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The worst performance rule is the tendency for participants' slowest reaction times to correlate more with psy-
chometric intelligence than their faster reaction times. Reaction times, however, are influenced by the duration of
multiple perceptual, attentional, and motor sub-processes, and it is unclear whether the same pattern exists in
these sub-processes as well. We used single-trial event-related potentials to identify whether a worst perfor-
mance rule pattern could be found in stimulus and response-locked P3b latency distributions and scores on a
test of non-verbal psychometric intelligence.
Fifty participants carried out a set of working memory oddball tasks, while electroencephalographic data were
collected, and the British Version of the Intelligence Structure Test, in a separate session. Single-trial P3b latencies
were identified in stimulus and response-locked data and a novel quantile bootstrapping method was used to
identify which quantiles of the P3b latency distributions correlated most with test scores.
In stimulus-locked data, correlations betweenquantilemean and test scores becamemore negativewith increas-
ing quantile, showing clear evidence of a worst performance rule pattern. In response-locked data, low scorers
showed more extreme latencies in both tails of the distribution. However we did not observe a worst perfor-
mance rule in behavioural data. These data suggest that psychometric intelligence is also associated with
response-related processes, which may also contribute to the association between psychometric intelligence
and reaction time variability.

© 2015 Elsevier Inc. All rights reserved.
Keywords:
P300
Intelligence
g
Reaction time variability
Mental chronometry
1. Introduction

Reaction time (RT) is a long established correlate of psychometric in-
telligence (Beck, 1933; Jensen, 2006), with higher ability individuals
able to carry out cognitive operations faster than those with lower
ability. In order to obtain reliable RT measurements, it is a standard
practice to run many trials, which are aggregated to obtain a single
representative measure of speed. This procedure assumes that all
intra-subject variability (ISV) is meaningless noise, to be minimised in
order to estimate a ‘true’ RT. However it is becoming increasingly clear
that intra-subject RT variability is not only a reliable trait in its own
right Saville et al. (2011b), but also an independent correlate of
psychometric intelligence (Deary, Der, & Ford, 2001; Jensen, 1992),
chology Programme, School of
ynedd, Wales LL57 2AS, UK.

).

t al., A neural analogue of th
rg/10.1016/j.intell.2015.12.0
and it is now widely accepted that higher g is associated with not just
faster RTs, but less variable RTs as well.

A more specific link between RT and g, is theworst performance rule.
Larson and Alderton (1990) suggested that measuring overall variabili-
ty could conflate different sources of variance. By averaging RTs within
quantile bands and correlating g with each quantile's mean separately,
they found that the correlation between g and RT increased with in-
creasing quantile, suggesting that it was the slowest RTs that were driv-
ing the relationship between ISV and g, a finding replicated a number of
times (Coyle, 2003; Kranzler, 1992; but see Salthouse, 1998). The worst
performance rule is a striking finding because of what it appears to
suggest about intelligence: the difference between high and low g
participants is not in their maximum capability, but in their ability to
maintain this level over the course of a task. The speed-related facet of
intelligence may be related to performance more than competence.

Despite the above suggestion that the worst performance rule
reflects an association between g and sustained attention, this remains
unsubstantiated. The existing literature, however, advances two plausible
e worst performance rule: Insights from single-trial event-related
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models. Onepossibility is that theworst performance rule is a result of an
association between g and sustained attention. Lapses in attention could
be more common in participants with low g. Such lapses would cause
delays to the start of stimulus-processing, and thereby lead to a greater
incidence of slow RTs. Such lapses would, however, likely leave later
response-processing stages largely unaffected, albeit delayed.

A second model is that RTs can be modelled as the accrual of infor-
mation to decide between two possible responses, with a decision
being made once a certain threshold has been reached. Such a concep-
tion of RTs appears to be a good fit for a variety of data, and themost fa-
mous of this class of models is the Diffusion Model (Ratcliff, 1978).
Simulations have shown that this model can reproduce the worst per-
formance rule by representing lower g as a slower rate of information
accrual, or as a more stringent decision threshold (Ratcliff, Schmiedek,
& McKoon, 2008). This explanation contrasts with the attentional
lapse model in that slow RTs do not represent a distinct group from
‘normal’ RTs, but part of the same distribution.

Finally, a largely unconsidered possibility is that processes trans-
lating an abstract decision about the stimulus into a motor plan could
contribute to the worst performance rule. Such an association could
reflect a specific association between such processes and g, or they
could reflect an association between g and a more general property of
neurocognition, such as axonal myelination (Miller, 1994), and such a
‘global’ property of neural transmission could lead to variable delays
at multiple stages of processing.

Single-trial event-related potentials (Saville et al., 2011a, Saville
et al., 2014; 2015b) offer an opportunity to investigate this. By identify-
ing neural markers of covert processing steps in each trial we can esti-
mate the latency distributions of sub-processes that underlie an RT to
identify whether each subcomponent displays a worst performance
rule pattern. This will help to differentiate between the three models
described above.

Event-related potentials (ERPs) typically require averaging to be
measured reliably, but some have sufficient signal-to-noise ratio to be
measured in single trials. One component which is amenable to
single-trial analysis is the P3b (Gerson, Parra, & Sajda, 2005; Saville
et al., 2011a). The P3b is thought to represent the completion of a neural
decision (O'Connell, Dockree, & Kelly, 2012; Verleger, Jaśkowski, &
Wascher, 2005), or the propagation of such a decision (Nieuwenhuis,
Aston-Jones, & Cohen, 2005), before the decision is converted into a
motor plan. P3b latency is thus sensitive to some, but not all of the
same factors as RT (Kutas, McCarthy, & Donchin, 1977). An interesting
property of the P3b is that it is time-locked to both stimulus-onset
and response, in line with its putative role as a bridge between
stimulus-processing and response execution (Verleger et al., 2005;
Verleger, Schroll, & Hamker, 2013). P3b latency can thus be measured
relative to both events, and has a different significance depending on
the time-locking event, with stimulus-locked effects being consistent
with an effect on pre-decision neurocognitive processes and response-
locked effects indicating post-decision processes.

In the present study, we will carry out a worst performance rule
analysis of single-trial P3b latency distributions. This analysis will be
carried out on both stimulus and response-locked P3b latencies, in
order to identify whether the worst performance rule pattern can be
identified in these latencies. Evidence for the pattern in stimulus-
locked data alone would suggest that this pattern is due to early
processing factors, such as lapses in attention. Evidence for the pattern
in response-locked data alone would suggest that response-planning
is responsible. Evidence for a worst performance rule in both distribu-
tions would suggest that a single general factor, or multiple different
factors, underlies this effect.

2. Methods

The study was approved by the Ethics and Research Governance
Committee at the School of Psychology, Bangor University.
Please cite this article as: Saville, C.W.N., et al., A neural analogue of th
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2.1. Participants

Fifty participants, primarily students from Bangor University, took
part in the present study. Mean age was 22 (±3.6), 35 were female,
and three were left-handed.

2.2. Intelligence measures

Participants completed the English language version of the Basic
Module of the Intelligence Structure Test (Beauducel, Liepmann, Horn,
& Brocke, 2010) on a different day to the EEG session, either alone or
in small groups. The Intelligence Structure Test is substantially correlat-
ed with Cattell's Culture-Fair-Intelligence test (CFT-20, r = .63, N =
180) and Raven's Advanced Progressive Matrices (r = .69, N = 244),
so represents a goodmeasure of g (Beauducel et al., 2010). As some par-
ticipants were not native speakers of English, we created a composite
non-verbal intelligence score by running maximum likelihood factor
analysis (as implemented by the factanal function in R [R Core
Development Team, 2012]) on the numeric and figural subtests, and
creating weighted sum scores for each participant using the factor
weightings. The numeric subtests were as follows: Calculations (basic
arithmetic), Number Series (identifying the next number in a sequence
burying a mathematical rule), and Number Signs (choosing the correct
mathematical operator to make an equation correct). The figural sub-
tests were as follows: Figure Selection (choosing which shape could
be formed from a set of components), Cubes (choosing which cube
was a rotated version of an exemplar), and Matrices (akin to Raven's
progressive matrices). Each subtest included 20 items and participants
were given between 6 and 10 min, depending on the subtest in
question. Full details can be found in Beauducel et al. (2010).

Numeric scores averaged 34.3 (±11.3) and figural scores averaged
33.5 (±7.1). The numeric and figural scores shared a great deal of
variance (r = .63) but verbal scores were less highly correlated with
both numeric (r = .26) and figural (r = .22) scores, suggesting that
our exclusion of verbal scores was appropriate.

2.3. Apparatus and materials

Direct-current EEG data were recorded with 63 Ag/AgCl electrodes
(Falk Minow, Germany) in a 10–10montage (American Electroenceph-
alographic Society, 1991) and two infra-orbital electrodes. Electrodes Cz
and FPz were used as recording reference and ground respectively.
Abralyt high chloride gel (Easycap, Germany) was used to reduce im-
pedances to ≤5 kΩ at all electrodes before data collection. The signal
was differentially-amplified by two BrainAmpDC amplifiers (0.1 μV res-
olution, 1 kHz sampling rate), and recorded with BrainVision Recorder
(both Brain Products, Germany). Participants were tested in a sound-
attenuated Faraday cage, and stimuli were presented on a 17″ LCD
monitor with an electrically-shielded power source.

2.4. Stimuli and procedure

The EEG session involved three n-back tasks: a zero-back task (0BT),
a one-back task (1BT), and a two-back task (2BT). In each, participants
made speeded responses to sequences of letters. Participants responded
with their right hand to oddballs (25% of trials) and their left to standards
(75% of trials). In the 0BT, the letter ‘E’ was the oddball; in the 1BT, let-
ters matching the previous letter were oddballs; in the 2BT, letters
matching the letter before last were oddballs. So in the 0BT, thefinal let-
ter in the sequence ABCEwould be an oddball; in the 1BT the final letter
in the sequence ABCC would be an oddball; and in the 2BT, the final let-
ter in the sequence ABCB would be an oddball.

Participants were asked to respond as quickly and accurately as pos-
sible to all trials bymanually pressing keys on a computer keyboard.We
ran a 280 trial block of each task, then a second block of each task in the
same order, with afive-minute break after the second and fourth blocks.
e worst performance rule: Insights from single-trial event-related
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Fig. 1. Topographies for the seven factors yielded by Infomax-rotated Principal Components Analysis. Factor 1 used for all analyses.
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Stimuli were white Arial letters (visual angle = ~3°) on a black
background. Stimuli were presented for 1000 ms and stimulus-onset
asynchrony varied uniformly between 1950 and 2050 ms in 25 ms
steps. Stimuli were delivered using E-Prime V1.2 (Psychology Software
Tools, PA, USA).

N-back tasks that were chosen as their oddball structure is more ap-
propriate for eliciting prominent P3b components than the tasks more
commonly used to assess the worst performance rule (Polich, 1987),
which generally employ more balanced stimulus probabilities. Further-
more, in n-back tasks working memory load can be altered parametri-
cally while using identically formatted stimuli.
1 The sign of factors from Infomax rotation is arbitrary. Electrodes near Pz wereweight-
ed negatively so amplitude was given as a negative figure. This should not be confused
with electrical polarity and, to avoid confusion, we refer to amplitude of the P3b factor
as positive.
3. Data analysis

3.1. EEG data

Data for individual participants were concatenated across blocks for
each task separately. Periods where amplitude ranged by N1500 μV or
b0.5 μV in any 200 ms window were rejected. Infomax independent
components analysis (ICA) was then run on 180 s of data from each
task, and factorweightings were applied to the entire task. Components
reflecting oculomotor, cardiac, or electromyographic artefacts were
identified by their time-courses and topographies and removed, then
all remaining components were back-projected.

Data were common-average referenced and 0.05–50.00 Hz zero-
phase Butterworth filters (24 dB/octave roll-offs) were applied.
Remaining artefacts were removed by excluding data still ranging
N150 μV in any 200 ms window, as well as data 200 ms before and
after this section.

Data were re-filtered with 4 Hz low-pass Butterworth filters (24 dB/
octave roll-offs) to improve signal-to-noise ratio prior to single-trial
analysis (Smulders, Kenemans, & Kok, 1994). Oddball trials with a
correct response were divided into segments ranging from 1400 ms
pre-stimulus until 1650ms post-stimulus. Datawere baseline corrected
using the−600 to−400ms period. Shorter stimulus-locked (−600 to
1400ms) and response-locked segments (−1000 to 400ms)were then
cut from the longer segments, so that they shared a common baseline.

Single-trial analysis was then carried out using the procedure from
Saville et al. (2014, 2011a, 2012, 2015a,b), with modifications described
below. We concatenated average stimulus-locked ERPs along the time-
axis, and ran spatial principal components analysis on these data using
the ERP-PCA toolkit (Dien, 2010). A parallel scree test found seven factors,
whichwere extracted and Infomax-rotated (Bell & Sejnowski, 1995). Fac-
tor 1 had the P3b topography shown in Fig. 1, so was used hereafter.
Single-trial stimulus-locked and response-locked data were summed
Please cite this article as: Saville, C.W.N., et al., A neural analogue of th
potentials, Intelligence (2015), http://dx.doi.org/10.1016/j.intell.2015.12.0
with weightings derived from Factor 1's pattern factor matrix to produce
virtual Factor 1 time-courses using the factor pattern matrix as a spatial
filter.

In stimulus-locked trials of the factor 1 time-course, peaks were iden-
tified in each trial as the time-point 250–1000 ms post-stimulus with
maximal amplitude.1 In response-locked trials of the factor 1 time-
course, peaks were identified in each trial as the time-point between
−375 and +375 ms, relative to RT, with maximal amplitude. Trials
where P3b latencies were identified at the edges of the windowwere ex-
cluded, as these latencies are likely to represent misidentified peaks, as
were trials where response-locked latencies were identified before
stimulus-onset.

Stimulus-locked and response-locked P3b latencies, and RTs, for all
tasks and participants were then concatenated, along with information
on participant identity, g, and task.

3.2. Inferential statistics

3.2.1. Worst performance rule analysis
To test for the worst performance rule in our data, we employed a

novel quantile bootstrapping procedure. Implementing a standard case
resampling bootstrap (Efron & Tibshirani, 1993), we randomly
resampled, with replacement, each participant's single-trial P3b latencies.
For each resampling, we divided the latencies into sixteen evenly sized
quantile bins, and took the mean latency of each bin. A Spearman's rank
correlation coefficient was then computed between participants' means
for each quantile and their g scores. This procedure was repeated 10,000
times for each task, and values were computed for stimulus and
response-locked P3b latency, as well as RT, data, separately.

In order to examine whether correlations varied as a function of
quantile, the bootstrapped correlation coefficients were Fisher-
transformed, averaged across all three tasks, and inverse Fisher-
transformed back into correlation coefficients. Confidence intervals
(CIs) for the correlation coefficients at each quantile were then derived
from the bootstrapped data for stimulus and response-locked P3b data,
and RT data, separately. By comparing CIs of correlation coefficients in
the fastest quantiles to those in the slowest, we can formally test for ev-
idence of a worst performance rule.

Presenting 95% confidence intervals is informative because readers
are likely to have an intuitive sense for this criterion. However, this anal-
ysis makes multiple comparisons and so the risk of false discoveries is
e worst performance rule: Insights from single-trial event-related
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Table 1
Descriptive statistics for EEG and behavioural variables. SDs for each quantile in square brackets. Correlations are between SDs for each P3b and RT variable and proportions of accurate trials, and represent Spearman's rho values.

Load Mean of
participant means

SD of participant
means

Range of
participant means

Correlation between
variability and g

Mean quantile 1 Mean quantile 2 Mean quantile 3 Mean quantile 4 Mean quantile 5 Mean quantile 6

Stimulus-locked latency (ms) 0BT 473 43 379–568 −.16 322 [32] 358 [31] 376 [30] 390 [32] 402 [33] 413 [33]
1BT 505 61 408–696 −.26 322 [35] 359 [36] 380 [38] 396 [41] 413 [47] 429 [54]
2BT 536 65 428–756 −.17 301 [35] 349 [45] 382 [50] 409 [63] 429 [69] 453 [72]

Response-locked latency (ms) 0BT −39 40 −113–35 −.14 −263 [56] −171 [62] −128 [50] −103 [47] −87 [46] −73 [45]
1BT −31 47 −174–93 −.29 −272 [57] −181 [65] −140 [57] −111 [52] −90 [51] −72 [48]
2BT −57 56 −216–81 −.17 −319 [45] −250 [68] −202 [74] −159 [71] −131 [69] −105 [65]

Reaction time (ms) 0BT 492 48 393–600 .12 379 [37] 413 [41] 430 [42] 442 [44] 453 [46] 464 [46]
1BT 513 55 386–636 −.12 369 [42] 403 [45] 422 [48] 440 [51] 454 [51] 469 [53]
2BT 599 70 414–730 −.02 389 [47] 431 [56] 460 [63] 484 [70] 505 [72] 526 [73]

Accuracy (% correct) 0BT 92 5 77–100 .02 – – – – – –
1BT 88 6 72–98 .10 – – – – – –
2BT 74 12 44–93 .32 – – – – – –

Table 1 (continued)

Mean quantile 7 Mean quantile 8 Mean quantile 9 Mean quantile 10 Mean quantile 11 Mean quantile 12 Mean quantile 13 Mean quantile 14 Mean quantile 15 Mean quantile 16

Stimulus-locked latency (ms) 423 [33] 435 [34] 447 [37] 462 [42] 480 [48] 502 [57] 532 [72] 575 [95] 646 [122] 795 [123]
445 [60] 462 [64] 480 [69] 502 [77] 526 [84] 556 [90] 593 [100] 644 [107] 722 [121] 855 [99]
477 [77] 500 [81] 522 [84] 548 [87] 578 [86] 610 [91] 649 [99] 696 [102] 770 [92] 895 [67]

Response-locked latency (ms) −61 [43] −47 [42] −36 [42] −25 [42] −11 [42] 6 [44] 26 [54] 56 [72] 99 [92] 192 [98]
−55 [48] −41 [47] −27 [48] −13 [50] 5 [55] 22 [59] 43 [63] 75 [73] 126 [86] 233 [83]
−85 [64] −63 [61] −43 [66] −24 [68] −7 [72] 14 [71] 36 [75] 69 [82] 120 [93] 228 [91]

Reaction time (ms) 473 [48] 483 [49] 492 [50] 502 [51] 511 [52] 523 [52] 536 [54] 552 [55] 577 [60] 649 [81]
482 [54] 496 [54] 509 [55] 525 [56] 540 [58] 556 [60] 574 [62] 600 [67] 635 [72] 731 [100]
548 [75] 569 [76] 590 [77] 613 [79] 638 [80] 665 [83] 697 [88] 739 [91] 795 [90] 926 [98]

Accuracy (% correct) – – – – – – – – – –
– – – – – – – – – –
– – – – – – – – – –
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Fig. 2. Confidence intervals for bootstrapped Spearman's correlation coefficients between latency and g for each quantile of the P3b latency distribution separately. Coefficients were trans-
formed into Fisher's Z, averaged across tasks, and re-transformed into r. Data for stimulus and response-locked data presented separately.
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elevated. Hence we also present additional 99.8% CIs, a stricter criterion
equivalent to Bonferroni-correcting for comparing the two fastest
quantiles with the two slowest quantiles in stimulus and response-
locked P3b data, and in RT data (4 ∗ 3 = 12 comparisons). This should
help readers make informed judgements about the robustness of our
findings. In the interest of transparency, it should be noted that an
earlier version of our analysis employed only six quantiles, but on the
advice of reviewers we switched to the 16 used by Larson and
Alderton (1990), which offer both greater granularity and comparability
to previous data. The general pattern of results is unchanged. The com-
parison of the top two and bottom twoquantileswas retained for formal
hypothesis testing.
Fig. 3. Confidence intervals for bootstrapped Spearman's correlation coefficients between latenc
presented separately for stimulus and response-locked data. These data were not used for hyp

Please cite this article as: Saville, C.W.N., et al., A neural analogue of th
potentials, Intelligence (2015), http://dx.doi.org/10.1016/j.intell.2015.12.0
3.2.2. Linear mixed effects model
To verify that stimulus and response-lockedmeasures of P3b latency

made independent contributions to RTs, we fitted linear mixed effects
models to the PCA-weighted single-trial data using the lme4 package
(Bates, Maechler, & Bolker, 2012) for R (R Core Development Team,
2012). Our full model predicted RT, with fixed effects of SL-P3B (stimu-
lus-locked P3b latency), RL-P3B (response-locked P3b latency), and
LOAD (0BT, 1BT, and 2BT, coded as a linear variable), and random inter-
cepts and slopes of each fixed effect for each participant separately. This
full model was compared to reduced models, dropping the fixed effects
of SL-P3B, RL-P3B, or both, using Bayesian information criteria. All
models were fitted using log-likelihood estimation.
y and g for each quantile of the P3b latency distribution separately. Data for different tasks
othesis testing, but are presented to help illustrate our findings.

e worst performance rule: Insights from single-trial event-related
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We also tested the best-performing model against versions includ-
ing G, and G with its interaction with SL-P3B, RL-P3B, and both SL-P3B
and RL-P3B.

3.3. Behavioural data

The quantile bootstrapping analysis described above was also run
using RTs associated with the trials used in the P3b analysis. CIs at the
95% and 99.8 level were compared across quantiles to assess whether
RT data showed evidence of a worst performance rule.

4. Results

Table 1 shows descriptive statistics for stimulus and response-
locked P3b latencies; RT; and accuracy.

4.1. EEG data

4.1.1. Worst performance rule analysis
Fig. 2 shows bootstrapped correlation coefficients at each quantile of

the stimulus and response-locked P3b latency distributions. The results
for stimulus-locked data follow a clear worst performance rule pattern.
Even at the highly stringent 99.8% criterion, confidence intervals: a) do
not include zero, after the first four quantiles, and b) becomemore neg-
ative with increasing quantile, so that faster latencies in these later
quantiles are associated with higher g.

This can be verified statistically by showing that in stimulus-locked
data the confidence intervals for the first two and last two quantiles
do not overlap using the 99.8% CIs. This analysis shows strong evidence
for a worst performance rule in stimulus-locked P3b data.

The pattern is more complicated in the response-locked data. While
correlations show the same slope as in stimulus-locked data, non-zero
correlation coefficients of opposite signs can be seen in both tails of
the distribution, reflecting that high g is associatedwith a) fewer P3b la-
tencieswhich trail the response by a long latency, b) fewer P3b latencies
which precede the response by a long latency. In short, low g partici-
pants have response-locked distributions that are broader than those
with high g. Statistically, the 99.8% CIs for the first two quantiles, once
again, do not overlap with the last two quantiles.

Thus, although both stimulus and response-locked P3b latencies
show variable associations with g at different quantiles, the presence
Fig. 4. Bootstrapped mean latencies for each quantile of the P3b latency distribution separatel
scoring below the median. These data were not used for hypothesis testing, but are presented
legend, the reader is referred to the web version of this article.)
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of non-zero opposite signed effects in the two tails of the response-
locked distribution is a qualitatively different pattern to the worst
performance rule present in stimulus-locked data.

Although hypothesis testing was carried out using correlation
coefficients that had been averaged across tasks, to improve the robust-
ness of our results by means of data aggregation, we present plots of
bootstrapped correlation coefficients for all tasks separately in Fig. 3.
Patterns found in individual tasks resemble those found in the averaged
data, suggesting that the figures presented here are representative and
appropriate for statistical analysis. The pattern appears to be clearest
in the 1BT.

For illustration purposes, we also divided our participants into two
groups, based on amedian-split of g scores. Quantilemeans at each iter-
ation of the bootstrap were averaged within group into quantile grand
means. In Fig. 4, we present 95% CIs of stimulus and response-locked
data for the two groups on each task separately. Our hypothesis testing
was carried out on the correlation data, but we include these data for
interested readers.

4.1.2. Linear mixed effects analysis
The best-fitting model to predict RTs included SL-P3B, RL-P3B, and

LOAD, but not G or its interactions (BIC = 177,141.9). This
outperformed the models dropping SL-P3B (BIC = 177,217.1), RL-P3B
(BIC = 177,240.5), and LOAD (BIC = 177,193.4), as well as the models
adding G (BIC = 177,149.0), G and its interaction with SL-P3B (BIC =
177,153.8), G and its interaction with RL-P3B (BIC = 177,153.2), and
G and its interactions with both P3b variables (BIC = 177,162.0).

The chosenmodel showed that RTwas positively associatedwith SL-
P3B (β = .44, σβ = .03, t = 13.4), and LOAD (β = 34.1, σβ = 3.4, t =
10.0), and negatively associated with RL-P3B (β = −.46, σβ = .04,
t = −12.9; intercept: β = 224.3, σβ = 13.4, t = 16.7). As both P3b
latency and RT are in the same units (ms), the β-slopes for SL-P3B and
RL-P3B can be interpreted similarly to R2 values.

4.2. Behavioural data

Fig 5 shows bootstrapped correlation coefficients for RT data. While
there is some evidence of increasingly strong correlations between RT
and g from the earliest quantiles to themiddle quantiles, this pattern re-
verses in the later quantiles, and the pattern appears qualitatively differ-
ent to a worst performance rule. All confidence intervals substantially
y. Blue lines represent participants scoring above the median g, red lines represent those
to help illustrate our findings. (For interpretation of the references to colour in this figure
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Fig. 5. Confidence intervals for bootstrapped Spearman's correlation coefficients between RT and g for each quantile of the RT distribution separately. Top panel shows coefficients aggre-
gated across tasks (data were transformed into Fisher's Z, averaged across tasks, and re-transformed into r). Bottom three panels represent data from individual tasks. The latter data were
not used for hypothesis-testing but are presented for illustrative purposes.
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overlap, and so the null hypothesis cannot be rejected. As with the P3b
latency data, although hypothesis tests were carried out on correlation
coefficients that had been averaged across tasks, we also include plots
of the quantile-wise correlation coefficients for all three tasks
separately in Supplementary Fig. 6. Unlike those for P3b data, the plots
for the separate tasks are heterogeneous across tasks, reinforcing our
impression that a worst performance rule pattern is not present in our
RT data. While the data for the 1BT are qualitatively in line with a
worst performance rule, although CIs still overlap, the patterns for the
0BT and 2BT are not. The 0BT, if anything, shows the opposite trend
while the 2BT shows an increase in correlation magnitude from low to
middle quantiles, followed by a drop from middle to late quantiles. In-
terestingly these parallel the results of the overall correlations between
these variables and g estimates, shown in Table 1 — 0BT RT variability
shows an unusual positive correlation with g, while the 2BT RTs show
essentially no correlation, and the 1BT RTs trend weakly in the normal
direction.

That said, it is important to note that confidence intervals overlap for
all tasks at each quantile, so while the patterns appear different for
the three tasks, caution should be taken not to overinterpret these
differences.

5. Discussion

We examined the association between the shape of the P3b latency
distribution and psychometric intelligence, and identified quantile-
dependent associations with intelligence in both stimulus and
response-locked P3bs. Stimulus-locked data showed evidence of a
worst performance rule pattern, while response-locked data showed
that lower g was associated with a generally broader distribution of
P3b latencies. However, like Salthouse (1998) but unlike other authors
(Coyle, 2003; Kranzler, 1992; Larson & Alderton, 1990), we did not ob-
serve a worst performance rule pattern in the RT data themselves.

It is important to consider why a worst performance rule was not
found in our behavioural data. One possibility is that this is due to the
dual-task nature of the tasks we used— participants had to both update
working memory and respond to matches and this may have
Please cite this article as: Saville, C.W.N., et al., A neural analogue of th
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contaminated RT as ameasure of processing speedwhile leaving P3b la-
tency relatively uncontaminated. It should be noted, however, that the
0BT was not a dual task and, if anything, showed the greatest deviation
from the worst performance rule.

A second possibility is that the failure to find aworst performance
rule is simply a Type II error. That said, although the present study
has a smaller sample than previous behavioural studies (Kranzler,
1992; Larson & Alderton, 1990) due to the more arduous process of
data collection in EEG studies, and thus less statistical power,
power calculations suggest that the present study still had a power
of ~75% to detect the effect sizes identified in the previous studies
(r= ~.37) assuming a two-tailed hypothesis, and an ~85% power as-
suming a directed hypothesis, suggesting that it was not obviously
underpowered. Our procedure of comparing quantile correlations
to one another was arguably a more stringent test than comparing
correlation magnitudes to zero, the procedure used in previous stud-
ies, but, with the exception of the 1BT, the RT data do not even trend
towards a worst performance rule pattern. Thus while it remains a
possibility which future replications will need to address, this is
not obviously a Type II error.

A third possibility is that the EEGmeasures may be more proximal to
the underlying phenomenon than RT measures and are thus more sensi-
tive. This line of reasoning lies behind the concept of the endophenotype,
or intermediate phenotype, in psychiatry (Gottesman, & Gould, 2003),
where genetic associations with neural measures have been shown
to have greater effect sizes than with behavioural measures, at least
in the context of psychosis risk genetics (Rose & Donohoe, 2013). It
is not clear whether this reflects publication bias, the greater ‘re-
searcher degrees of freedom’ associated with neural measures, or
the greater proximity that is the logic behind the endophenotype
concept. Also along this line, our data could be seen as converging
with Jensen's (1998) demonstration that g is more highly correlated
with selective measures of RT than measures of movement time.
P3b latency is thought to be relatively sensitive to the same sort of
factors that influence RT, but relatively insensitive to those that influ-
ence movement time. However, we acknowledge that our RT mea-
sure does not separate RT from movement time, which might have
e worst performance rule: Insights from single-trial event-related
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impaired the replication of the worst performance rule at the behav-
ioural level.

A fourth possibility is that the ‘both-tails rule’ found in the response-
locked data masked the worst performance rule in the RT data. This
could be due to a separate relationship between response-planning
reliability and g, or could reflect the complexity of interpreting dual
task data described above.

Fifthly, it is worth pointing out that Salthouse (1998) also did not
find a worst performance rule pattern, so it is possible that the effect
only manifests under certain circumstances. As mentioned above, RTs
in the 1BT results trended in the direction of a worst performance rule
(Fig. 5) and the neural analogue for the worst performance rule was
also clearest in this task (Fig. 3). This could suggest that the worst
performance rule is most prominent with an intermediate level of
difficulty; the 0BT may have been too easy and the 2BT may have
been too difficult. However Kranzler (1992) reported a worst perfor-
mance rule in choice RTs, which are very similar to the 0BT reported
here. Furthermore, confidence intervals overlapped for RTs in all three
tasks at every quantile. We are thus wary of overinterpreting these
apparent cross-task differences.

Finally, to continue the previous point, our study design was
optimised to detect P3b effects. For example, we used an oddball design
to improve signal-to-noise ratio and we did not use an apparatus that
separates RT and movement time to minimise participant movement.
Optimal conditions for a P3b effect, however, may not be optimal for de-
tecting a behavioural effect. In light of this, we are wary of drawing
strong conclusions about the robustness of the behavioural worst
performance rule based on our data.

This lack of a behavioural effect suggests that our EEG findings
should not be viewed as the neural correlates of the worst performance
rule, but instead as an interesting EEG analogue to this effect that exists
in its own right. AsWilkinson andHalligan (2004) argue, although find-
ing both neural and behavioural effects certainly makes for simpler in-
terpretations, neural effects without a corresponding behavioural
finding can still provide important insights.

A worst performance rule was, however, found in stimulus-locked
P3b latency data, and a novel quantile-dependent association between
g and P3b latency was found in response-locked P3b data. The present
findings extend previous results linking P3b latency and g (e.g. De
Pascalis, Varriale, & Matteoli, 2008), and identify possible relationships
between g and different processing stages. That the stimulus-locked
data show such a pattern suggests that it could reflect an association be-
tween psychometric intelligence and pre-decision processes. This is
consistent with both the attentional lapse and diffusion models of the
worst performance rule. However our identification of a ‘both tails’ pat-
tern in response-locked data suggests that the association between g
and the speed of information processing is not just due to pre-decision
processes. Individual differences in g appear to also be associated with
later stages of processing, perhaps motor planning and execution, and
low scorers exhibit more variability in these stages of processing as
well. Such associations may be less apparent using purely behavioural
measures, and so their identification with single-trial EEG is a key
novel finding of the present study.

It is unclear whether the patterns seen in stimulus-locked and
response-locked data have the same source, or whether separate
sources of variability underlie these two distributions. Although previ-
ouswork has shown that stimulus and response-locked P3b latency var-
iability are highly correlated in healthy young participants (Saville et al.,
2012), there is also evidence for response-locked variability being spe-
cifically increased in attention-deficit hyperactivity disorder (Saville
et al., 2015b), suggesting that the two are dissociable.

In the present data, attentional lapses causing late stimulus-locked
P3b latencies could sometimes be offset by parallel processes leading
to the RT preceding P3b. This, accompanied by uncompensated-for
lapses, represented by long stimulus and response-locked P3b latencies,
could cause this symmetrically broader response-locked P3b
Please cite this article as: Saville, C.W.N., et al., A neural analogue of th
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distribution in low scorers. Likewise, a domain general process could
lead to noisier cognition in both pre-decision andpost-decision process-
ing, explaining both findings within the diffusionmodel framework. On
the other hand, the ‘both-tails rule’ could represent an entirely distinct
phenomenon to the worst performance rule, related to specific
problems with response-planning. Further work will make this clear.

Finally, it is important to point out possible technical ambiguities in
our findings. As P3b latency must be measured from a noisy signal, a
proportion of the identified peaks will not reflect the true P3b latency.
A risk with this approach is that misidentified peaksmay not occur uni-
formly through the distribution, thus confounding analyses of specific
section of the distribution. We excluded trials where latency was re-
corded at the borders of the peak picking window as a precaution
against this, but if the latency distribution of the P3b overlapped with
that of another deflection with a similar topography, this could lead to
a greater incidence of peak misidentification in certain sections of the
distribution.

To conclude, we found evidence for a worst performance rule, anal-
ogous to that seen in RT data in previous studies, in single-trial
stimulus-locked P3b latency data. We also found evidence for a sym-
metrically broader response-locked P3b latency distribution in low
scorers — a both tails ‘rule’. However we did not observe the worst per-
formance rule in the RT data, and so care must be taken in interpreting
these findings. Single-trial ERPs are an important technique for measur-
ing distributional changes in the timing of neurocognitive operations
and mental events, offering great promise for exploring the worst
performance rule and the neural basis of g.
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