and April to a spring crop, and June and September to an autumn crop, 245 

on a sandy-clay-loam soil.   246 
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Medium and large biogas plants digest a wide range of feedstock (Table SI1.1). In-vessel 247 

composting was considered to be the marginal type of waste management avoided by AD 248 

treatment of separately collected wet organic waste, such as food waste (Table 4). This reflects 249 

the dominant fate of separately collected organic waste, and represents a conservative long-term 250 

assumption given that a significant fraction of organic waste still goes to landfill in the UK 251 

(Mistry et al., 2011). Bakery and brewery wastes are highly valued as animal feeds; 252 

conservatively, it was assumed that these waste types were efficiently utilized to substitute 253 

wheat-based animal feed on an energy content basis before being diverted to AD (Table 4). 254 

Diversion to AD is thus associated with a possible ILUC effect, because additional wheat must 255 

be grown to compensate for the lost animal feed (Tonini et al., 2016), as described in SI 3.4. 256 

Waste starch and cheese processing wastes are often liquid, with low solids content, and 257 

therefore difficult to transport for alternative uses such as animal feed. These wastes were 258 

assumed to be disposed of as liquid effluent in the absence of on-site AD, to be treated in an off-259 

site wastewater treatment plant (Table 4). Conservatively, it was assumed that off-site 260 

wastewater treatment involved AD of sewage sludge, leading to an identical environmental 261 

balance to on-site AD (from a modelling perspective, this leads to no net change in 262 

environmental burden whether wastewater is treated in an on-site or off-site AD plant). Owing to 263 

health and hygiene regulations surrounding the handling of animal processing waste, incineration 264 

was considered the most likely counterfactual fate for this waste stream (Table 4), modelled 265 

based on Ecoinvent v3.1 data (Table 2; SI 3.6). Finally, it was assumed that agricultural land 266 

used to cultivate biogas-crops would otherwise have been used to produce food or animal feed. 267 

Displaced food or feed production may thus incur ILUC. Waste streams going to medium- and 268 
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large-scale biogas plants were modelled in quantities determined by the aforementioned statistics 269 

and assumptions (Table 4).  270 

 271 

2.6. Digestate management  272 

Digestate storage infrastructures for different biogas plant size categories were apportioned as 273 

per the distribution across surveyed plants (Table SI1.2). As shown in Table 1, digestate storage 274 

infrastructure strongly influences methane and ammonia emissions, although more complete 275 

digestion in medium and large-scale plants (indicated by higher electricity yields) constrains 276 

methane emissions from digestate storage to 1.5% of biomethane yield irrespective of storage 277 

type in these plants (Lijó et al., 2014b). For medium and large biogas plants, in order to avoid 278 

bias associated with apportioning particular feedstocks to particular digestate storage 279 

assumptions, each feedstock type was apportioned across the digestate storage practices in 280 

proportion to their reported prevalence for each size category (Table 4). Uncertainty around 281 

fugitive emissions from digestate storage is high (Adams et al., 2015), represented by an 282 

uncertainty range of ±25% in uncertainty analyses.       283 

 284 

To constrain the number of model runs whilst avoiding bias for particular feedstocks, trailing 285 

hose application of digestate was assumed in all cases as a representative, average efficiency 286 

technique (Table SI1.1) – approximating to trailing shoe and dribble bar, and between splash 287 

plate and injection methods, in terms of NH3 emissions and fertilizer-N-replacement that 288 

dominate the environmental profile of digestate application (Table 1). Emissions and NPK 289 

fertilizer replacement values were based on results for February and April application to a spring 290 
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crop, and June and September application to an autumn crop, on sandy-clay-loam soils, modelled 291 

using MANNER NPK (Nicholson et al., 2013) parameterised with relevant digestate nutrient 292 

concentrations from Table 3.  293 

 294 

2.7. Uncertainty and sensitivity analyses  295 

Despite the use of detailed survey information to parameterise the LCA modelling, significant 296 

uncertainty remains over some biogas-plant factors, such as fugitive emissions, and especially 297 

over expanded boundary processes. Digestate storage emissions and fossil energy replacement 298 

burdens were varied by ±25% and ±10%, respectively. High uncertainty over avoided manure 299 

management and waste management burdens for individual feedstocks may average out to lower 300 

aggregate uncertainty across all feedstock input at the national scale; nonetheless, national 301 

aggregate values were varied ±25%. Uncertainty ranges were calculated excluding and including 302 

highly uncertain ILUC burdens for all crops and feedstocks diverted from animal feed.         303 

 304 

Four alternative deployment scenarios were run to test for sensitivity to alternative marginal 305 

technologies, and the magnitude of environmental benefit associated with mitigation options. 306 

Relevant technologies and associated environmental burdens are summarized in Table 2.  307 

Scenario I: The default marginal energy types replaced in the study are natural gas electricity 308 

generation via combined cycle turbine and oil heating (DECC, 2012). However, political drivers 309 

could lead to coal electricity generation becoming the marginal displaced technology (Finnveden 310 
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et al., 2005). The possible effect of this was modelled using burdens for coal electricity 311 

generation in the UK taken from Ecoinvent v3.1 (Weidema et al., 2013).  312 

Scenario II: Injection of biomethane into the natural gas grid was evaluated as an alternative to 313 

CHP in a simple scenario in which 90% of biogas produced nationally in medium and large scale 314 

biogas plants was upgraded and injected into the grid (10% combusted in onsite CHP to provide 315 

heat and power for the biogas plant). Environmental credits were calculated as avoided natural 316 

gas heating burdens from Ecoinvent v3.1 whilst incurred post-digestion burdens were calculated 317 

assuming 1.4% CH4 slip during biomethane upgrading (Ravina & Genon, 2015) and NOx 318 

emissions from biomethane combustion in boilers taken from Ecoinvent v3.1.   319 

Scenario III: The use of upgraded biomethane as a transport fuel was also considered, based on 320 

vehicle-km direct burdens only for large Euro V diesel cars powered by biomethane, taken from 321 

Ecoinvent v3.1, and avoiding double-counting of upstream burdens for biomethane production 322 

calculated in the LCAD EcoScreen tool. Environmental credits were calculated as vehicle-km 323 

burdens for large Euro V cars powered by diesel, taken from Ecoinvent v3.1, and assuming 1 MJ 324 

of biomethane replaces 0.75 MJ diesel on a LHV basis (VTT, 2012).  325 

Scenario IV: The environmental improvement associated with the retro-fitting of floating covers 326 

to all open digestate stores was explored, assuming an 80% reduction in NH3 emissions (FNR, 327 

2010).  328 

 329 
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2.8. Projected 2017 environmental balance 330 

Results for the environmental balance of the UK biogas sector in 2014 were conservatively 331 

extrapolated to projected deployment in 2017, assuming that all existing plants and 40% of 332 

planned AD plants (NNFCC, 2014b) would be operational in that year. The environmental 333 

balance for each feedstock in 2014 was scaled up according to the ratio of tonnage for each 334 

feedstock in 2017 versus 2014 (Table SI2.1). This assumes a similar pattern of deployment 335 

across plant sizes in 2017 to 2014, and continued dominance of CHP for energy conversion.  336 

        337 

3. RESULTS AND DISCUSSION 338 

3.1 National balance of UK biogas sector in 2014  339 

In 2014, deployment of AD in the UK reduced GHG emissions by 653 Gg CO2e, or 251 Gg 340 

CO2e if worst case ILUC from crop feedstock and diversion of residues from animal feed is 341 

accounted for, with a probable range of 238 to 755 Gg CO2e after propagating major 342 

uncertainties (Table 5). The main GWP credits, in order of decreasing magnitude, were 343 

substitution of marginal grid electricity, avoided waste management, substitution of fertilisers 344 

and avoided manure management (Figure 3; Table SI4.1). Crops represented 27% of feedstock 345 

DM and contributed 2% towards GWP savings excluding ILUC, or cancelled out 42% of GWP 346 

savings if worst case ILUC was accounted for. Manures and food waste represented 6% and 48% 347 

of feedstock DM, and contributed 16% and 76% towards GWP savings from AD, respectively 348 

(Figure 4). The digestion of brewery waste and bakery waste increased GWP burdens by 11.5 349 

and 5.5 Gg yr-1 CO2e, respectively, assuming these wastes were diverted from optimum 350 
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counterfactual use as animal feed, thus incurring compensatory cultivation of wheat feed. If this 351 

compensatory wheat cultivation in turn incurs ILUC, then net GWP burdens for these two waste 352 

fractions increase to 90.2 and 40.6 Gg yr-1, respectively. The conservative assumption that liquid 353 

cheese processing waste and waste starch were diverted from treatment in centralized WWTP 354 

AD plants meant that these feedstocks had no net effect on the environmental balance of the non-355 

WWTP AD sector. Aside from crop cultivation and possible ILUC, main GWP burdens arose 356 

from digestate storage, digestate application, and fugitive CH4 leakage during fermentation 357 

(Figure 3; Table SI4.1).  358 

Anaerobic digestion increased national annual eutrophication and acidification burdens by 2.6 359 

Gg PO4e and 11.4 Gg SO2e in 2014 excluding ILUC, with ranges of 1.8 to 3.4 Gg PO4e and 8.1 360 

to 14.6 Gg SO2e after propagating major uncertainties (Table 5). Crops, food waste and “other 361 

waste” contributed approximately one third each towards eutrophication burdens, whilst food 362 

waste accounted for 55% of acidification burdens owing to its volume and high NH3 emissions 363 

from NH4-rich digestate (Figure 4). Notably, digestate storage was found to be a particular 364 

hotspot in our analyses, owing to the use of NH4-driven NH3 emission factors for different 365 

storage systems (Table 1; Misselbrook et al., 2012) which appear to be significantly higher than 366 

digestate storage emission factors reported by Amon et al. (2006) and applied in other studies 367 

(e.g. Lijó et al., 2014a;b). The higher NH4-N content and pH of digestates compared with slurries 368 

would suggest that NH3 emissions from digestate storage are likely to be higher than for slurry 369 

storage.    370 

Despite their relatively small quantities, brewery and bakery waste made significant net 371 

contributions to the eutrophication burden of the AD sector, again owing to diversion from 372 

animal feed, incurring additional wheat cultivation. Dominant contributing processes were, in 373 
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order of decreasing importance, digestate storage, digestate application, cultivation (for EP only), 374 

and CHP combustion (Figure 3; Table SI4.1 and Table SI4.2). Avoided manure management and 375 

avoided waste management represented the main acidification and eutrophication credits.  376 

In 2014, AD reduced fossil resource depletion in the UK by 9.8 PJe, with a range of 8.9 to 10.8 377 

PJ (Table 5). Food waste and crops contributed 62% and 22%, respectively, towards fossil 378 

resource savings. Burdens arising from waste transport, crop cultivation and avoided manure 379 

application (avoided fertilizer replacement) were small compared with the credits arising from 380 

substitution of marginal grid electricity (Figure 3; Table SI4.4). Digestate application (fertilizer 381 

replacement) and the avoidance of waste composting generated small but significant FRDP 382 

credits (Figure 3).                   383 
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NB: Values next to feedstock category names represent the net balance of annual burden change 

for that feedstock category.   

Figure 3. Environmental burden changes arising from deployment of anaerobic digestion in the 384 

UK in the year 2014, by feedstock type and by (avoided) process (negative values = credits; 385 

positive values = burdens; net burdens written next to feedstock name).    386 

 387 

3.2. Environmental balance across plant size categories  388 

Figure 4 shows the breakdown of sectoral environmental credits and burdens, alongside 389 

feedstock input, across the three size categories of biogas plant considered, for the year 2014. 390 

Small, medium and large biogas plants accounted for 2%, 14% and 83%, respectively, of 391 

feedstock DM input (Table 4 and Table SI2.2). For medium and large biogas plants, the shares of 392 

sectoral environmental credits and burdens were similar to the shares of feedstock inputs. For 393 

small plants, GWP credits were considerably larger (up to 7% of national biogas GWP credit, 394 



 28 

including ILUC effect) and FRDP credit significantly smaller (1% of national biogas FRDP 395 

credit) than the 2% feedstock DM input to these plants. AP and EP burden contributions were 396 

also significantly smaller than the relative feedstock input. This reflects the environmental 397 

profile of the constrained mix of manure (56% DM), crop waste (5% DM) and purpose-grown-398 

crop (39% DM) feedstocks fed in to small biogas plants (Table 4; Table SI1) – leading to large 399 

GWP credits for avoided manure storage, but smaller FRDP credits owing to the lower energy 400 

conversion efficiency of small scale plants.    401 

 402 

Figure 4. Distribution of sectoral total feedstock input and net environmental credits and burdens 403 

across different size categories of AD plant for the year 2014  404 

 405 

3.3. Projected national balance of UK biogas sector 406 

In 2014, the AD sector reduced UK total GWP and FRDP burdens by 0.1% and 0.2%, and 407 

increased EP and AP burdens by 0.1% and 0.5%, respectively (Figure 5). The net GWP 408 

reduction is close to zero at the top end of the uncertainty range, primarily owing to highly 409 
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uncertain ILUC effects. The quantity of feedstock digested is projected to increase from 5,134 410 

Gg fresh matter in 2014 to 12,118 Gg fresh matter in 2017, with a similar composition (Table 411 

SI2.1), leading to reductions of 0.3% and 0.5% in national GWP and FRDP burdens, and 412 

increases of 0.3% and 1.3% in national EP and AP burdens, respectively and excluding ILUC 413 

effects (Figure 5). Food waste will continue to dominate GWP and FRDP credits and AP burden 414 

increases (Figure 5), reflecting its relative volume, avoided composting burdens and NH3 415 

emissions from NH4-rich digestate. However, whilst the projected 2017 environmental balance 416 

was extrapolated assuming that new biogas plants reflect the current profile of the sector, 34 out 417 

of the 415 “in development” biogas plants as of 2014 were biomethane-to-grid plants (NNFCC, 418 

2014b). Therefore, according to grid injection performance reported in Table 5, the GHG and 419 

FRDP balance of the biogas sector in 2017 may be slightly better than indicated in Figure 5, 420 

though within error bar ranges.  421 

 422 
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Error bars represent propagated errors for uncertainty ranges shown in Table 5. 2017 values 

estimated based on NNFCC (2014b) projections.  

 423 

Figure 5. Contribution of feedstock categories to the environmental balance of 2014 and 424 

projected (2017) AD deployment in the UK, normalized against UK environmental loadings  425 

3.4. GHG abatement versus renewable energy generation 426 

Projected AD deployment will lead to a net reduction in national annual GHG emissions of 427 

1,595 Gg (1.59 Mt) CO2e, but will still only treat approximately 38% and 5%, respectively, of 428 

national food wastes and manures in 2017. Thus, there remains considerable technical potential 429 

to achieve further GHG abatement through targeted expansion of AD. Treating all food waste 430 

generated and all handled (stored) manures in the UK through AD could lead to GHG abatement 431 

of 11,473 Gg (11.5 Mt) CO2e per year, a 5% reduction in national GHG emissions, and could 432 

avoid 93 PJ of fossil energy consumption. The diversion of other waste streams, such as 433 

industrial wastes, towards AD could increase this theoretical potential further. The economic 434 

feasibility of digesting a large share of food waste and industrial wastes in large-scale AD plants 435 

is high, owing to gate fees, FiT income and economies of scale. However, whilst it may be 436 

economically feasible to install biogas plants on large pig, poultry and dairy farms, the 2015 FiT 437 

rate of £0.10 kWh-1 bioelectricity for biogas plants ≤ 250 kWe capacity is not sufficient to make 438 

small-scale manure AD economically viable (Mesa-Dominguez et al., 2015). Using the same 439 

CLCA methodology applied here, Mesa-Dominguez et al. (2015) estimated that digestion of all 440 

slurry from large UK dairy farms (> 400 milking cows) could lead to GHG abatement of up to 441 

0.574 Gg yr-1 CO2e, equivalent to a saving of 3.3 kg CO2e for each kWh of bioelectricity 442 

generated. Even at a high FiT rate of £0.20 kWh-1, this would translate into an abatement cost of 443 

£60 per Mg CO2e. In comparison, large-scale maize-fed AD leads to net GHG abatement of just 444 
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0.16 kg CO2e kWh-1 (excluding possible ILUC), at a cost of £539 Mg-1 CO2e at the 2015 FiT rate 445 

of £0.087 kWh-1 for biogas plants >500 kWe capacity (OFGEM, 2015). Results presented in 446 

Figure 4 confirm that small-scale biogas plants fed with a high share of manure feedstock 447 

outperform the overall biogas sector in terms of GHG abatement, despite comparatively low 448 

energy yields. Furthermore, although large-scale maize AD-CHP performs comparatively well 449 

against other biogas feedstocks in terms of fossil energy substitution, Miscanthus heating pellets, 450 

solar PV panels and wind turbines substitute 2, 30 and 90 times more fossil energy per hectare of 451 

land utilized, at significantly lower cost (ADAS, 2014; Styles et al., 2015b; Styles, 2015). Thus, 452 

there is a case to replace or supplement current FiT and RHI subsidies that incentivize large-453 

scale crop-fed AD plants with incentives that prioritise efficient GHG abatement through 454 

deployment of manure- and waste-fed AD. In the UK, a recent RHI review has proposed that the 455 

proportion of biogas originating from crop feedstock be limited to 50% for individual plants to 456 

receive RHI payments on biomethane injected into the grid (DECC, 2016).    457 

 458 

3.5. Sensitivity analyses and mitigation options 459 

The environmental balance of AD deployment in the UK is highly sensitive to the marginal types 460 

of waste management and electricity generation replaced. Conservative assumptions regarding 461 

the type of waste management option substituted by AD were applied in this study (Table 4), and 462 

may underestimate the environmental benefits of AD deployment in the UK. A 25% change in 463 

the aggregate environmental credit attributed to waste management substitution would change 464 

EP and GWP results by 13% and 11%, respectively (Table 5).  465 
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If policy intervention could ensure that AD bioelectricity substitutes electricity generated from 466 

coal, rather than natural gas, the environmental balance of national AD deployment would 467 

improve substantially; GWP and FRDP credits would more than double (Table 5). Compared 468 

with current use of biogas in CHP plants, upgrading biomethane produced in medium- and large-469 

scale digesters to substitute grid natural gas or transport diesel would increase GHG abatement 470 

by 20% and 38%, respectively. Similar improvements would be achieved for FRDP, with minor 471 

reductions in EP and AP burdens. Meanwhile, introducing a regulatory requirement to cover 472 

digestate stores could effectively mitigate net eutrophication and acidification burdens arising 473 

from AD (Table 5).  474 

           475 
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Table 5. Sensitivity of the annual environmental balance of AD deployment to uncertainty in 

key parameters, and to alternative deployment scenarios, also expressed as percentage difference 

from results for 2014 deployment excluding land use change    

  GWP EP AP FRDP 

  Gg CO2e/yr Gg PO4e/yr Gg SO2e/yr PJe/yr 

 Default CHP deployment ex 

ILUC 
-653 2.6 11.4 -9.8 

U
n
ce

rt
ai

n
ty

 a
n

al
y
se

s 

Default CHP deployment 

incl. ILUC 
-251 

2.8 11.4 -9.8 

 -62% 6% 0% 0% 

Avoided manure 

management -25% 
-629 2.7 11.7 -9.9 

 
-4% 3% 3% 0% 

Avoided manure 

management +25% 
-678 2.5 11.0 -9.8 

 
4% -3% -3% 0% 

Avoided waste man -25% -582 2.9 12.2 -9.7 

 
-11% 13% 8% -2% 

Avoided waste man +25% -724 2.3 10.5 -10.0 

 
11% -13% -8% 2% 

Digestate storage emissions 

-25% 
-690 1.9 8.3 -9.8 

 
6% -26% -27% 0% 

Digestate storage emissions 

+25% 
-616 3.3 14.5 -9.8 

 
-6% 26% 27% 0% 

Avoided fossil energy -10% -595 2.6 11.5 -8.9 

 
-9% 0% 1% -10% 

Avoided fossil energy +10% -711 2.6 11.2 -10.8 

 
9% 0% -1% 10% 

Lower bound ex. (inc.) 

ILUC 

 
-551 (-238) 1.83 8.12 -8.9 

Upper bound  -755 3.38 14.61 -10.8 

      

S
ce

n
ar

io
 a

n
al

y
se

s I. Replace coal electricity -1508 2.3 10.6 -24.2 

 131% -11% -6% 146% 

II. Grid injection (M&L 

plants) 
-786 

2.6 10.6 -12.2 

 20% 0% -6% 24% 

III. Transport (M&L plants) -901 2.5 9.4 -12.8 

 38% -6% -17% 30% 
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IV. Covered digestate stores -687 0.5 1.6 -9.8 

  5% -82% -86% 0% 

 

3.5. Summary recommendations 

The UK biogas sector delivers important waste management, renewable energy generation and 

nutrient recycling services, but requires the cultivation of crops and leads to significant emissions 

from digestate management. Accounting for these effects across multiple systems at a national 

level requires an expanded-boundary LCA approach, as concluded by Börjesson and Berglund 

(2007), Tonini et al. (2012) and Tufvesson et al. (2013). Consequential LCA supplements the 

detailed attributional LCA studies (Poeschl et al., 2012; Bacenetti et al., 2013; Boulamanti et al., 

2013; Whiting and Azapagic, 2014; Lijó et al., 2014b) that provide invaluable evidence to 

benchmark and optimize the operational efficiency of particular systems. Although involving 

considerable uncertainty, the application of consequential LCA with conservative (worst case) 

assumptions and uncertainty ranges provides an evidence base for the role of AD in national 

policies on climate change, renewable energy generation and waste management, considering 

pertinent indirect effects and “unintended consequences”.  

The UK biogas sector delivers significant savings in GHG emissions and fossil resource 

depletion through replacement of: (i) grid-electricity; (ii) in-vessel composting of organic wastes; 

(iii) manure storage. The sector is projected to grow significantly, with FiT and RHI subsidies 

favouring more energy-efficient large-scale waste- and crop-fed biogas plants. However, there 

remains a large technical potential for further GHG abatement through expanded digestion of 

wastes and manures, whilst minimizing the digestion of crops that can lead to carbon leakage via 

indirect land use change. Our results also show that, where it is possible to use wastes to feed 
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livestock (e.g. brewery and bakery wastes), this is a more environmentally efficient option than 

anaerobic digestion, supporting the conclusions of Tufvesson et al. (2013) and Tonini et al. 

(2016). Rather than basing FiT and RHI incentives on plant size, these subsidies could be based 

on feedstock type, with higher subsides for manures, and waste feedstocks that cannot be more 

efficiently utilized as animal feed, in order to derive maximum environmental benefit from AD. 

Landfill gate fees are partially responsible for driving expansion of AD; in the longer term, as 

landfilling of organic wastes is eliminated, differential fees (taxes) for waste management 

options could be based on their respective environmental efficiencies.    

Eutrophication and acidification increases caused by the UK biogas sector are primarily 

attributable to somewhat uncertain NH3 emissions from digestate management, and fertilizer 

application to biogas-crops. Covering all digestate stores could largely mitigate burdens caused 

by NH3 emissions, and would be a simple regulatory control point that could be checked during 

plant planning and commissioning. 

Finally, two thirds of the net heat output from AD-CHP plants is dumped; upgrading biomethane 

to substitute grid natural gas or transport diesel would considerably improve the overall 

environmental balance of AD deployment in the UK. There is some evidence that new RHI 

subsidies are beginning to encourage the development of biomethane-to-grid plants in the UK 

(NNFCC, 2014b), but incentives for transport biomethane are so far lacking. Given recent 

evidence of high NOx emissions from modern diesel engines, there remains a need to evaluate 

possible air quality and health effects of diesel substitution with biomethane, which could 

represent an area for cost-effective policy support (simultaneously tackling climate change, 

energy security and air pollution threats). Biomethane is particularly well suited to powering 

heavy goods vehicles and buses that are less easily adapted to electric propulsion.   
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4. CONCLUSIONS  

Whilst detailed attributional LCA provides a precise environmental profile of direct AD system 

effects useful for management decisions, consequential LCA provides a less precise but more 

complete environmental profile of the AD sector that captures indirect environmental effects 

pertinent to policy making and regulation. Through the application of consequential LCA and the 

use of detailed feedstock input data and plant operating characteristics for the AD sector in the 

UK, this study highlighted the prevailing effects of counterfactual waste management and 

indirect land use change over biogas energy conversion efficiency in terms of GHG abatement. 

Accordingly, climate change policy priorities vis-a-vis AD should be to encourage digestion of 

food waste and manures, whilst restricting digestion of crop inputs and wastes that could be used 

as animal feed – even if this involves the deployment of smaller biogas plants with lower energy 

conversion efficiency for manures. It may be wise to focus on AD policy in terms of waste 

management, rather than renewable energy generation – there are far more efficient renewable 

energy options in terms of cost and land requirements. Nonetheless, upgrading the biogas 

produced for use as a transport fuel would considerably improve the environmental profile of the 

AD sector, compared with current dominant use for electricity generation and also compared 

with injection of upgraded biomethane into the gas grid. Biogas plant design, specifically the 

prevalence of open tanks and lagoons for digestate storage, is a dominant factor behind 

significant net eutrophication and acidification loadings from the UK biogas sector. Regulations 

requiring covered digestate stores, and injection application of digestate, could largely mitigate 

this problem.           
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