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OBSERVATION

Shape Information Mediating Basic- and Subordinate-Level Object
Recognition Revealed by Analyses of Eye Movements

Lina I. Davitt and Filipe Cristino
Bangor University

Alan C.-N. Wong
The Chinese University of Hong Kong

E. Charles Leek
Bangor University

This study examines the kinds of shape features that mediate basic- and subordinate-level object
recognition. Observers were trained to categorize sets of novel objects at either a basic (between-families)
or subordinate (within-family) level of classification. We analyzed the spatial distributions of fixations
and compared them to model distributions of different curvature polarity (regions of convex or concave
bounding contour), as well as internal part boundaries. The results showed a robust preference for fixation
at part boundaries and for concave over convex regions of bounding contour, during both basic- and
subordinate-level classification. In contrast, mean saccade amplitudes were shorter during basic- than
subordinate-level classification. These findings challenge models of recognition that do not posit
any special functional status to part boundaries or curvature polarity. We argue that both basic- and
subordinate-level classification are mediated by object representations. These representations make
explicit internal part boundaries, and distinguish concave and convex regions of bounding contour. The
classification task constrains how shape information in these representations is used, consistent with the
hypothesis that both parts-based, and image-based, operations support object recognition in human
vision.

Keywords: eye movements, object recognition, basic-level, subordinate-level, image classification

Our ability to recognize familiar objects across variations in
sensory input arising from changes in scale, viewpoint, lighting,
and other factors is one of the most remarkable aspects of human
vision (e.g., Arguin & Leek, 2003; Biederman, 1987; Bukach,

Gauthier, & Tarr, 2006; Foster & Gilson, 2002; Harris, Dux,
Benito, & Leek, 2008; Leek, 1998a, 1998b; Leek, Atherton, &
Thierry, 2007; Leek & Johnston, 2006; Wong & Hayward, 2005).
We are also adept at recognizing objects at different levels of
classification. For example, we can rapidly classify unfamiliar
vehicles into known basic-level categories such as “car,” “truck,”
and “bus.” Using prior knowledge, and expertise, we can also
individuate exemplars within basic-level categories at subordinate
levels (e.g., “Renault 5,” “Seat Ibiza,” and “BMW X3”). Despite
the apparent ease with which observers accomplish object recog-
nition we know relatively little about how the visual system
represents shape, and what image features are used to support
different levels of shape classification.

We investigated this issue using analyses of fixational eye
movement patterns. Leek et al. (2012) found that the spatial
distributions of fixation patterns during the perception of complex
surface-rendered novel objects was strongly influenced by surface
curvature polarity. Observers showed a preference for fixation at
regions of concave relative to convex surface intersection. This
finding is consistent with those from other studies, largely based
on shape judgments about contour-based 2D polygons, that ob-
servers show greater sensitivity to changes in the magnitude and
sign of curvature at concave than convex regions (e.g., Attneave,
1954; Barenholtz, Cohen, Feldman, & Singh, 2003; Bertamini,
2008; Biederman, 1987; Cate & Behrmann, 2010; Cohen, Baren-
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holtz, Singh, & Feldman, 2005; Cohen & Singh, 2007; De Winter
& Wagemans, 2006; Feldman & Singh, 2005; Hoffman & Rich-
ards, 1984; Hoffman & Singh, 1997; Lim & Leek, 2012). For-
mally, it has been demonstrated that, for geometrically closed
forms, concave regions carry more shape information (or surprisal)
than convex regions (Feldman & Singh, 2005; Lim & Leek, 2012;
also see Singh & Feldman, 2012). One influential hypothesis is
that curvature polarity on object structure provides a cue to the
presence of part boundaries, particularly at concave regions
formed by the intersection of object parts (Hoffman & Richards,
1984). This proposal is consistent with structural description mod-
els of basic (or entry)-level recognition in which complex objects
are represented in terms of their constituent parts and spatial
configuration (e.g., Biederman, 1987; Hummel & Stankiewitz,
1996; Leek, Reppa, Rodriguez, & Arguin, 2009; Leek, Reppa, &
Arguin, 2005; Marr & Nishihara, 1978). In contrast, the impor-
tance of part boundaries and differential sensitivity to curvature
polarity in shape perception appears to challenge other models of
recognition such as image-based hierarchical accounts like HMAX
(e.g., Serre, Oliva, & Poggio, 2007; Serre, Wolf, Bileschi, Ries-
enhuber, & Poggio, 2007) that do not attribute any special func-
tional status to these kinds of features.

One theoretical possibility is that basic- and subordinate-level
classification are mediated by different kinds of shape representa-
tions: Basic-level classification is supported by a parts-based struc-
tural description, and subordinate-level classification is supported
by image-based representations, consistent with a hybrid “dual
coding” account (e.g., Foster & Gilson, 2002; Hummel & Stankie-

wicz, 1996). In this case, we might only expect to find evidence for
the differential processing of concave features like part-boundaries
during basic-level classification.

To test this we analyzed the spatial distributions of fixational
eye movement patterns recorded while observers made either
basic- (between-families) or subordinate- (within-family) level
classification judgments about sets of surface rendered solid novel
objects. Fixation patterns were compared to algorithmically gen-
erated shape feature models based on convex and concave regions
of bounding contour, and internal part boundaries.

Methods

Participants

Twenty-four students from Bangor University participated in
exchange for course and printer credits. Twelve were assigned to
a subordinate-level classification group (8 females, M age �
20.08, SD � 2.5), and 12 to a basic-level classification group (9
females, M age � 19.75, SD � 1.05). All reported normal or
corrected to normal vision. The protocol had received approval
from the local Research Ethics and Governance Committee.

Stimuli

The stimuli comprised 36 of the novel (“Ziggerins”) objects
developed by Wong, Palmeri, & Gauthier (2008; see Figure 1).
There were six different classes of Ziggerins each defined by a

Figure 1. The stimuli set (Ziggerins) used in the experiment.
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distinctive part structure. Each class consisted of six Ziggerins
defined by distinct metric variation of part size, aspect ratio, and
cross-sectional shape. The models were rendered in yellow and
scaled to fit within an 800 � 800 pixel frame subtending 18° of
visual angle horizontally from the viewing distance of 60 cm.

Apparatus

Eye movement data were recorded on a Tobii ET-17 binocular
eye-tracker (60 Hz sampling). Stimuli were presented on a TFT
monitor running at a resolution of 1280 � 1024 pixels and 60 Hz
refresh rate.

Design and Procedure

There were two tasks: Basic-level versus subordinate-level ob-
ject classification manipulated as a between-subjects factor. Par-
ticipants (N � 12 per group) were randomly assigned to either the
basic- or subordinate-level classification task group and received
extensive training according to group assignment following the
protocol described by Wong et al. (2008). For each group, this
comprised 3 hr (in separate one hour sessions) of tasks requiring
either basic- or subordinate-level classification using 18 of 36
randomly selected Ziggerins. The remaining 18 stimuli were used
to assess classification performance in a subsequent test phase.
Each training session included a sequence of five tasks: inspection,
feedback, naming, verification, and matching.1 Reaction times and
accuracy were recorded during training to monitor participant
engagement. The subordinate group learned the individual names
for 12 of 18 Ziggerins, with the remaining six objects being used
as distracters. The basic group learned to categorize 12 Ziggerins
into four different classes, with two unnamed classes (six Zigger-
ins) used as distracters. An initial random selection of targets and
distractor sets was made, but this was used consistently across
participants. Two-syllable nonword names given to individual or
class objects were randomly assigned (e.g., Rofo, Vilo). After
training, basic- or subordinate-level classification performance
was assessed using a sequential matching task (N trials � 216)
following Wong et al. (2008; see Figure 2). For the subordinate-
level task, the participants judged (by keyboard response: same/
different) whether the two Ziggerins were the same or different
individual exemplar. For the basic-level task, participants judged
whether the two Ziggerins were from the same or different family.

Analyses of Eye Movement Data

Eye tracking data analysis parameters were identical to those
used by Leek et al. (2012). The first fixation on each trial was
discarded. Analyses of the eye movement data were based on the
fixation region overlap analysis (FROA) methodology (see John-
ston & Leek, 2009; Leek et al., 2012; for more details). FROA
allows the spatial distributions of observed fixation patterns to be
statistically compared to models of the spatial distributions of
image features of interest. The key dependent measure in FROA is
known as model matching correspondence (MMC) which quanti-
fies the difference in the degree of spatial overlap between the
observed distribution of fixations and a given theoretical model
(e.g., spatial distribution of concave curvature minima) relative to
the 95% confidence interval (CI) of the chance overlap distribution

determined by Monte Carlo. Higher values of MMC indicate better
data-model correspondences (where negative values indicate per-
centage overlap that is less than the amount expected at the 95%
CI). MMC statistics were subjected to analyses of variance
(ANOVA). Eye movement analyses were performed on data from
the sequential matching task only.

Generating Model Predictions

Fixation patterns were compared against three algorithmically
generated models: concave regions of bounding contour, convex
regions of bounding contour, and internal part boundaries (see
Figure 3). The bounding curvature models were based on contour-
based curvature maps extracted from image silhouettes for each
stimulus using the algorithm described in Feldman and Singh
(2005). For each discrete point on the silhouette, the curvature sign
and magnitude was computed and transformed into a proportion-
ally sized circular disk, which were summed to create the final
concave and convex masks. The corresponding masks served as
Regions Of Interest (ROIs) in the FROA analysis. The internal
part-boundary models were created by defining the intersection
between 3D parts using the ‘minima short-cut’ rule between paired
concavities (e.g., Singh & Hoffman, 2001; Singh, Seyranian, &
Hoffman, 1999).

Results

Behavioral Data

Accuracy (% correct) for the basic-level classification task (%
correct; M � 95%; SD � .07) was not significantly different from
the subordinate-level classification task (M � 96%; SD � .02;
Mann–Whitney, p � .471). For RTs, an independent t test (correct
responses) showed no significant difference between basic- (M �
660.62 ms; SD � 114.05) and subordinate-level classification
(M � 632.35 ms; SD � 114.05; t(18) � �.622, p � .542).

Analyses of the Spatial Distributions of Fixations

The goal of these analyses was to determine whether the pat-
terns of data-model correspondences were modulated by classifi-
cation task. The mean MMC values for the external concave and
convex models, and internal part boundary models (relative to the
visual saliency baseline) as a function of classification task (basic
vs. subordinate) are shown in Figure 4.

A 2 (Task: Basic, Subordinate) � 3 (Model: External Concave,
External Convex, Internal Part Boundaries) mixed ANOVA
showed a significant main effect of Model, F(2, 34) � 47.92, p �
.0001, �p2 � .738. There were no other main effects or interac-
tions.

1 In the inspection task, a Ziggerin and verbal label (name or family)
were shown together with no response requirement. In the feedback task,
a single Ziggerin was shown and the first letter of its name/family had to
be indicated. Correct/incorrect feedback was given. The naming task was
identical except no feedback was provided. During the verification task, a
single name/family was shown followed by a Ziggerin that remained on the
screen until a match/mismatch response was made. In the matching task, a
name/family was presented followed two Ziggerins presented side by side.
Participants indicated which Ziggerin matched the verbal label.
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Planned comparisons between models for the basic task were
significant for external concave versus external convex, p � .0001;
external concave versus internal part boundaries, p � .011; and
external convex versus internal part boundaries, p � .0001.
Planned comparisons for the subordinate task were significant for
external concave versus external convex, p � .0001; external
concave versus internal part boundaries, p � .006; and external
convex versus internal part boundaries, p � .001. There were no
significant differences for models between the basic and the sub-
ordinate task.

Further Analyses

The overall mean saccade amplitude was lower for the basic
(M � 2.30°; SD � 1.26) than subordinate classification task (M �
3.64°; SD � 1.71), t(23) � �5.027, p � .0001. There was no

difference in mean dwell times (basic: M � 198.15 ms; SD �
46.21; subordinate: M � 195.99 ms; SD � 45.36), t(23) � .268,
p � .791.

General Discussion

The results extend those reported by Leek et al. (2012) by
showing fixation preferences for internal part boundaries, and for
concave over convex regions of bounding contour both during
basic- and subordinate-level object recognition. These findings
suggest that both basic- and subordinate-level classification are
mediated by object representations that make explicit internal part
boundaries, and differentially encode concave and concave regions
of bounding contour - consistent with parts-based, structural de-
scription, approaches (e.g., Biederman, 1987; Hummel & Stankie-
witz, 1996; Leek et al., 2005; Marr & Nishihara, 1978). In contrast,

Figure 2. Schematic illustration of the trial structure for the sequential matching task.

Figure 3. Examples of the algorithmically generated Regions Of Interest (ROIs) for each model: (a) the 2D
curvature map used to define (b) external convex and (c) concave regions; and (d) internal part boundaries
defined by the minima/short-cut rule (see the Methods section).
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the data challenge models of shape representation that do not
attribute functional significance to these image features including
recent variants of feed-forward image-based models like HMAX
(Serre, Wolf, et al., 2007; Serre, Oliva, & Poggio, 2007). To
account for these data, such models would require modification to
include a level of feature representation that makes explicit inter-
nal part boundaries, and the sign of curvature along bounding
contour.

Although the spatial distribution of fixations across these image
features was the same for basic- and subordinate-level recognition,
the analysis of saccade amplitudes revealed a difference in scan-
ning patterns: Saccade amplitudes were shorter in the basic- than
subordinate-level classification task. This provides evidence for
differential shape information processing. To understand this pat-
tern of results, it is useful to consider task requirements.
Subordinate-level classification could only be performed by a
perceptual analysis of metric differences in global shape properties
(see Figure 1). Because stimuli within an object class had the same
part configuration, local part relations might be expected to place
weaker constraints on image processing—equivalent to the per-
ceptual processing demands of subordinate-level classification
among common objects (where all exemplars share the same
overall part configuration). As a consequence, shape information
may need to be sampled more globally across object structure—
correlating with higher saccade amplitudes. In contrast, basic-level
discrimination could be constrained more strongly by computing
local (internal) part relations, and their corresponding structural
descriptions, which would be sufficient for distinguishing among
members of each object class. Thus, although the representations
mediating recognition may be common to basic- and subordinate-
level classification—as suggested by the similarity of correspon-

dences between fixation patterns and feature models across
tasks—the way information in those representations is sampled
may be differentially constrained by task demands.

Finally, it is interesting to consider the role of concave regions
in image classification. As we have noted, a key hypothesis is that
these regions fundamentally underpin perceptual analyses of ob-
ject part boundaries and compositional structure. However, this
does not necessarily mean that concave regions constrain basic-
and subordinate-level classification in the same way. Concave
regions may not only derive functional significance as part bound-
aries, but also as local features, keypoints or interest point opera-
tors that constrain generalization across views—as in, for ex-
ample, Ullman (1996). Thus, these image features may support
the computation of parts-based structural description representa-
tions during basic-level classification and serve as local geometric
keypoints to constrain image-based processing during subordinate-
level classification. This would be consistent with the possibility
that both parts-based, and image-based, operations support object
recognition (e.g., Foster & Gilson, 2002; Hummel & Stankiewitz,
1996).
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