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Abstract 1 

We implement a spatially lumped hydrologic model to predict daily streamflow at 88 catchments 2 

within Oregon, USA and analyze its performance using the Oregon Hydrologic Landscape (OHL) 3 

classification. OHL is used to identify the physio-climatic conditions that favor high (or low) 4 

streamflow predictability. High prediction catchments (Nash-Sutcliffe efficiency of Q  (NS) > 5 

0.75) are mainly classified as rain dominated with very wet climate, low aquifer permeability, and 6 

low to medium soil permeability. Most of them are located west of the Cascades Mountain Range. 7 

Conversely, most low prediction catchments (NS < 0.6) are classified as snow dominated with 8 

high aquifer permeability and medium to high soil permeability. They are mainly located in the 9 

volcano-influenced High Cascades region. Using a subset of 36 catchments, we further test if class-10 

specific model parameters can be developed to predict at ungauged catchments. In most 11 

catchments, OHL class-specific parameters provide predictions that are on par with individually 12 

calibrated parameters (NS decline < 10%). However, large NS declines are observed in OHL 13 

classes where predictability is not high enough. Results suggest that higher uncertainty in rain-to-14 

snow transition of precipitation phase and external gains/losses of deep groundwater are major 15 

factors for low prediction in Oregon. Moreover, regionalized estimation of model parameters is 16 

more useful in regions where conditions favor good streamflow predictability. 17 

 18 

KEY TERMS: surface water hydrology, simulation, streamflow, watersheds, rivers/streams. 19 

 20 

 21 

 22 

 23 
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Introduction 24 

Models in earth sciences, by definition, provide a simplified representation of real world 25 

processes and phenomena.  For models in hydrology, the water balance concept is the fundamental 26 

principle through which various fluxes of water are connected and organized within a catchment 27 

[Eagleson, 1978; Dooge, 1986; Kirkby, 2006].  Through this organizing principle, a variety of 28 

hydrologic models have been developed over the years and successfully implemented at numerous 29 

catchments across the world [Beven and Kirkby, 1979; Chiew and McMahon, 1994; Bergström, 30 

1995; Edijatno et al., 1999; Perrin et al., 2003].  However, research has also shown that there are 31 

limits to the physio-climatic conditions across which hydrologic models can provide good 32 

streamflow predictions [Abdulla and Lettenmaier, 1997; Croke and Jakeman, 2001; Martinez and 33 

Gupta, 2010; Li et al., 2012].  Specifically, for the prediction of daily streamflow over long periods, 34 

studies have shown that catchments in certain regions (e.g., with arid climate, or with high 35 

groundwater influence) are typically more difficult to predict [Ye et al., 1997; Hay and McCabe, 36 

2002; Biftu and Gan, 2004; Clark et al., 2008; Fenicia et al., 2008; Fenicia et al., 2011].  37 

Unfortunately, a complete understanding of why hydrologic models perform remarkably well in 38 

some regions, and why they fail to do so in other regions, has still not been achieved. 39 

The difficulty in predicting daily streamflow at a catchment potentially arises from three 40 

main sources: (1) there is uncertainty (or error) in the meteorological inputs, (2) some key 41 

hydrological processes unique to that catchment are either excluded or inappropriately represented 42 

in the hydrologic model structure, and/or (3) there are unknown (and perhaps unmeasurable) 43 

losses/gains of groundwater between the catchment and its surrounding region, which results in 44 

the violation of the water balance principle.  The first source can be addressed by choosing 45 

meteorological forcing data of appropriate quality.  A number of studies have shown that the 46 
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quality of meteorological data used has a direct influence on the quality of modeled streamflow 47 

predictions [Andréassian et al., 2001; Bárdossy and Das, 2008; McMillan et al., 2011].  Recent 48 

studies such as Vaze et al. [2011] have further shown that better streamflow predictions are 49 

obtained with the use of a gridded meteorological dataset than with a single meteorological gage 50 

or a Theissen weighted average of multiple meteorological gages.  The second source, hydrological 51 

process representation, can be addressed to some extent by using the top-down approach to 52 

hydrologic modeling [Klemeš, 1983; Sivapalan et al., 2003].  In the top-down approach, a chosen 53 

model structure is first implemented at the catchment of interest and the model performance is 54 

compared with observed streamflow data.  If the model performance is unsatisfactory, process 55 

components are either added to or removed from the model iteratively based on the available 56 

geophysical catchment data and/or the modeler's judgment on which processes are more important 57 

[Jothityangkoon et al., 2001; Farmer et al., 2003; Tekleab et al., 2011].  While this approach has 58 

been shown to work at a few case-study catchments, the subjectivity involved in a modeler's 59 

decisions and the ad hoc nature of available geophysical data in different parts of the world makes 60 

this approach cumbersome and difficult to scale-up (i.e., apply consistently at a large number of 61 

catchments on a regional/continental scale).  The third source, losses/gains of groundwater, is the 62 

most challenging to address due to our limited understanding of the conditions responsible for the 63 

exports or imports of water outside a catchment boundary.  It is also difficult to quantify these 64 

losses and gains so that they can be explicitly accounted for in the water balance equations.  While 65 

there have been studies using coupled surface – ground water models at catchment scales 66 

[Sophocleous and Perkins, 2000; Maxwell and Miller, 2005; Ireson et al., 2006], the borehole 67 

water-table measurements required for the calibration of groundwater components are usually not 68 

available in the majority of catchments. 69 
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To overcome the restrictions in hydrologic characterization caused by limited data 70 

availability, scientists have long suggested the need to develop a hydrologically-based 71 

classification system for landscapes [Woods, 2002; McDonnell and Woods, 2004; Wagener et al., 72 

2007].  Such a classification system would ideally guide hydrologists in developing better 73 

conceptual models of catchment function [McDonnell et al., 2007], and also narrow down the 74 

causes for potential pitfalls in predictability despite the lack of detailed site measurements.  75 

Although there have been numerous efforts over the years at developing a hydrologic classification 76 

system [Mosley, 1981; Acreman and Sinclair, 1986; Wiltshire, 1986; Ogunkoya, 1988; Burn and 77 

Goel, 2000], the study by Wolock et al. [2004] is perhaps the most comprehensive attempt at 78 

hydrologic classification over large scales (they covered the entire United States, including Alaska 79 

and Hawaii).  This classification system was based on the Hydrologic Landscapes concept of 80 

Winter [2001], and conceptualized that landscape units with similar soil, climate, and terrain 81 

properties will have the same expected hydrologic behavior.  Using this perceptual model, Wolock 82 

et al. [2004] classified the entire United States into 20 broad Hydrologic Landscape Regions 83 

(HLRs).  Recently, Wigington et al. [2012] noted that, when viewed at the scale of an individual 84 

state within the US, inconsistencies can be found in the HLR classification system, primarily due 85 

to the coarse resolution of the data used by Wolock et al. [2004].  They suggested that a more 86 

detailed approach is required at the state level and proposed the Oregon Hydrologic Landscapes 87 

(OHL) classification, which uses a similar perceptual model as Wolock et al. [2004] but with higher 88 

resolution geophysical data than what are available at the national scale. 89 

In this paper, our goal is to demonstrate that a hydrologically based landscape classification 90 

system can be effectively used to characterize the conditions at which a hydrologic model is more 91 

likely to perform well; and also to understand why it does not perform well in certain 92 
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environments.  Furthermore, a classification system may provide a readily available perceptual 93 

model of expected hydrologic behavior that can be compared against a mechanistic hydrologic 94 

model to detect inconsistencies.  Classification may also play an important role in the 95 

characterization of hydrologic similarity among catchments and can help improve the 96 

predictability at ungauged catchments.  Although a classification system typically assumes that 97 

similarity in physio-climatic properties translates into hydrologic similarity, a hydrologic model 98 

can verify whether catchments belonging to the same classification group truly have similar 99 

hydrologic behavior.  As a specific example of this concept, we use a spatially lumped hydrologic 100 

model called EXP-HYDRO [Patil and Stieglitz, 2012] to simulate daily streamflow at 88 101 

catchments within the state of Oregon, USA and compare its simulation performance against the 102 

OHL classification system of Wigington et al. [2012].  The mathematical structure of the EXP-103 

HYDRO model forms our a priori hypothesis of a catchment’s expected hydrologic behavior.  The 104 

success or failure of this hypothesis (through good or bad prediction) at a catchment is then 105 

analyzed with respect to the OHL classification system.  Specifically, we seek to (1) identify the 106 

physio-climatic properties that are more likely to be prevalent in high (and low) prediction 107 

catchments, and (2) test if a common regionalized set of model parameters is applicable to all the 108 

catchments that belong to the same classification unit.  To our knowledge, there have been no 109 

previous studies that have analyzed the geographic patterns of streamflow predictions obtained 110 

through a hydrologic model within the context of a hydrologic classification framework.  We 111 

would also like to note here that the concepts presented in this paper are generic in nature and can 112 

be readily implemented at different locations by using any other combination of hydrologic model 113 

and/or hydrologic classification system. 114 

 115 
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Data 116 

We used the hydro-climatic data of 88 catchments located across the state of Oregon (see 117 

Figure 1).  These catchments were selected from two different U.S. Geological Survey databases, 118 

viz., HCDN [Slack et al., 1993] and GAGES [Falcone et al., 2010], and are considered to be 119 

“reference” condition catchments (suggesting minimal anthropogenic impact on flow regime) in 120 

either of those databases.  The drainage area of the catchments ranges from 8 km2 to 1730 km2, 121 

with a median drainage area of 265 km2.  The mean annual precipitation in the catchments ranges 122 

from 530 mm to 3300 mm, with a median value of 1700 mm.  The Cascade Mountain Range 123 

traverses Oregon in the north – south direction, which creates a sharp contrast in climate among 124 

catchments to the east and west of the mountain range.  The western catchments are characterized 125 

by a wet climate that is heavily influenced by the westerly winds of moisture-laden marine air 126 

from the Pacific Ocean.  On the other hand, the eastern catchments are characterized by a drier 127 

climate (except at high elevations) mostly due to the rain-shadow effect created by the Cascade 128 

Mountains.  Detailed descriptions of the climatic, geologic, and topographic variations within the 129 

state of Oregon can be found in Wigington et al. [2012]. 130 

The daily streamflow data was obtained from the USGS streamgages that are located at the 131 

outlet of all the 88 catchments.  For the streamflow data, we considered the time-span ranging 60 132 

years from water year 1951 to 2010.  While every catchment did not have the data available for all 133 

those years, all catchments had continuous streamflow measurements for at least 15 years within 134 

this time-span.  Daily precipitation and air temperature data were obtained from a gridded dataset 135 

of observed climate developed by Maurer et al. [2002].  This dataset is gridded at 1/8 degree (about 136 

14 km) spatial resolution and covers the entire continental United States.  For each catchment, the 137 

daily precipitation and air temperature time-series were obtained by taking an area-weighted 138 
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average of the values from all the climate grids that are either fully or partially located within the 139 

catchment. 140 

 141 

Methods 142 

Hydrologic model 143 

The Exponential Bucket Hydrologic Model (EXP-HYDRO; see Figure 2) is a spatially 144 

lumped hydrologic model [Patil and Stieglitz, 2012] that solves the following coupled water 145 

balance equations of the catchment and snow accumulation bucket stores at each time step: 146 

spillbucketr QQETMP
dt

dS
      (1a) 147 

MP
dt

dS
s

s          (1b) 148 

where, S  and sS  are the amounts of water stored in the catchment and snow accumulation buckets, 149 

respectively (unit: mm), sP  and rP  are the daily snowfall and rainfall amounts, respectively (unit: 150 

mm/day), ET  is the actual evapotranspiration (unit: mm/day), bucketQ  is the runoff generated from 151 

the catchment bucket (unit: mm/day), 
spillQ  is the capacity-excess runoff that occurs when the 152 

catchment bucket is full (unit: mm/day), and M  is the snowmelt (unit: mm/day).  The incoming 153 

daily precipitation is classified as snowfall or rainfall based on the following condition: 154 

If minTTa  , 155 

   
0



r

s

P

PP
         (2a) 156 

Else, 157 
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PP

P

r

s



 0
         (2b) 158 

where, aT  is actual daily air temperature (unit: °C) and minT  is the air temperature (unit: °C) below 159 

which any precipitation in the catchment falls as snow (into the snow accumulation bucket).  160 

Snowmelt M  from the snow accumulation bucket is modeled using a thermal degree-day model 161 

as follows: 162 

If maxTTa  , 163 

     max,min TTDSM afs        (3a) 164 

Else, 165 

   0M          (3b) 166 

where, 
fD  is the thermal degree-day factor (unit: mm/day/°C), and maxT  is the air temperature 167 

(unit: °C) above which accumulated snow in the snow accumulation bucket begins to melt.  168 

Evapotranspiration ET  is calculated as a fraction of the potential evapotranspiration ( PET ), and 169 

depends on the amount of actual stored water ( S ) in the catchment bucket relative to the bucket’s 170 

storage capacity ( maxS ): 171 

   









maxS

S
PETET        (4) 172 

PET  (unit: mm/day) is calculated from the daily air temperature data using Hamon’s formulation 173 

[Hamon, 1963].  The runoff generated from the catchment bucket depends on the amount of water 174 

stored in it and is calculated using a TOPMODEL [Beven and Kirkby, 1979] type equation: 175 

If maxSS  , 176 



Patil et al.  Use of hydrologic landscape classification 

 

10 

 

   
0

))(exp( maxmax





spill

bucket

Q

SSfQQ
     (5a) 177 

If maxSS  , 178 

max

max

SSQ

QQ

spill

bucket




       (5b) 179 

where, maxQ  is the runoff produced (unit: mm/day) when the bucket storage reaches its maximum 180 

capacity, and f  is the parameter controlling the storage-dependent exponential decline in bucket 181 

generated runoff (unit: 1/mm).  It must be noted that although alternative forms of Equation 5a 182 

have been proposed by some studies (e.g., linear, parabolic), the exponential version shown here 183 

is the most widely used variant of the TOPMODEL equation [Ambroise et al., 1996; Li et al., 184 

2011].  Daily streamflow at the catchment outlet is the sum of bucketQ  and 
spillQ .  The coupled 185 

ordinary differential equations (Equation 1a and 1b) are solved simultaneously at each time step 186 

using the 4th order Runge-Kutta numerical scheme. 187 

Calibration of model parameters 188 

The EXP-HYDRO model consists of six free calibration parameters: f , maxQ , maxS , 
fD , 189 

minT , and maxT .  For each catchment, we calibrated these parameters with 50,000 Monte Carlo 190 

simulations [Vaché and McDonnell, 2006; Patil and Stieglitz, 2012].  Table 1 shows the parameter 191 

ranges used for generating the 50,000 uniformly distributed random samples of the six parameters.  192 

Observed daily streamflow data from the first available 10 years for the catchment was chosen for 193 

model optimization (calibration period), whereas the consecutive 5 years (years 11 to 15) were 194 

chosen as the validation period.  We used Nash Sutcliffe efficiency [Nash and Sutcliffe, 1970] of 195 

square root values of daily streamflow as the objective function: 196 
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2

1

,

1

2

,,

)(

)(

1














n

i

obsiobs

n

i

iprediobs

QQ

QQ

NS      (6) 197 

where, 
ipredQ ,
 and iobsQ ,  are the predicted and the observed streamflow values on the ith day 198 

respectively, obsQ  is the mean of all the observed streamflow values and n is the total number of 199 

days in the time series.  Nash Sutcliffe efficiency is the most widely used metric for calibration 200 

and evaluation of hydrologic models that provide continuous simulation over a long period 201 

[Legates and McCabe, 1999; Krause et al., 2005].  There are three commonly used variants of the 202 

Nash Sutcliffe efficiency formula: untransformed ( Q ), square root transformed ( Q ), and log 203 

transformed ( Qlog ) [Oudin et al., 2006].  As an objective function, NS ( Q ) has a tendency to 204 

over-emphasize the matching of high flow values at the expense of low flows, whereas NS ( Qlog205 

) tends to do the opposite.  NS ( Q )  is a balance between these two extremes and focuses on 206 

matching the overall hydrograph, albeit at the expense of very high and very low flow values.  207 

Since our objective in this study was to match the overall hydrologic dynamics of a catchment, we 208 

used NS ( Q ) as the objective function (Equation 6, and referred to simply as NS henceforth).  209 

The value of NS ranges from negative infinity to 1, with NS = 1 being a perfect fit between the 210 

model and observed data.  Out of the 50,000 parameter sets used for calibration at each catchment, 211 

we selected a single parameter set that provided the maximum value of NS as the optimal 212 

parameter set.  While the uncertainty in parameter values due to equifinality (i.e., multiple 213 

combinations of parameter values providing similar model performance) exists in most hydrologic 214 

models [Beven and Freer, 2001], we have restricted our focus to characterizing the best 215 

performance that is achievable with the EXP-HYDRO model at each catchment. 216 
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Oregon Hydrologic Landscapes (OHL) classification at catchment scale 217 

Wigington et al. [2012] have used a hydrologic landscape unit (HLU; referred to as 218 

assessment unit in their paper) as the fundamental area to which a classification code is assigned 219 

based on its physio-climatic properties.  Every HLU is either a first-order or an incremental sub-220 

catchment that consists of a stream reach and a contributing hillslope.  The HLUs were delineated 221 

within Oregon by using the following procedure:  (1) extract the stream network from USGS 222 

National Elevation Dataset’s 30 m DEM using a 25 km2 minimum drainage area threshold for 223 

channel initiation, and (2) divide the landscape into HLUs along the stream nodes.  Wigington et 224 

al. [2012] divided the state of Oregon into 5660 HLUs and classified the HLUs (using available 225 

climatic and geophysical data) based on five categories: annual climate, seasonality of water 226 

surplus, aquifer permeability, terrain, and soil permeability.  The different classification codes 227 

within each category are summarized in Table 2.  Based on these codes, an individual HLU is 228 

assigned a multi-letter OHL class.  For instance, a HLU that is assigned an OHL class “VwLML” 229 

has the following physio-climatic properties: very wet climate, winter seasonality of water surplus, 230 

low aquifer permeability, mountainous terrain, and low soil permeability.  The underlying 231 

assumption is that the HLUs that have the same OHL class are expected to have similar hydrologic 232 

behavior.  Detailed information about the procedure for obtaining HLUs within Oregon and 233 

development of the OHL classes can be found in Wigington et al. [2012]. 234 

A catchment typically consists of an aggregation of multiple HLUs (see Figure 3).  235 

However, some small catchments can contain only a single first-order HLU.  In fact, 37 out of the 236 

88 catchments in this study contain only one HLU.  For the 51 catchments that contain multiple 237 

HLUs, we defined their OHL catchment class by first considering each of the five physio-climatic 238 

categories separately and then identifying the class within each category that covers the largest 239 
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area within the catchment (see Supplementary Table).  For the 37 catchments containing only one 240 

HLU, the class associated with that HLU was assigned as the OHL catchment class.  Detailed 241 

information about the OHL classes for all 88 catchments is provided in the Supplementary Table. 242 

 243 

Results 244 

Figure 4a shows the box-and-whisker plot of NS values of all the 88 catchments for the 245 

calibration and validation periods.  The median NS values for calibration and validation period 246 

were 0.78 and 0.75 respectively.  NS values of catchments for the validation period varied across 247 

a slightly larger range than those for the calibration period.  Figure 4b shows the 1:1 relationship 248 

of NS values for the calibration and validation periods.  Although the difference in model 249 

performance between those two periods is low in most catchments, large deviations can be found 250 

in a few catchments with low NS values. 251 

Based on the NS value of streamflow calibration, we divided the 88 Oregon catchments 252 

into three hydrologic predictability groups: Group 1 (high predictability; NS > 0.75), Group 2 253 

(medium predictability; 0.75 ≥ NS ≥ 0.6), and Group 3 (low predictability; 0.6 > NS).  We followed 254 

Martinez and Gupta [2010] to set NS > 0.75 as a condition for high predictability catchments and 255 

Patil and Stieglitz [2012] to set NS < 0.6 as a condition for low predictability catchments.  The 256 

remaining catchments (0.75 ≥ NS ≥ 0.6) were then assigned into the medium predictability group.  257 

Figure 5 shows the geographic distribution of catchments classified into the three predictability 258 

groups.  The Group 1 catchments (49 in total, ~ 56%) are predominantly located in the westernmost 259 

part of the state.  Most are along the Oregon Coast Range, followed by some catchments on the 260 

western side of the Cascade Mountains (Western Cascades), and only three catchments are in the 261 

eastern part of the state (east of the Cascade Mountains).  The Group 2 catchments (14 in total, ~ 262 
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16%) are mostly on the western side of the Cascade Mountains, but many of them are located 263 

closer to the mountain range than the Group 1 catchments.  Five Group 2 catchments are located 264 

on the eastern side of the Cascade Mountains.  The majority of Group 3 catchments (25 in total, ~ 265 

28%) are located on either side of, but in the close vicinity to, the Cascade Mountains.  Almost all 266 

the catchments that are nearest to the eastern side of the Cascade Mountains belong to Group 3.  267 

These catchments contain the tributaries of the Deschutes River.  A few Group 3 catchments are 268 

also located in the eastern and northeastern parts of Oregon. 269 

We next analyzed how the three hydrologic predictability groups relate to the OHL 270 

classification at the catchment scale.  Each of the five physio-climatic categories (annual climate, 271 

seasonality, aquifer permeability, terrain, and soil permeability) were considered separately, and 272 

we calculated the extent to which each class is represented in the high, medium, and low 273 

predictability catchments (Groups 1 – 3).  Table 3 summarizes the presence of each physio-climatic 274 

class within Group 1 – 3 catchments.  Below, we provide a brief description of the major trends in 275 

each category. 276 

For annual climate, the majority of catchments in all three predictability groups have either 277 

a wet (W) or a very wet (V) climate.  This is not surprising since the geographic distribution of the 278 

88 catchments is heavily skewed towards the wetter western part of Oregon.  Nonetheless, the 279 

proportion of V climate class gradually decreases from Group 1 to Group 3 catchments, whereas 280 

the proportions of drier climate classes (M and D) show the opposite trend.  For the seasonality of 281 

water surplus, a clear contrast is observed among the different predictability groups.  As we move 282 

from Group 1 to Group 3, the extent of winter (w) seasonality class decreases rapidly from 92% 283 

in Group 1 to 28% in Group 3.  On the other hand, spring (s) seasonality class is present in only 284 

8% of the Group 1 catchments, but present in 68% of the Group 3 catchments.  Only one catchment 285 
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has a summer (u) seasonality class, and it belongs to Group 3.  The aquifer permeability category 286 

also shows a sharp contrast between Group 1 and Group 3 catchments.  Low (L) aquifer 287 

permeability is dominant among the Group 1 catchments (84%), whereas high (H) aquifer 288 

permeability is dominant among the Group 3 catchments (56%).  The Group 2 catchments are 289 

dominated by the H aquifer permeability class (50%), followed by L (29%) and M (21%) classes.  290 

The terrain category is not useful as an explanatory variable in this exercise because all 88 291 

catchments have the mountain (M) terrain class.  For soil permeability, the majority of catchments 292 

in all three groups have either low (L) or medium (M) soil permeability.  However, catchments 293 

with high (H) soil permeability are exclusive to Group 3. 294 

The OHL classification hypothesizes that landscape units (or catchments) having the same 295 

OHL class should have similar hydrologic behavior.  We tested this hypothesis using the following 296 

procedure: (1) group all the catchments that have the same OHL class; (2) using the grouped 297 

catchments from step 1, calculate the average value of all six parameters of the EXP-HYDRO 298 

model; (3) simulate the daily streamflow of all catchments within the group using average 299 

parameters from step 2, and calculate the decline in NS value compared to that from individual 300 

catchment calibration case.  Only four OHL classes were available to test this procedure, since 301 

other classes did not have sufficient number of catchments.  These four classes are: VwLML (9 302 

catchments), VwLMM (12 catchments), WwLML (6 catchments), and WwLMM (9 catchments).  303 

Table 4 shows the range of optimal values of the EXP-HYDRO model parameters for catchments 304 

among the four OHL classes, and also their coefficient of variation (CV) within each class.  Out 305 

of the 6 model parameters, f consistently has the smallest value of CV in all four classes.  This 306 

indicates that the optimal value of f varies the least for catchments within an individual OHL class.  307 

Interestingly, the study by Patil and Stieglitz [2012] has shown that f is also the most sensitive 308 



Patil et al.  Use of hydrologic landscape classification 

 

16 

 

(and identifiable) parameter of the EXP-HYDRO model.  Table 5 shows the decline in model 309 

performance when using class averaged parameters compared to the individually calibrated 310 

parameters.  The average decline in model performance was the lowest for the VwLML class (1%) 311 

and the highest for the WwLMM class (13%).  Figure 6 shows the relationship between the NS 312 

value of a catchment using calibrated parameter set and the % decline in NS when the class-313 

assigned common parameter set is used (for the 36 catchments in four OHL classes).  Catchments 314 

with a high calibrated NS show the least performance decline, and the % decline in NS has an 315 

increasing trend with decreasing calibrated NS values.  Of the 36 catchments considered in this 316 

analysis, only 5 catchments showed a decline in model performance of greater than 10%.  317 

Remarkably, none of the 9 catchments in the VwLML class showed a model performance decline 318 

above 4%.   319 

 320 

Discussion 321 

Results show that distinct patterns of streamflow predictability are obtained by 322 

implementing the EXP-HYDRO model within the state of Oregon (Figure 5).  While studies have 323 

shown that wet climate tends to be favorable for obtaining good model predictions at a catchment 324 

[Abdulla and Lettenmaier, 1997; Parajka et al., 2005; Martinez and Gupta, 2010], our results 325 

suggest that climate alone is insufficient to determine whether high or low predictability can be 326 

expected at a certain place.  About 72% of the Group 3 catchments (low predictability; NS < 0.6) 327 

are classified as having either a wet (W) or very wet (V) climate.  Based on the dominant 328 

classification within each of the OHL category (Table 3), we expect that a catchment in Oregon 329 

belonging to either the VwLMM or VwLML class has the greatest likelihood of being a high 330 

predictability catchment.  In other words, a very wet climate, winter seasonality of water surplus, 331 
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low aquifer permeability, mountainous terrain, and low to medium soil permeability is the most 332 

favorable combination of physio-climatic properties for obtaining high simulation performance 333 

with the EXP-HYDRO model.  Conversely, the low prediction catchments in Oregon show a 334 

propensity towards spring seasonality of water surplus, high aquifer permeability, and medium to 335 

high soil permeability (see Table 3). 336 

An important advantage of using the OHL classification system is that it reveals multiple 337 

physio-climatic factors that can affect streamflow predictions and therefore provides clues into the 338 

reasons for poor model behavior at a catchment.  For instance, 14 out of the 25 Group 3 catchments 339 

and 7 out of the 14 Group 2 catchments are classified as having high aquifer permeability.  High 340 

aquifer permeability in a catchment suggests a greater likelihood of having losses/gains with 341 

external groundwater sources that are difficult to quantify.  The majority of Group 2 and 3 342 

catchments with high aquifer permeability are located in or near the region closest to the Cascade 343 

Mountains (see Figure 5), which is commonly referred to as the High Cascades.  The geology of 344 

this region is heavily influenced by relatively recent volcanic eruptions and lava flows, which have 345 

created complex patterns of groundwater flow [O'Connor and Grant, 2003; Jefferson et al., 2006; 346 

Tague et al., 2008].  This is in sharp contrast with the Western Cascades region which is located 347 

to the west of the High Cascades and consists of older, more weathered, and impermeable volcanic 348 

bedrock [Mayer and Naman, 2011].  Tague and Grant [2004] compared the streamflow regimes 349 

of catchments in the Western and High Cascades and showed that the above mentioned differences 350 

in geology have a direct impact on hydrologic response within each region.  Specifically, rivers in 351 

the Western Cascades are runoff-dominated with fast recession rates and low summer baseflow, 352 

whereas rivers in the High Cascades are groundwater-dominated with more uniform flows, slower 353 

recession rates, and higher summer baseflow [Safeeq et al., 2013].  Wigington et al. [2012] 354 
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illustrated the Metolius River as an example of a High Cascades catchment whose flow regime is 355 

significantly influenced by external groundwater interaction.  Therefore, streamflow modeling in 356 

an environment such as the High Cascades is most likely to require an explicit representation of 357 

the external groundwater gains/losses, but at the cost of additional input data that might not be 358 

readily available in most places.  The EXP-HYDRO model used in this paper does not explicitly 359 

account for groundwater gains/losses outside of the catchment boundary.  Manga [1997] 360 

implemented an unconfined aquifer flow model, based on Boussinesq’s equation for unsteady 361 

subsurface flow, at four spring-dominated tributaries of the Deschutes River near the High 362 

Cascades.  Although the model provided good streamflow predictions, Manga [1997] used 363 

streamflow measurements from a nearby runoff-dominated catchment as a proxy for external 364 

recharge into the unconfined aquifer model.  In the absence of a nearby “proxy” catchment, 365 

estimation of aquifer recharge in such a model is likely to induce high uncertainty and reduce the 366 

confidence in model predictions.  Gannett and Lite [2004] coupled a groundwater flow model 367 

(MODFLOW) with a streamflow routing model to simulate discharge at the Upper Deschutes 368 

Basin.  However, they used water-level measurements from 983 wells to calibrate the coupled 369 

model.  The availability of such data cannot always be guaranteed at a catchment. 370 

Spring seasonality of water surplus is another dominant feature among the lower 371 

predictability (Group 2 and 3) catchments.  Spring seasonality indicates that the hydrologic regime 372 

of a catchment is noticeably influenced by spring snowmelt [Wigington et al., 2012].  Our dataset 373 

contains 28 catchments with spring seasonality, of which 24 (86%) belonged to Group 2 and 3.  374 

However, out of these 24 catchments, 15 catchments (63%) have high aquifer permeability as a 375 

dominant feature.  This suggests that isolating the individual impact of either high aquifer 376 

permeability or spring snowmelt on poor model prediction is not so straightforward for many 377 
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catchments in Oregon.  Figure 7 shows the relationship of NS with the inter-annual coefficient of 378 

variation (CV) of precipitation (P) and air temperature (T) (calculated from the 15 years used for 379 

calibration and validation) of all our study catchments with NS > 0.  No significant trend exists in 380 

the relationship between NS and the CV of P (r2 = 0.02, p value = 0.22), which suggests that a 381 

year-to-year change in the amount of precipitation does not have much effect on streamflow 382 

predictability.  On the other hand, a statistically significant trend exists in the relationship between 383 

NS and the CV of T (r2 = 0.47, p value < 0.01), such that the inter-annual variability in air 384 

temperature increases with decrease in NS.  This has important ramifications for the catchments 385 

that are located in the rain/snow transition zones near the High Cascades, since small changes in 386 

air temperature can have a significant impact on the amount of snow accumulation at a catchment 387 

in a given year.  Our results suggest that high year-to-year variability in air temperature increases 388 

the uncertainty in the phase of precipitation (i.e., how much snow a catchment typically expects), 389 

and is detrimental to streamflow predictability.  Although the EXP-HYDRO model uses a simple 390 

thermal degree-day model to represent the snow processes, it is not clear whether a more complex 391 

snow model, that explicitly simulates the altitude effects [Blöschl et al., 1991; Corbari et al., 392 

2009], sublimation [MacDonald et al., 2010], variable lapse rates [Nolin and Daly, 2006], and/or 393 

ground temperature [Stieglitz et al., 2001], can lead to any improvements in the streamflow 394 

prediction skills.  It is important to note that such an increase in the complexity of a snow model 395 

usually requires additional input data, which might not be available in many places. 396 

Prediction of streamflow at ungauged catchments is an important factor that has long 397 

motivated hydrologists towards the development of classification systems [Mosley, 1981; 398 

McDonnell and Woods, 2004; Wagener et al., 2007].  In this study, we tested whether a class-399 

assigned common parameter set of the EXP-HYDRO model can provide simulation performance 400 
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that is close enough to the performance obtained with individually calibrated parameters.  While 401 

this analysis was limited to only four OHL classes, our results showed that implementation of a 402 

common parameter set for an entire OHL class provides near optimal (less than 10% deterioration) 403 

performance in most catchments (31 out of 36; see Table 5).  This suggests that, for the most part, 404 

catchments within the same class tend to have similar hydrologic behavior, thereby providing an 405 

independent validation of the OHL classification system.  Parameter transfer based on physical 406 

catchment similarity has generally yielded mixed results in the past, where some studies have 407 

shown good performance at ungauged catchments [Parajka et al., 2005; Young, 2006], while 408 

others have suggested that in certain cases, a mismatch exists between physical and hydrologic 409 

similarity [Kokkonen et al., 2003; Oudin et al., 2010].  Of the four OHL classes, the WwLMM 410 

class contains the most catchments with a high decline in NS (3 out of 9 catchments in that class 411 

have > 10% NS decline).  Interestingly, the average calibrated NS value of catchments is also the 412 

lowest in the WwLMM class (avg. NS = 0.75).  In comparison, the other three classes have higher 413 

average calibrated NS (VwLML = 0.90; VwLMM = 0.84; WwLML = 0.81).  These findings are 414 

suggestive of an inherent link between similarity among catchments, in terms of model parameters 415 

and hydrologic landscape characteristics, and the hydrologic predictability of that catchment 416 

group/type.  If catchments within a particular class are highly predictable (e.g., VwLML), their 417 

model parameters are more likely to be similar and therefore easily transferrable to an ungauged 418 

catchment within the same class (see Table 4).  On the other hand, physio-climatic similarity 419 

among catchments (as characterized by OHL) is less useful if the model performance for that class 420 

of catchments is not high enough to begin with, perhaps due to some hydrologic characteristics 421 

(such as groundwater influence) that are difficult to incorporate into a regional classification 422 

scheme. 423 
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Caveats 424 

We made several assumptions in our choice of the catchment data, classification scheme, 425 

and the hydrologic model that can potentially influence the findings of this study.  While Oregon 426 

covers a large and diverse geographic area of the Pacific Northwest, the 88 catchments in this 427 

study were not evenly distributed throughout the state, with the majority of them located in the 428 

western part.  This skew in the geographic distribution increased the number of catchments having 429 

OHL classes that are more prevalent in western Oregon and decreased the number of catchments 430 

having classes that are more typical of eastern Oregon, such as drier climate and spring or summer 431 

seasonality.  Another limitation was the lack of diversity in the OHL classes within our data.  432 

Theoretically, there are 486 possible classes in the OHL classification system.  Of these, 157 433 

classes can be found in Oregon at the HLU level [Wigington et al., 2012].  However, at the 434 

aggregated catchment level, only 19 unique OHL classes were manifested among the 88 435 

catchments in this study (see Supplementary Table).  Furthermore, the four most common OHL 436 

classes (VwLML, VwLMM, WwLML, and WwLMM) that we considered for the analysis of 437 

ungauged catchments were quite similar to each other, and prevented us from taking full advantage 438 

of the high hydrologic diversity that exists within Oregon.  The choice of hydrologic classification 439 

scheme also had a major influence on our geographic interpretations of model predictability.  For 440 

instance, Wigington et al. [2012] used five types of physio-climatic data that they considered to be 441 

relevant for hydrologic classification, and then made further subjective decisions on how many 442 

classes can exist within each data type.  Modifications in either of those decisions will change the 443 

spatial distribution of landscape classes.  The method that we used for aggregating the OHL classes 444 

of individual HLUs to the catchment scale could also affect our results.  We selected the landscape 445 

class in each of the five categories that had maximum areal coverage within the catchment.  446 
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However, this method is less likely to be effective if there is high internal heterogeneity in the 447 

physio-climatic properties of the catchment.  Lastly, the choice of input data and model structure 448 

play an important role on the observed spatial patterns of model predictions.  While we used high 449 

quality gridded meteorological data [Maurer et al., 2002] as model inputs, estimates of rain and 450 

snow tend to be poorer at high elevations.  In terms of the model structure, we used a single bucket 451 

spatially lumped model that has been tested over a large number of catchments within the 452 

continental US [Patil and Stieglitz, 2012] and represents the hydrological processes that are 453 

prevalent in most catchments.  While the EXP-HYDRO model was used as a specific example for 454 

the diagnosis of model behavior, the methods described in the paper can be readily used to analyze 455 

the strengths and weaknesses of different types of hydrologic models. 456 

 457 

Concluding Remarks 458 

This study focused on testing whether a hydrologically based landscape classification 459 

system can improve our understanding of why a hydrologic model performs remarkably well in 460 

some regions, and why it fails to do so in other regions.  Using the EXP-HYDRO model and OHL 461 

classification as examples, we simulated daily streamflow in 88 catchments within Oregon, USA 462 

and compared the model predictability with the OHL classes of the catchments.  We further tested 463 

whether class-specific model parameters can be developed and successfully implemented at 464 

ungauged catchments with similar OHL class.  The main contribution of this paper is in showing 465 

that a hydrologic classification system is an efficient tool for analyzing a hydrologic model’s 466 

strengths and weaknesses across a large number of catchments, thereby making it easier to identify 467 

and understand where the model weaknesses come from.  Our results demonstrated that a 468 

hydrologically-based landscape classification system like OHL [Wigington et al., 2012] can be 469 
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effectively used to identify conditions that favor good streamflow predictability with a hydrologic 470 

model like EXP-HYDRO and also to constrain the potential causes for poor predictability at a 471 

catchment.  This improved understanding of model success/failure can guide hydrologists during 472 

the revision of model structures using a top-down approach.  Within the state of Oregon, a very 473 

wet climate, winter seasonality of water surplus, low aquifer permeability, mountainous terrain, 474 

and low to medium soil permeability is the most favorable combination of physio-climatic 475 

properties for high simulation performance with the EXP-HYDRO model.  Results also showed 476 

that the OHL class-specific common parameters provide model performance that is almost on par 477 

with individually calibrated parameters in most catchments.  However, performance deterioration 478 

with the class-specific common parameters is likely to be greater if the predictability of that OHL 479 

class is not high to begin with.  This has important ramifications for estimating model parameters 480 

at ungauged catchments.  Specifically, regionalized estimation of model parameters is more likely 481 

to be more useful in regions that have physio-climatic conditions that favor good hydrologic 482 

predictability. 483 
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Tables 

Table 1: Parameter ranges for calibration of EXP-HYDRO model. 

Parameter Description Units Lower Limit Upper Limit 

f Rate of decline in subsurface runoff 1/mm 0.0 0.1 

Smax Maximum storage of the catchment bucket mm 100.0 1500.0 

Qmax Maximum subsurface runoff at full bucket mm/day 10.0 50.0 

Df Degree-day factor, i.e., rate of snowmelt mm/day/°C 0.0 5.0 

Tmax Temperature above which snow starts melting °C 0.0 4.0 

Tmin Temperature below which precipitation is snow °C -3.0 0.0 
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Table 2: OHL classification codes for the five physio-climatic categories (Wigington et al. [2012]). 

Category Classification code 

Annual Climate V = very wet, W = wet, M = moist, D = dry, S = semi-arid, A = arid 

Seasonality of water surplus w = winter, s = spring, u = summer 

Aquifer permeability L = low, M = medium, H = high 

Terrain F = flat, T = transitional, M = mountainous 

Soil permeability L = low, M = medium, H = high 
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Table 3: Distribution of OHL classes among the three predictability groups.  Horizontal values add up to 

100%.  Number of catchments in Group 1 = 49, Group 2 = 14, and Group 3 = 25. 

Category % presence of OHL class 

Climate V W M D S A 

Group 1 (0.75 < NS) 63 33 2 2 - - 

Group 2 (0.6 < NS < 0.75) 57 21 14 7 - - 

Group 3 (NS < 0.6) 24 48 16 12 - - 

Seasonality of water surplus w s u    

Group 1 (0.75 < NS) 92 8 -    

Group 2 (0.6 < NS < 0.75) 50 50 -    

Group 3 (NS < 0.6) 28 68 4    

Aquifer permeability L M H    

Group 1 (0.75 < NS) 84 4 12    

Group 2 (0.6 < NS < 0.75) 29 21 50    

Group 3 (NS < 0.6) 28 16 56    

Terrain F T M    

Group 1 (0.75 < NS) - - 100    

Group 2 (0.6 < NS < 0.75) - - 100    

Group 3 (NS < 0.6) - - 100    

Soil permeability L M H    

Group 1 (0.75 < NS) 39 61 -    

Group 2 (0.6 < NS < 0.75) 21 79 -    

Group 3 (NS < 0.6) 12 48 40    
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Table 4: Range of the calibrated parameter values of EXP-HYDRO model among catchments belonging to 709 
each of the four OHL classes shown in Table 5.  Numbers shown in parentheses are the coefficient of 710 
variation of each parameter within a given OHL class. 711 

OHL Class 
f 

(1/mm) 

Smax 

(mm) 

Qmax 

(mm/day) 

Df 

(mm/day/°C) 

Tmin 

(°C) 

Tmax 

(°C) 

VwLML 

 

0.011 to 0.018 

(0.15) 

456 to 847 

(0.22) 

101 to 990 

(0.61) 

1.08 to 4.98 

(0.31) 

-2.97 to -0.33 

(0.50) 

0.01 to 3.17 

(1.01) 

VwLMM 

 

0.016 to 0.031 

(0.21) 

220 to 780 

(0.38) 

105 to 932 

(0.81) 

0.04 to 4.73 

(0.60) 

-2.95 to -0.76 

(0.48) 

0.66 to 3.99 

(0.57) 

WwLML 

 

0.017 to 0.031 

(0.25) 

346 to 596 

(0.20) 

108 to 774 

(0.76) 

0.37 to 4.54 

(0.81) 

-1.32 to -0.34 

(0.42) 

1.25 to 3.84 

(0.29) 

WwLMM 

 

0.012 to 0.030 

(0.28) 

317 to 

1497 

(0.58) 

103 to 989 

(0.77) 

0.00 to 3.16 

(1.84) 

-2.07 to -0.01 

(0.60) 

1.14 to 3.98 

(0.32) 

  



Table 5: Comparison of model performance in 36 catchments when using calibrated vs. OHL class-specific 712 
average parameters.  Bold values indicates catchments with > 10% model performance decline. 713 

OHL 

Class 

USGS 

Station no. 

NS 

(calibration) 

NS 

(average parameters) 

% decline in 

NS 

VwLML 

14189500 0.925 0.922 0.33 

14193000 0.922 0.907 1.67 

14194300 0.888 0.860 3.14 

14197000 0.917 0.910 0.77 

14301500 0.898 0.887 1.20 

14303200 0.833 0.821 1.41 

14303600 0.935 0.934 0.10 

14305500 0.947 0.946 0.06 

14306100 0.873 0.871 0.24 

VwLMM 

14141500 0.795 0.709 10.87 

14150300 0.853 0.851 0.18 

14161100 0.788 0.727 7.79 

14182500 0.804 0.768 4.44 

14185000 0.832 0.797 4.17 

14185900 0.780 0.744 4.64 

14187000 0.863 0.855 0.98 

14198500 0.829 0.784 5.48 

14306340 0.857 0.849 0.90 

14306400 0.909 0.884 2.75 

14324500 0.882 0.857 2.84 

14325000 0.841 0.819 2.59 

WwLML 

14152500 0.798 0.784 1.82 

14156500 0.799 0.783 2.01 

14166500 0.899 0.785 12.66 

14337800 0.825 0.794 3.79 

14337870 0.687 0.633 7.88 

14338000 0.834 0.806 3.41 

WwLMM 

14144900 0.598 0.216 63.94 

14150800 0.811 0.792 2.31 

14307700 0.755 0.700 7.26 

14308000 0.839 0.808 3.73 

14308990 0.569 0.498 12.54 

14309500 0.790 0.767 2.86 

14316700 0.848 0.804 5.17 

14318000 0.766 0.722 5.70 

14371500 0.845 0.722 14.52 
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Figures 

 

Figure 1: Location of the 88 catchment outlets within Oregon.  Black triangles are the locations of catchment 

outlets.  Map projected in WGS 1984 co-ordinate system. 
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Figure 2: Schematic representation of the EXP-HYDRO model (adapted from Patil and Stieglitz [2012]). 
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Figure 3: Map of the Middle Fork John Day River catchment showing internal heterogeneity of OHL classes 

at the HLU scale (Adapted from Wigington et al. [2012]).  Map projected in UTM Zone 10 co-ordinate system. 
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Figure 4: a) Box-and-whisker plot of NS values for calibration and validation periods, and b) 1:1 relationship 

of NS values for calibration and validation periods. 
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Figure 5: Classification of the 88 catchments based on calibrated NS values.  Map projected in UTM Zone 10 

co-ordinate system. 
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Figure 6: Relationship between calibrated NS value and the % decline in NS with class-assigned average 

parameter set for the subset of 36 catchments. 
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Figure 7: Relationship of calibration NS values with inter-annual coefficient of variation of a) Precipitation 714 
and b) Air temperature. 715 
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Supplementary Table S1: OHL class obtained for all 88 Oregon catchments.  Numbers shown in parentheses 

are the percentage areal coverage of each dominant property within the catchment (indicative of spatial 

homogeneity). 

 

USGS 

Station no. 
Station Name Climate 

Seasonality 

of water 

surplus 

Aquifer 

permeability 
Terrain 

Soil 

permeability 

10370000 

 

Camas Creek near Lakeview, 

OR 

D 

(65.8) 

w 

(65.8) 

H 

(51.5) 

M 

(100) 

M 

(82.7) 

10384000 

 

Chewaucan River near 

Paisley, OR 

M 

(62.5) 

w 

(58.2) 

L 

(58) 

M 

(99.3) 

M 

(73.5) 

10396000 

 

Donner and Blitzen River 

near Frenchglen, OR 

W 

(41.7) 

s 

(61.5) 

M 

(100) 

M 

(83.7) 

M 

(58.3) 

11497500 

 

Sprague River near Beatty, 

OR 

D 

(51.3) 

w 

(66.8) 

H 

(100) 

M 

(88.4) 

M 

(45.5) 

13216500 

 

N Fk Malheur R abv Beulah 

Res nr Beulah, OR 

M 

(48.1) 

s 

(78.5) 

M 

(84.9) 

M 

(100) 

M 

(78.3) 

13288200 

 

Eagle Creek abv Skull 

Creek, nr New Bridge, OR 

W 

(56.3) 

s 

(98.8) 

L 

(74.3) 

M 

(100) 

L 

(56.3) 

13292000 

 

Imnaha River at Imnaha, OR 

 

D 

(41.9) 

s 

(46.9) 

M 

(92.1) 

M 

(100) 

L 

(53.3) 

13329500 

 

Hurricane Creek near 

Joseph, OR 

W 

(100) 

u 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

13331500 

 

Minam River near Minam, 

OR 

W 

(48.8) 

s 

(87) 

L 

(53) 

M 

(100) 

L 

(57.3) 

14010000 

 

South Fork Walla Walla 

River near Milton, OR 

W 

(100) 

s 

(100) 

M 

(100) 

M 

(100) 

M 

(100) 

14020000 

 

Umatilla River abv 

Meacham Cr, nr Gibbon, OR 

W 

(98.4) 

s 

(98.4) 

M 

(100) 

M 

(100) 

M 

(100) 

14020300 

 

Meacham Creek at Gibbon, 

OR 

W 

(86.6) 

s 

(80) 

M 

(100) 

M 

(100) 

M 

(100) 

14037500 

 

Strawberry Cr abv Slide Cr 

nr Prairie City, OR 

M 

(100) 

s 

(100) 

M 

(100) 

M 

(100) 

L 

(100) 

14042500 

 

Camas Creek near Ukiah, 

OR 

M 

(100) 

s 

(97.3) 

M 

(100) 

M 

(97.7) 

M 

(100) 

14044000 

 

Middle Fork John Day River 

at Ritter, OR 

M 

(57.8) 

s 

(59.2) 

M 

(85) 

M 

(76.4) 

M 

(83.8) 

14054500 

 

Brown Creek near La Pine, 

OR 

W 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 

14090350 

 

Jefferson Creek near Camp 

Sherman, OR 

V 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 
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14090400 

 

Whitewater River near Camp 

Sherman, OR 

W 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 

14091500 

 

Metolius River near 

Grandview, OR 

W 

(53.8) 

s 

(62.7) 

H 

(100) 

M 

(99.8) 

H 

(100) 

14092750 

 

Shitike Cr, at Peters Pasture, 

nr Warm Springs, OR 

M 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 

14095500 

 

Warm Springs River near 

Simnasho, OR 

W 

(79.5) 

s 

(79.5) 

H 

(100) 

M 

(96.7) 

H 

(82.9) 

14096300 

 

Mill Creek, nr Badger Butte, 

nr Warm Springs, OR 

W 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 

14096850 

 

Beaver Creek, blw Quartz 

Cr, nr Simnasho, OR 

D 

(57.4) 

w 

(100) 

L 

(50.6) 

M 

(92.6) 

H 

(72.7) 

14101500 

 

White River below Tygh 

Valley, OR 

D 

(38.1) 

w 

(67) 

H 

(93.4) 

M 

(87.8) 

L 

(47.9) 

14134000 

 

Salmon River near 

Government Camp, OR 

V 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14137000 

 

Sandy River near Marmot, 

OR 

V 

(100) 

s 

(74.6) 

H 

(73.8) 

M 

(100) 

M 

(90.7) 

14138800 

 

Blazed Alder Creek near 

Rhododendron, OR 

V 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14138870 

 

Fir Creek near Brightwood, 

OR 

V 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14138900 

 

North Fork Bull Run River 

near Multnomah Falls, OR 

V 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14139700 

 

Cedar Creek near 

Brightwood, OR 

V 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14139800 

 

South Fork Bull Run River 

near Bull Run, OR 

V 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14141500 

 

Little Sandy River near Bull 

Run, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14144800 

 

Middle Fork Willamette 

River nr Oakridge, OR 

V 

(55.8) 

s 

(55.8) 

H 

(68) 

M 

(100) 

M 

(63.7) 

14144900 

 

Hills Cr abv Hills Cr Res, nr 

Oakridge, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14146500 

 

Salmon Creek near 

Oakridge, OR 

V 

(64.7) 

s 

(64.7) 

H 

(75.1) 

M 

(56.3) 

M 

(56.3) 

14147500 

 

N Fk of M Fk Willamette R 

nr Oakridge, OR 

V 

(51.3) 

w 

(73.9) 

H 

(53.9) 

M 

(100) 

M 

(59.4) 
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14150300 

 

Fall Creek near Lowell, OR 

 

V 

(60.5) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(71.1) 

14150800 

 

Winberry Creek near Lowell, 

OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(80.2) 

14152500 

 

Coast Fork Willamette River 

at London, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14154500 

 

Row River near Dorena, OR 

 

W 

(78.7) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(72.4) 

14156500 

 

Mosby Cr at mouth, nr 

Cottage Grove, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14158500 

 

McKenzie River at outlet of 

Clear Lake, OR 

V 

(100) 

s 

(100) 

H 

(100) 

M 

(99) 

M 

(76.1) 

14158790 

 

Smith R abv Smith R res nr 

Belknap Springs, OR 

V 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14159200 

 

So Fk McKenzie River abv 

Cougar Lk nr Rainbow, OR 

V 

(100) 

w 

(60.5) 

L 

(56.3) 

M 

(100) 

M 

(100) 

14161100 

 

Blue River below Tidbits 

Creek, nr Blue River, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14161500 

 

Lookout Creek near Blue 

River, OR 

V 

(100) 

w 

(100) 

H 

(100) 

M 

(100) 

M 

(100) 

14163000 

 

Gate Creek at Vida, OR 

 

V 

(61.4) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(52) 

14166500 

 

Long Tom River near Noti, 

OR 

W 

(100) 

w 

(100) 

L 

(99.1) 

M 

(98.8) 

L 

(100) 

14178000 

 

North Santiam River below 

Boulder Cr, nr Detroit, OR 

V 

(100) 

s 

(80.4) 

H 

(94.2) 

M 

(100) 

M 

(54.3) 

14179000 

 

Breitenbush R abv French Cr 

nr Detroit, OR 

V 

(100) 

w 

(56.6) 

L 

(56.6) 

M 

(100) 

M 

(56.6) 

14182500 

 

Little North Santiam River 

near Mehama, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14185000 

 

South Santiam below 

Cascadia, OR 

V 

(91.9) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(81.5) 

14185900 

 

Quartzville Creek near 

Cascadia, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14187000 

 

Wiley Creek near Foster, OR 

 

V 

(98.8) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(66.3) 

14189500 

 

Luckiamute River near 

Hoskins, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 
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14190500 

 

Luckiamute River near 

Suver, OR 

W 

(53.1) 

w 

(100) 

L 

(96.1) 

M 

(70) 

L 

(53.1) 

14193000 

 

Willamina Creek near 

Willamina, OR 

V 

(96.1) 

w 

(100) 

L 

(100) 

M 

(96.1) 

L 

(100) 

14194300 

 

North Yamhill River near 

Fairdale, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14197000 

 

North Yamhill R at Pike, OR 

 

V 

(64.8) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14198500 

 

Molalla R abv PC nr 

Wilhoit, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14208000 

 

Clackamas River at Big 

Bottom, OR 

V 

(100) 

s 

(88.3) 

H 

(100) 

M 

(99.7) 

M 

(73.2) 

14301000 

 

Nehalem River near Foss, 

OR 

V 

(75.9) 

w 

(100) 

L 

(98) 

M 

(85.5) 

L 

(55.9) 

14301500 

 

Wilson River near 

Tillamook, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14303200 

 

Tucca Creek near Blaine, OR 

 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14303600 

 

Nestucca River near Beaver, 

OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(94) 

14305500 

 

Siletz River at Siletz, OR 

 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(98.1) 

L 

(63.3) 

14306100 

 

N Fk Alsea R at Alsea, OR 

 

V 

(76.9) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14306340 

 

East Fork Lobster Creek near 

Alsea, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14306400 

 

Five Rivers nr Fisher, OR 

 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14306500 

 

Alsea River near Tidewater, 

OR 

V 

(70) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(51.1) 

14307580 

 

Lake Creek near Deadwood, 

OR 

V 

(53) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14307620 

 

Siuslaw River near 

Mapleton, OR 

W 

(64.8) 

w 

(100) 

L 

(100) 

M 

(99.9) 

M 

(59) 

14307700 

 

Jackson Creek nr Tiller, OR 

 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14308000 

 

South Umpqua River at 

Tiller, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 



Patil et al.  Use of hydrologic landscape classification 

 

47 

 

14308990 

 

Cow Creek abv Galesville 

res, nr Azalea, OR 

W 

(100) 

w 

(100) 

L 

(80.6) 

M 

(100) 

M 

(80.6) 

14309500 

 

West Fork Cow Creek near 

Glendale, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14316700 

 

Steamboat Creek near Glide, 

OR 

W 

(83.1) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14318000 

 

Little River at Peel, OR 

 

W 

(94) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(77.1) 

14324500 

 

West Fork Millicoma River 

near Allegany, OR 

V 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14325000 

 

South Fork Coquille River at 

Powers, OR 

V 

(86.3) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(99.3) 

14328000 

 

Rogue River above Prospect, 

OR 

V 

(68.3) 

s 

(71) 

H 

(69.2) 

M 

(99.4) 

H 

(78.9) 

14333500 

 

Red Blanket Creek near 

Prospect, OR 

W 

(100) 

s 

(100) 

H 

(100) 

M 

(100) 

H 

(100) 

14337800 

 

Elk Creek near Cascade 

Gorge, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(99.7) 

L 

(100) 

14337870 

 

West Branch Elk Creek near 

Trail, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

L 

(100) 

14338000 

 

Elk Creek near Trail, OR 

 

W 

(97.1) 

w 

(100) 

L 

(100) 

M 

(99.8) 

L 

(100) 

14362250 

 

Star Gulch near Ruch, OR 

 

M 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14371500 

 

Grave Creek at Pease Bridge, 

near Placer, OR 

W 

(100) 

w 

(100) 

L 

(100) 

M 

(100) 

M 

(100) 

14400000 

 

Chetco River near 

Brookings, OR 

V 

(100) 

w 

(100) 

L 

(81.1) 

M 

(100) 

L 

(55.8) 

 

 


