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(Running head: Impact of agroforestry on hydrology of Mara River Basin in East Africa) 
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Abstract: 

Land–use change is one of the main drivers of change of watershed hydrology. The effect of 

forestry related land–use changes (e.g. afforestation, deforestation, agroforestry) on water 

fluxes depends on climate, watershed characteristics and spatial scale. The Soil and Water 

Assessment Tool (SWAT) model was calibrated, validated and used to simulate the impact of 

agroforestry on the water balance in Mara River Basin (MRB) in East Africa. Model 

performance was assessed by Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency 

(KGE). The NSE (and KGE) values for calibration and validation were: 0.77 (0.88) and 0.74 

(0.85) for the Nyangores sub-watershed, and 0.78 (0.89) and 0.79 (0.63) for the entire MRB. 

It was found that agroforestry in the watershed would generally reduce surface runoff, mainly 

due to enhanced infiltration. However, it would also increase evapotranspiration and 

consequently reduce the baseflow and the overall water yield, which was attributed to 

increased water use by trees. Spatial scale was found to have a significant effect on water 

balance; the impact of agroforestry was higher at the smaller headwater catchment 

(Nyangores) than for the larger watershed (entire MRB). However, the rate of change in 

water yield with increase in area under agroforestry was different for the two and could be 

attributed to the spatial variability of climate within MRB. Our results suggest that direct 

extrapolation of the findings from a small sub-catchment to a larger watershed may not 

always be accurate. These findings could guide watershed managers on the level of trade-offs 

to make between reduced water yields and other benefits (e.g. soil erosion control, improved 

soil productivity) offered by agroforestry. 
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1 INTRODUCTION 

Forests provide a number of ecosystem services, such as, improving soil water infiltration 

conditions, soil erosion control and provision of wood–related products like timber and 

fuelwood (Calder, 2005; Ong et al., 2006). The fertility potential of soils under forests and 

the need to increase crop production makes forests a target for conversion to agricultural land 

through deforestation (Pope et al., 2015; Laurance et al., 2014). There is therefore high 

competition for land between forests and agricultural production in some regions of the 

world, particularly in the tropics (Laurance et al., 2014). In such situations, agroforestry is 

seen as a compromise between agricultural production and provision of forest/tree–related 

benefits (Garrity, 2012). In agroforestry systems, trees in different forms of arrangements are 

integrated into agricultural land (Nyaga et al., 2015; Nair, 1993). This kind of arrangement 

therefore ensures that the environmental services provided by the trees/forests are met, to 

some extent, while at the same time agricultural land continues with its main role of crop 

production (Ong et al., 2006). Countries, particularly those whose economy mainly rely on 

agriculture, find agroforestry as a feasible means of increasing their forest cover and a way of 

controlling degradation of natural forests (Garrity, 2012). Indeed, this may be one of the best 

practical solutions of increasing tree cover in areas that have been deforested and settled by 

communities whose main source of livelihood is agricultural cultivation (Mbow et al., 2013). 

In such situations, complete afforestation may not be practical because people‘s livelihood is 

a priority. 

With agroforestry, the question that arises is how much land can practically and sustainably 

be put under tree cover. At the farm level, this trade-off is highly dependent on the extent of 

available land.  However, at the watershed level, the trade-off and synergies between 

provisions of various ecosystem services is an important consideration (cf. Brauman et al., 

2007).  
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For water resources managers, information on how and by how much agroforestry practices 

will affect water availability is pertinent. Determination of the thresholds of area of 

agroforestry (percent of tree cover) that would not compromise provision of watershed 

services is of paramount importance (Brown et al., 2005; Mwangi et al., 2015a). The 

question of how change in vegetation affects watershed hydrology is mainly centred around 

the impact on different components of catchment water balance. This is partly because 

different types of vegetation result in different levels of rainwater infiltration capacities. For 

example, forests are generally known to offer enhanced infiltration of rainwater compared to 

most other land-uses (Bruijnzeel, 2004). This is mainly brought about by a normally higher 

organic matter content and little anthropogenic disturbance in the forest soils as compared to, 

for example, cultivated lands. Therefore, the partitioning of rainwater into surface runoff and 

the water that infiltrates into the ground differs for landscapes with different types of 

vegetation - even in cases where soil type is similar. Plant water use (transpiration) also 

differs with vegetation type (Jian et al., 2015; Julich et al., 2015). Some vegetation, 

especially trees, generally consumes more water than others (Albaugh et al., 2013; Julich et 

al., 2015). The rooting depth of vegetation also determines the depth to which plants of a 

particular type can draw water especially in the dry seasons when the top soil is dry (Thomas 

et al., 2012; David et al., 2013). Deep-rooted vegetation is able to extract groundwater from 

deeper aquifers particularly when the water table is low compared with shallow rooted 

vegetation (Pinto et al., 2014; Nosetto et al., 2012). Consequently, the extent of groundwater 

removal by vegetation of different types influences the amount of groundwater released to the 

streams as baseflow (Salemi et al., 2012). Water extraction by deep-rooted vegetation 

reduces the groundwater storage and decreases the amount released to streams (Fan et al., 

2014). It is therefore obvious that introduction of trees into crop lands (agroforestry) would 

cause changes in a watershed‘s water balance (Palleiro et al., 2013; Ong et al., 2006). The 
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direction and magnitude of the change in different water balance components may differ with 

the watershed characteristics (e.g. soil, topography), climate, agroforestry tree species and 

more importantly the proportion of the watershed under tree cover (Brown et al., 2013; Julich 

et al., 2015).  

Field studies on the hydrological impacts of agroforestry (e.g. Zhao et al., 2011; Ghazavi et 

al., 2008; Muthuri et al., 2004; Radersma and Ong, 2004) have demonstrated the need to 

include (or improve) tree water uptake (transpiration) and canopy interception in watershed 

modelling. Ghazavi et al. (2008), for example, observed decreasing water table levels near 

hedgerows during the growing season (spring and summer) in Brittany, France which they 

attributed to high transpiration by hedgerow trees. A modelling study (using Hydrus-2D 

model) for the same site by Thomas et al. (2012) showed that transpiration is a substantial 

component of water balance representing 40% of total water output. Similar conclusions were 

drawn by Muthuri et al. (2004) who modelled water use by agroforestry systems in Nyeri 

County, Kenya, using the WaNuLCAS (Water, Nutrient and Light Capture in Agroforestry 

Systems) model.  

In this study, we use SWAT (Soil and Water Assessment Tool) model (version 2012) to 

assess the impact of agroforestry on hydrology of the Mara River Basin. Although SWAT has 

been extensively used for land–use change studies, its use for agroforestry simulation studies 

is not well documented. The Mara River basin is located in East Africa and has undergone 

significant land–use changes in the last 50 years, particularly deforestation and conversion to 

agriculture in the headwaters (Mati et al., 2008). Intensive cultivation is currently 

predominant in the formerly forested areas and the Government of Kenya (GoK) is keen on 

restoring back to forest cover as much area as possible (GoK, 2009; NEMA, 2013). 

Considering that the basin is now densely settled by communities whose livelihood depend 

on agricultural cultivation (Kanogo, 1987), one of the feasible solutions to increase the tree 
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cover in the upper Mara basin is through agroforestry (Atela et al., 2012; KFS, 2009). 

Because Mara is a trans-boundary river basin between Kenya and Tanzania, the upstream 

watershed activities, including land–use changes, are of interest not only to Kenya but also to 

Tanzania (Gereta et al., 2009). A thriving tourism industry in the shared Maasai Mara 

(Kenya) and Serengeti (Tanzania) game reserves ecosystem is also heavily dependent on the 

water resources provided by the Mara River (Gereta et al., 2002). For this reason, prediction 

of the effect of agroforestry on the water balance of the Mara River basin is paramount for 

sustainable water resources management. 

2 METHODS 

2.1 Study area 

The Mara River Basin (henceforth referred to as MRB) covers a total area of about 13,750 

km
2
, which is shared between Kenya (65%) and Tanzania (35%) (Figure 1). The two main 

headwater tributaries of the Mara River (Nyangores and Amala) originate from the Mau 

Forest, join on the Kenyan side of the border with Tanzania to form the main Mara River 

which drains into Lake Victoria on the Tanzanian side of the border. There are three main 

gauging stations with in MRB: 1LA03 at Bomet (for Nyangores sub-watershed), 1LA02 at 

Mulot (for Amala sub-watershed), and Mara mines in Tanzania (for the larger MRB) (Figure 

1). The drainage areas at the three outlets are: 692 km
2
, 695 km

2
 and 10,550 km

2
 for 

Nyangores, Amala and Mara watersheds, respectively. The elevation of MRB ranges from 

about 3,000 m asl at the source in the Mau Forest complex to about 1100 m asl as the river 

drains into Lake Victoria. The basin experiences a bimodal rainfall pattern that varies with 

altitude. The long rains occur from March to June while the short rains occur from September 

to November. The mean annual rainfall ranges from about 1800 mm in the forested 

headwaters to about 600 mm in the downstream sections of the basin.  
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Forests and agriculture are the main land-uses in the upstream region of MRB (Figure 1). 

Pastoralism and wildlife conservation (in Maasai Mara and Serengeti National Reserves) 

dominate the middle sections of the basin (Figure 1). The areas adjacent to the game reserves 

are mainly used for livestock grazing and also as wildlife dispersal areas through some 

arrangements (e.g. conservancies) with the local pastoral communities (Osano et al., 2013; 

Homewood et al., 2012; Ogutu et al., 2009; Thompson and Homewood, 2002). The 

downstream region of the MRB in Tanzania is mainly dominated by subsistence agriculture 

and gold mining. The main soil types (World Reference Base classification) are: Planosols 

(30%), Phaeozems (26%), Andosols (12%) Vertisols (10%), and Cambisols (9%). Other soils 

(13%) are: Leptosols, Luvisols, Nitisols, Greyzems, and Regosols.  

 

2.2 SWAT Model 

SWAT is a physically based, semi-distributed, meso-scale-watershed model (Arnold et al., 

1998) widely used for prediction of the impact of land management on water, sediment and 

agricultural chemical yields (Neitsch et al., 2011; Gassman et al., 2007). The main inputs of 

the model are: Digital Elevation Model (DEM), land-use, soil, and climate data. SWAT first 

sub-divides a watershed into sub-watersheds which are further partitioned into smaller 

Hydrologic Response Units (HRU). Each HRU in a sub-basin has unique land-use, soil type, 

and slope class combination. Simulation of agroforestry scenarios in this study was based on 

HRUs land units.  
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2.3 Model parameterization: SWAT input data 

Climatic data was obtained from Kenya Metrological Department and the Tanzania 

Meteorological Agency. Daily rainfall data from 20 stations within and in close vicinity of 

the watershed (Figure 1) was used. For the selected period of model calibration and 

validation, the rainfall data was nearly 100% complete for more than half of the stations. 

Daily data sets of the other climatic variables i.e. maximum and minimum temperature, 

humidity, radiation and wind speed were obtained for Narok, Kisii, Kericho, and Musoma 

meteorological stations (Figure 1). For short gaps, missing data for a particular day was filled 

by arithmetic mean observed for the day in the neighbouring stations, whereas longer gaps 

(more than 10 days) were filled using the weather generator model, WXGEN, incorporated in 

SWAT (Neitsch et al., 2011) that relies on monthly mean values.   

Shuttle Radar Topography Mission, 90-m, DEM was used for watershed delineation in 

SWAT. Soil data (scale of 1:1 million) was obtained from Kenya Soil Survey and Soil and 

Terrain Database (SOTER) of the International Soil Reference and Information Centre 

(ISRIC) (Batjes, 2002). Some soil parameters that were not available from the databases, e.g. 

saturated hydraulic conductivity, were estimated using pedotransfer functions (Nemes et al., 

2005). A Land–use map of 1983 (GoK, 1983) was used for model setup (Figure 1). The map 

was compared with Landsat satellite images and land–use maps by Mati et al. (2008) for the 

same period. The land–use map was deemed appropriate for periods used for calibration and 

validation of the SWAT model. The proportions of the land-uses are: 10%, 21% and 69% for 

agriculture, forests, and rangeland, respectively (Figure 1). 

Discharge data (for Nyangores, Amala and Mara (at Mara mines) Rivers) was obtained from 

Water Resources Management Authority (WRMA) in Kenya and the Ministry of Water in 
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Tanzania. Nyangores data was 100% complete for both periods of calibration and validation. 

Mara and Amala data had gaps which were left unfilled.  

 

2.4 Model parameterization: Plant growth 

Although SWAT has been widely used for land–use study in the tropical watersheds, its plant 

growth module is better suited for temperate regions.  As such, it has some shortcomings in 

modelling the growth of trees and perennial crops in the tropics (Wagner et al., 2011). This is 

because, unlike in the temperate regions, plants in the tropics do not have a dormant period 

and there is no seasonal shedding and sprouting of leaves for perennials. For this reason, the 

robustness of the model and the accuracy of output based on default plant growth module 

parameters in the tropics or absence of information on its parameterization altogether has 

been criticized (van Griensven et al., 2012; Strauch and Volk, 2013).The plant growth in 

SWAT is based on the heat unit theory which postulates that plants require specific amount 

of heat to bring them to maturity (Neitsch et al., 2011). Thus, SWAT accumulates heat units 

from planting and maturity is reached when the plant-specific total heat units (PHU) are 

attained. A heat unit is equivalent to each degree of daily mean temperature above a base 

temperature (plant-specific temperature below which there is no growth).Thus, PHU is the 

summation of all heat units from planting to maturity. However, for perennials and trees, 

PHU are the accumulated heat units between budding and leaf senescence (Strauch and Volk, 

2013; Neitsch et al., 2011). Once the maturity is attained, the plant stops to transpire and take 

up water and nutrients (Neitsch et al., 2011). The repeat of the growth cycle for perennials 

and trees in SWAT is triggered either by dormancy (in-turn triggered by latitude-dependent 

shortening of day length) or use of ‗kill‘ operation (Strauch and Volk, 2013; Neitsch et al., 

2011). When growth cycle is restarted, the accumulated heat units drop to zero and the Leaf 
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Area Index (LAI) is set to minimum. LAI partly controls water uptake by plants 

(transpiration) in SWAT. Transpiration is simulated by Equation 1 for Priestley and Taylor, 

and Hargreaves methods. Thus, when LAI drops to minimum, transpiration reduces 

accordingly.  

To adapt plant growth for our study site, the ‗kill‘ operation was used to restart the growth 

cycle for trees and perennials. The minimum LAI for trees was increased from the default 

0.75 (which is based on tree physiology in temperate regions) to 3.0 which is typical for the 

tropics (Broadhead et al., 2003; Muthuri et al., 2005; Maass et al., 1995; Kalácska et al., 

2004). This ensured that the tree water use does not go unrealistically low for this tropical 

watershed. Growth is initiated after a certain fraction PHU is attained. For this study, this 

fraction was reduced from the default of 0.15 to a small value of 0.001 to ensure that growth 

starts immediately after the growth cycle begins and hence there is continuous transpiration.  

Simulated forest LAI using SWAT default values and the adjusted values (Figure 2) clearly 

shows that the default values do not represent the growth that is typical in the tropics and 

therefore underestimates the transpiration (Equation 1). The Priestley and Taylor (1972) 

method was used for calculation of transpiration in this study. Considering the data 

availability and quality in the study site, this method was preferred because it uses less 

climatic data unlike the widely used Penman-Monteith method that is data intensive. The 

Priestley and Taylor (1972) method has been found to give better results than many other 

methods (e.g. Lu et al., 2005; Ding et al., 2013; Juston et al., 2014) particularly in area with 

data availability or quality challenges. 

    

     
  
     

 
                                                 

      
                                                                                                                                              (1) 
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Where Et is the maximum transpiration on a given day (mm), E’0 is the potential 

evapotranspiration adjusted for evaporation of free water in the canopy (mm), and LAI is the 

leaf area index.  

The adjusted values (case 2 in Figure 2) were considered to provide a better representation of 

the leafing phenology and tree water use as has been reported in literature studies of the 

region (Broadhead et al., 2003; Muthuri et al., 2004; Radersma et al., 2006; Ong et al., 

2007). The seasonal variation in LAI also matched with the bimodal pattern of rainfall in the 

watershed with minimum LAI coinciding with the dry seasons of January-February and July-

August when growth is limited by moisture availability. The July-August is also the coldest 

months of the year further limiting plant growth. The maximum LAI, and by extension high 

evapotranspiration, coincided with the long and short rains which well simulated the two 

cycles of leaf flush of trees observed in this region (Muthuri et al., 2004; Broadhead et al., 

2003). 

 

2.5 Calibration 

Streamflow data for Nyangores tributary and the main Mara River at Mara mines were used 

for calibration and validation while that of Amala tributary was used for validation only. Nine 

years of daily streamflow data was used: four years (1979-1982) for calibration and five years 

(1974-1978) for validation. Two-year ‗warm up‘ period was allowed for both calibration and 

validation.  Both calibration and validation periods included dry and wet years and therefore 

low and high flows were well represented. The selection of this period (1974-1982) was 

guided by consideration of the completeness and degree of confidence of both meteorological 

and streamflow data at the three gauging stations. The main gauging station at Mara Mines 

has no recent streamflow data sufficient for model calibration; the data after 1990 is largely 

missing (McClain et al., 2014; Melesse et al., 2008). Of the two upper tributaries, the 
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available streamflow data for Amala is of lower quality compared with that of Nyangores 

(Dessu and Melesse, 2012). It has many and long gaps; and we further established that the 

data had higher uncertainty for period after 1980, arising from wrong use of rating equations. 

The land-use map used (for 1983) was considered appropriate to represent the land conditions 

during the calibration and validation periods. During the model setup, the MRB (up to Mara 

mines gauging station) (Figure 1) was subdivided into 92 sub-basins. The spatial variability 

of the watershed conditions in the MRB was taken into account during the model calibration. 

The calibration was done in two stages: first for the sub-basins in the upper Mara and then for 

the larger basin without changing the calibrated parameter values obtained for the upper Mara 

sub-basins. 

For the upper Mara, calibration was done with the main outlet at Nyangores River at Bomet 

and the corresponding measured streamflow data for the station was used. After calibration 

and validation of the Nyangores sub-watershed, the optimized parameter set were then 

transferred to the neighbouring Amala sub-watershed. The two sub-watersheds are similar in 

topography, size, land–use, soils and climate. Due to its low quality, the streamflow data for 

Amala was only used for validation, and the validation period was prior to 1980 when the 

data quality is better. Considering the low quality of observed streamflow data for Amala and 

taking advantage of its topographical similarity with Nyangores, we sought to investigate 

how well the model parameters calibrated for Nyangores would perform when transferred to 

Amala. 

Calibration parameters (Table I) were identified by sensitivity analysis and Latin hypercube 

sampling was used to select sets of parameter values for automatic calibration using Particle 

Swarm Optimization (PSO) algorithm (Kennedy and Eberhart, 1995; Eberhart and Shi, 

2001). The principle of PSO is based on the social behaviour of a population of particles (i.e. 

swarms such as flocking birds) moving towards the most promising area of the search space 
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(e.g. location of food) (Reddy and Kumar, 2007). PSO is initialized using a group of random 

particles (e.g. through Latin hypercube sampling) with each particle representing a possible 

solution. Each potential solution is also assigned a randomized velocity which directs the 

‗flying‘ of the particles (Eberhart and Shi, 2001; Reddy and Kumar, 2007). The potential 

solutions are then ―flown‖ through the problem space (Eberhart and Shi, 2001; Shi and 

Eberhart, 1998). At the end of each iteration, the position and velocity of a particle (i.e. 

parameter set) are updated. The position represents the current value within the search space 

and velocity represents the direction and the speed the search is moving in (i.e. rate of change 

in the dimensional space). The positions of the particles are changed (updated) within the 

search space based on the social tendency of the individuals (particles) to emulate the success 

of other individuals (Reddy and Kumar, 2007). All the particles have fitness values which are 

evaluated by the objective function to be optimized. Each particle keeps track of its 

coordinates in the solution space which are associated with the best solution (fitness) it has 

achieved so far i.e. the ‗pbest‘. PSO also tracks the best solution achieved at any point by any 

particle in the population (swarm) which is referred to as global best solution (‗gbest‘) (Poli 

et al., 2007; Eberhart and Shi, 2001). Each PSO iteration aims to move each particle, by 

changing its velocity, closer to its personal best (‗pbest‘) position and the global best position. 

After several iterations, one good solution (optimized) is produced when the particles 

converge towards the global optima.  

 

2.6 Evaluation of model performance  

Goodness-of-fit (fit-to-observation) was used as the main criterion for evaluation of the 

model performance (Moriasi et al., 2007; van Griensven et al., 2011). In addition, we also 

evaluated the catchment water balance in order to ensure the various components (e.g. runoff, 

evapotranspiration and groundwater contribution to streamflow) were within reasonable 
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ranges typical of the study area. The aim was to ensure a realistic representation of 

hydrological processes and watershed conditions of the MRB (fit-to-reality). We also aimed 

at ensuring that the calibrated model was fit for the intended purpose of land-use change 

simulation (fit-to-purpose) (van Griensven et al., 2011). We focused on selection of realistic 

ranges of the model input parameter values in order to reduce uncertainty in the model 

outputs (Arnold et al., 2012). Selection of realistic ranges of SWAT input parameters prior to 

calibration has been shown to reduce model prediction uncertainties (Zhenyao et al., 2013; 

Benaman and Shoemaker, 2004). We particularly paid special attention to model parameters 

that govern the water ‗loss‘ from the system e.g. CH_K, GWQMN, GW_Revap and Rchrg_dp 

(Table I) (Neitsch et al., 2011). Wrong selection of these parameter values may lead to 

unrealistic water balance even when there is a good fit between observed and simulated 

streamflows. For example, high values of Rchrg_dp may lead to high deep percolation losses 

which may be compensated by unrealistically low levels of evapotranspiration, even in cases 

where streamflow is within the ranges of observed values. van Griensven et al. (2011) gives 

qualitative and quantitative guidelines on the appropriate ranges of these parameters for the 

study region. 

Modeller‘s knowledge of the watershed is important in hydrologic modelling as there is no 

automatic procedure of parameterization and calibration which can substitute for actual 

physical knowledge of the watershed (Arnold et al., 2012). Zhenyao et al. (2013) studied the 

impact of parameter distribution uncertainty on hydrological modelling using SWAT and 

recommends use of any available knowledge of the watershed in selection of realistic 

parameter ranges to reduce prediction uncertainties. Besides the guidelines by van Griensven 

et al. (2011), we used our knowledge of the watershed as well as knowledge from our past 

experience of SWAT application in the region (e.g. Gathenya et al., 2011, Mwangi et al., 

2012, Mwangi et al., 2015b) and literature of SWAT application in the area (e.g. Dessu and 
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Melesse, 2012; Mango et al., 2011; Githui et al., 2009; Baker and Miller, 2013) to select 

reasonable SWAT input parameter ranges (Table I). In addition, preliminary model runs were 

used to guide the selection of the parameter ranges that represent reasonable water balance 

conditions of the watershed. Typical ranges of water balance components e.g. surface runoff, 

baseflow and evapotranspiration were also assessed based on the knowledge of the watershed 

as well as published literature in the region (e.g.  Dagg and Blackie, 1965, 1970; Krhoda, 

1988; Water Resources and Energy Management, 2008; Mati et al., 2008; Mutiga et al., 

2010; Recha et al., 2012; Dessu and Melesse, 2012; Baker and Miller, 2013; Mwangi et al., 

2016). Dagg and Blackie (1965, 1970) reported that ‗deep percolation loss‘ is minimal for 

their experimental study site in Mau forest. This information, for example, guided us in 

setting up the upper limit for the parameter Rchrg_dp and results of ‗deep percolation loss‘ 

from preliminary model runs helped in adjusting the parameter value range. In another 

example, our previous study in the watershed (Mwangi et al., 2016) had showed that 

baseflow constitutes a large percentage (ca. 80%) of the streamflow of Nyangores sub-

watershed. We used this information to evaluate the water balance components in our 

preliminary model runs and adjust relevant ranges of the relevant input parameters e.g. 

GWQMN (Table I).   Further model parameterization, particularly regarding the adaptation of 

the plant growth module for the watershed, ensured that the calibrated model was fit for the 

purpose (i.e. land–use simulation). 

Statistical fitting of the simulated and observed streamflow was then used for model 

performance evaluation during automatic calibration. Nash-Sutcliffe Efficiency (NSE) (Nash 

and Sutcliffe, 1970) was used as the objective function in the PSO algorithm. NSE is a 

normalized statistic ranging from - ∞ to 1 and is calculated as follows: 

      [
∑ *    ( )     ( )+  

   

∑ *    ( )         +
  

   
]                                  (2) 
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where qobs(t) is the observed discharge at time step t, qsim(t) is the simulated discharge at time 

step t, qmeanObs is the mean of the observed discharge over the simulated period, and n is the 

total number of observations.  

One limitation of NSE is that it underestimates peak flows and overestimates low flows 

(Gupta et al., 2009). In light of this, a second objective function, Kling–Gupta Efficiency 

(KGE) (Gupta et al., 2009), was used for evaluation of model performance to overcome the 

weakness of NSE. KGE statistic is based on the decomposition of model error into three 

distinct components which measure the linear correlation, the bias and the variability of flow 

respectively (Gupta et al., 2009; Kling et al., 2012). The latter two components relate to the 

ability of the model to reproduce the distribution of flow as summarized by first and second 

moments (i.e. mean and standard deviation) while the former relate to the ability to reproduce 

the timing and shape of the hydrograph. KGE is calculated as follows: 

       √(   )  (   )  (   )         (3) 

  
    

    
          (4) 

  
    

    
                                                 (5)

             

where r is the correlation coefficient between simulated and observed streamflow, α is the 

variability ratio, β is the bias ratio, 𝜎 and  µ are the standard deviation and the mean of the 

streamflow respectively, and indices sim and obs represent simulated and observed values of 

streamflow respectively. 

 

2.7 Simulation of agroforestry  

After calibration and validation of the SWAT model, agroforestry land–use scenarios were 

simulated. The structure of the SWAT model allows only one plant or crop type per HRU.  
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The most typical systems of agroforestry in the watershed are: 1) intercropping sparsely 

distributed trees with different crops, 2) trees along the hedges and borders, and 3) woodlots 

(Nyaga et al., 2015; Lagerlöf et al., 2014). The first two agroforestry systems posed a 

challenge to be explicitly implemented in SWAT due to the model structure. Thus, 

agroforestry was implemented as woodlots at the HRU level. Woodlots have recently become 

popular in Kenya due to high demand for wood products (Nyaga et al., 2015).The woodlots 

were considered to offer, at the watershed level, a general spatial representation of the 

practical agroforestry system. Additionally, the hydrological impact (i.e. water use and 

infiltration characteristics) of the agroforestry at the farm level was, to a larger extent, 

captured at the sub-basin level. 

The agroforestry scenarios were simulated on land currently under cultivated agriculture 

implemented on a SWAT project based on 2014 land-use (Lariu, 2015). The selection of 

agroforestry scenarios was based on tree cover increment in the MRB upstream of Mara 

gauging station (Figure 1). To increase the area under agroforestry (tree cover), the number of 

HRUs with trees (forest) were increased by conversion of some HRUs previously under 

agriculture to woodlots (i.e. pure tree stand with properties of a forest). To implement this in 

SWAT, we considered slope as a practical criteria which additionally provided another 

advantage of maintaining the same HRU configurations across all the scenarios. We therefore 

selected four slope classes i.e. 0-10%, 10%-15%, 15%-20% and over 20% when creating the 

HRUs and which were later used as the basis for implementing the agroforestry scenarios.  

All the scenarios were assessed relative to the base scenario that represents the current land-

use/cover (for year 2014) in the basin (Figure 3a). For clarity, Figure 3 only shows maps of 

land–use and agroforestry scenarios for the Nyangores sub-watershed. The first scenario was 

implemented by changing all the HRUs under cultivated agriculture, that fall within the 

slopes above 20%, to woodlots (Table II). Similarly, the second scenario was simulated by 



This article is protected by copyright. All rights reserved. 

converting the HRUs in the slope category of 15 - 20% which were under cultivated 

agriculture to woodlots. So, in total for this scenario, all the agricultural HRUs in slopes 

>15% were simulated as woodlots. The same was done for the slope class of 10 - 15% for the 

third scenario. Other than change in vegetation, infiltration properties of the target HRUs 

were also adjusted from that of agriculture to that of forest. This was accomplished in SWAT 

by change in curve number (Table I). The curve number is a parameter of the United States 

Soil Conservation Service (SCS) empirical equation (SCS, 1972) used for estimation of 

surface runoff. It is a function of soil permeability, land–use, and antecedent soil water 

conditions. Agricultural HRUs in the slope class of 0-10% were not converted to woodlots as 

that would have simulated complete afforestation of the upper Mara watershed which was not 

the objective of this study and is neither practical in this area where smallholder agriculture is 

the main source of livelihood (Atela et al., 2012).  

 

3 RESULTS AND DISCUSSION 

3.1 Calibration and validation 

The monthly NSE (and KGE in parenthesis) values obtained for calibration are: 0.77 (0.88) 

and 0.78 (0.89) for Rivers Nyangores and Mara respectively (Table III). The validation NSE 

(and KGE) are: 0.74 (0.85), 0.75 (0.68) and 0.79 (0.63) for Rivers Nyangores, Amala and 

Mara respectively. These values indicate that the SWAT model performance for this study 

was better compared to other previous studies in the watershed (Mango et al., 2011; Dessu 

and Melesse, 2012). This is probably because of the better representation of tree growth 

(particularly with regard to water use) for tropical conditions. Unrealistic representation of 

forest transpiration in the tropics has been cited as one of the possible causes of marginal 

effect of forest-related land–use change on water balance in some of the previous simulation 

studies (e.g. Mango et al., 2011; Githui et al., 2009) conducted in the region (van Griensven 



This article is protected by copyright. All rights reserved. 

et al., 2012). Separate calibration of the headwater sub-watersheds before including the rest 

of the basin may have also improved the model performance in this spatially-variable 

watershed. The daily hydrographs (Figure 4) show that the model, to a higher level of degree, 

reproduced the observed streamflow at all the gauging stations and thus well represented the 

rainfall runoff processes of the basin. This is confirmed by percent bias (PBIAS) which 

measures the average tendency of the simulated streamflow being larger or smaller than 

observed streamflow (Gupta et al., 1999). The PBIAS values for calibration (and validation 

in parenthesis) are: 1.3% (-8.9%), -0.12% (-34%) and (3.9%) for Rivers Nyangores, Mara 

and Amala respectively. All the values except for validation at Mara mines are within the ± 

25% range proposed by Moriasi et al. (2007) for satisfactory calibration. The slight 

overestimation of average flow for Mara mines could be caused by slightly higher simulated 

peak flow which is also visible in the other hydrographs. This may be caused by the 

uncertainty in the observed streamflow data arising from inability to accurately measure high 

flows in the manual river gauging stations or from rating equations when converting gauge 

heights of high flows to discharge (cf. Juston et al., 2014). The model performance at Amala 

sub-watershed (Table III; Figure 4c) implies watershed characteristics that are similar to 

Nyangores and that the streamflow of Nyangores River can be used to infer the hydrology of 

Amala sub-watershed (Klemeš, 1986). The validated model could also be useful in correcting 

streamflow records for Amala River for the period after 1980.  

 

3.2 Impact of agroforestry on catchment water balance 

Simulation results (Table IV) show that surface runoff, lateral flow, groundwater contribution 

to streamflow and the overall water yield decreased with increase in area under agroforestry. 

This was compensated by an increased rate of evapotranspiration. Surface runoff decreased 
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by about 14%, 31% and 54% (Figure 5a) when the area of the watershed under tree cover is 

increased by 6.4%, 14.4% and 27.9% (Table II) respectively. Similarly, groundwater 

contribution to streamflow decreased by about 5%, 11%, and 20% respectively for the three 

scenarios. The overall effect of the three scenarios on total water yield was a decrease by 

about 5%, 12%, and 22% respectively in that order of increasing tree cover. On the other 

hand, the evapotranspiration increased by 2%, 4% and 7% respectively. These results are 

consistent with the findings reported from paired catchment experimental studies (Brown et 

al., 2013; Zhao et al., 2012; Zhang et al., 2012; Scott and Lesch, 1997) and model simulation 

studies (Suarez et al., 2014; Githui et al., 2009) that have reported decrease in water yield and 

increase in evapotranspiration following establishment or increase of watershed tree cover. 

The decline in surface runoff can be attributed to increased infiltration (Brown et al., 2005; 

Benegas et al., 2014) and canopy interception (Ghazavi et al., 2008). Establishment of trees 

on land formerly under cultivated agriculture improves the infiltration conditions of the soil, 

thereby absorbing more rainfall and reducing the surface runoff. Field experimental study by 

Anderson et al. (2009), for example, reported significantly higher infiltration in the 

agroforestry buffer treatments compared with row crop treatments. Ketema and Yimer (2014) 

also reported higher infiltration for agroforestry treatments than for maize treatments for their 

study in Southern Ethiopia. Practising of intensive agricultural cultivation, as is the case 

currently in the upper Mara, continually degrades the soil and reduces its capacity to absorb 

rainwater mainly due to compaction of lower soil horizons, decrease in organic carbon and 

porosity (Recha et al., 2012; Bruijnzeel, 2004). Trees on the other hand, aid in the recovery 

of degraded lands (Udawatta et al., 2008; Lagerlöf et al., 2014). High organic matter, 

presence of live and dead roots, increased soil micro-fauna and enhanced macro-pore flow 

are some of the factors that improve soil infiltration after establishment of agroforestry 

(Ketema and Yimer, 2014; Udawatta  and Anderson, 2008).  However, it should be noted that 
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soil infiltration capacity recovery may take some time (Bruijnzeel, 2004) and potential gains 

in water infiltration reported here may not be achieved immediately after the establishment of 

agroforestry (Brown et al., 2013).  

Although there was increased infiltration for the agroforestry scenarios, which ideally 

increases recharge of aquifers, there was also a decrease in baseflow. This can be attributed to 

increase in water extraction from the soil and aquifer by the trees. Trees have deeper and 

more extensive rooting systems than most plants which enable them to extract water from 

shallow aquifers to meet the evapotranspiration demand, especially during the dry seasons 

when the top soil is dry (Thomas et al., 2012; FAO, 2006; Calder, 2005). A study by Pinto et 

al. (2014), for example, estimated that annual soil and groundwater contributions to tree 

transpiration were about 70% and 30%, respectively. However, during the dry summer 

months the groundwater contribution became dominant and rose to 73% of transpiration. 

Additionally, trees have higher aerodynamic roughness than crops that favour higher 

evapotranspiration rates (Calder, 2005). The differences in leaf, size, shape, thickness, 

anatomy and chlorophyll content between trees and other plants and even between trees 

species also affects the rate of transpiration (Muthuri et al., 2009). Therefore, increase in tree 

cover through agroforestry also increases water use in the watershed in form of 

evapotranspiration. A study by Muthuri et al. (2004) in central Kenya found that the water 

use in the agroforestry systems was higher than for treatments under only maize cultivation. 

The decrease in groundwater in shallow aquifers, due to increased uptake by trees, decreases 

the water available and the amount released to the streams as baseflow (Fan et al., 2014). 

Generally, the change in baseflow may be either positive or negative depending on the water 

budget in the aquifer storage (Bruijnzeel, 2004). If the incoming water, as a result of 

improved infiltration, surpasses the extra water removal by trees, then the extra storage may 

lead to increase in baseflow. The reverse is also true in case of negative change in aquifer 
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storage as was the case in our study (Brown et al., 2005; Bruijnzeel, 2004). The overall water 

yield, which is essentially a summation of surface runoff, lateral flow and groundwater 

contribution to streamflow, also decreased with increase in area under agroforestry. 

The water balance results (Table IV) are based on past climatic conditions (1980-1990). The 

period was chosen to intersect with the period used for the calibration of the model. Because 

the base scenario was based on current land-use conditions (based on 2014 land-use map), the 

changes in climate between the 1980‘s and the 2014 may slightly affect the absolute values of 

the water balance. The changes are however expected to be minimal. For the upper Mara, 

Mwangi et al., (2016), estimated that climate variability only contributed about 2.5% increase 

in streamflow for Nyangores sub-watershed in the last half a century, the rest being 

contributed by land-use changes.  No major changes are, however, expected on the relative 

results obtained for simulation of agroforestry (Figure 5), because all the scenarios were 

assessed based on the base scenario (i.e. same climatic conditions between base scenario and 

all the other scenarios).  

Similarly, climate change may as well affect the absolute values of water balance but not the 

relative changes (percentage change in water balance) due to implementation of agroforestry. 

Mwangi et al. (2016) estimated that climate change would cause a 15% increase in 

streamflow (for the next 50 years) in upper Mara watershed, which is indicative of how the 

absolute values of water balance might change. The change in individual water balance 

components might, however, not be linear due change in climate seasonality (Dessu and 

Melesse, 2013). 

3.3 Impact of spatial scale 

For the larger MRB, the surface runoff decreased by about 4%, 7% and 12.5% respectively 

for the three scenarios in the order of increasing of area under agroforestry (Table V; Figure 
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5b). The groundwater contribution to streamflow and the water yield similarly decreased by 

2%, 4.5% and 8.5%, and 2.5%, 5% and 9% respectively for each of the three scenarios. The 

evapotranspiration however increased by about 0.5%, 1%, and 2% (Figure 5b). The results 

show a similar trend as that of the Nyangores sub-watershed (Figure 5a) and can be attributed 

to similar causes. The only difference is in the magnitude of the relative changes. For all the 

water balance components, the relative change (impact of agroforestry) was larger at 

Nyangores sub-watershed compared to the larger MRB. This can be attributed to the 

differences in the ratio of area simulated with agroforestry to the total sizes of respective 

watersheds (Brown et al., 2005; Bruijnzeel, 2004). The proportion of watershed areas 

simulated with agroforestry were 1.8%, 3.3% and 6% of the watershed area respectively for 

the three scenarios for the MRB compared with 6.4%, 14.4% and 27.9% respectively for 

Nyangores sub-watershed. It is therefore apparent that watershed scale has a profound effect 

on the impact of agroforestry on watershed hydrology. Comparison of relative impact of ratio 

of watershed under agroforestry on water yield between the two watersheds reveals 

interesting effect of scale (Figure 6). It can be seen that although the impact of each of the 

agroforestry scenarios on water yield was higher for Nyangores sub-watershed, the slope was 

higher for the MRB than for Nyangores. This may have been caused by climate variability 

within the MRB (Brown et al., 2005). From Tables IV and V it can be seen that whereas the 

average precipitation and potential evapotranspiration are the same across the three scenarios 

in each of the two watersheds, the values are different for the two. The average rainfall is 

higher for the upstream Nyangores sub-watershed (1430 mm) than for the larger MRB (1045 

mm). This is because the lowlands (Maasai Mara-Serengeti region) experience lower rainfall 

compared with the upper Mara (Mau Forest). On the other hand, average temperatures are 

higher in the lowlands than highlands and consequently the potential evapotranspiration is 

slightly higher for the larger Mara (1629 mm) than for Nyangores (1605 mm). This implies 
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that generalisation or extrapolation of impact of agroforestry (or any other forest-related land-

use change) of a small catchment to the larger watershed may not be practical without 

considering the effect of climate variability within the watershed (Brown et al., 2005). 

 

3.4 Implication for water resources management 

The main finding of this study is that agroforestry would increase water demand and hence 

evapotranspiration and reduce the water yield (streamflow) of the Mara River. Reduced flows 

may be a concern by water managers who are tasked with managing the resources against an 

increasing demand (Dessu et al., 2014). However, these findings should be viewed within the 

broader context of environmental services provided by agroforestry. This is necessary 

because in the last few decades there has been a paradigm shift on how water resources 

should be managed. Integrated Water Resources Management (IWRM) has now been 

accepted worldwide as an effective management approach of water resources (UNEP, 2010; 

GWP, 2000). IWRM advocates for a holistic approach in water management where water, 

land and other resources (e.g. forestry) are managed in an integrated manner- because they 

are interlinked (Mwangi et al., 2015a). Agroforestry, for example, additionally provides other 

environmental services e.g. soil erosion control, provision of wood products such as timber 

and fuelwood, carbon sequestration, modification of microclimate (Ong et al., 2006; Nair, 

1993). Soil erosion control is directly related to the findings reported here. The decrease in 

surface runoff due to agroforestry as reported in this study would consequently reduce soil 

erosion which is still a major problem in the MRB (Defersha and Melesse, 2012; Defersha et 

al., 2012; Kiragu, 2009). Reduced soil erosion would essentially reduce loss of top fertile 

soils in farmlands and hence control decline in land productivity for improved crop 

production. Decline in land productivity in the upper Mara has led to increased encroachment 

of the Mau forest by the local communities whose main economic activity is subsistence 
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farming (Mati et al., 2008). Reduction in soil erosion would also minimize sedimentation in 

the rivers and thus improving the water quality. This is very important because majority of 

people living in the watershed consume the water directly from the stream without any form 

of treatment (Ngugi et al., 2014; Dessu et al., 2014). For the few who live in towns within the 

watershed and who have the privilege of taking treated water, reduced sediment loads would 

lower the water treatment costs. Another key benefit of agroforestry is the provision of timber 

and fuelwood which would lower the pressure on the forests. In Kenya, about 89% of people 

living in rural areas rely on fuelwood for their energy needs (World Resources Institute, 

2007; Nyaga et al., 2015) which shows the importance of agroforestry in the livelihoods of 

rural communities.  

It is also worth mentioning that the results reported here are based on annual averages. Water 

resources management should go beyond the annual averages and consider the intra-annual 

flows. This is because streamflow seasonality is a key determinant of water availability 

(Hoekstra et al., 2012) particularly for an unregulated river like Mara (Young, 2014).  River 

Mara is only 395 km long from the source to its mouth in Lake Victoria. This means it only 

takes a few days for water from the headwaters to drain in the Lake and therefore most of the 

streamflow especially in the two wet seasons ends up in the Lake and would still be the case 

even in case of implementation of agroforestry. Flood water harvesting for the Mara would 

therefore be a very practical management strategy to ensure temporal distribution of water 

availability throughout the year.  

The effect of watershed scale may be of interest to Tanzania considering that MRB is a trans-

boundary between Kenya and Tanzania on the downstream end where there has been concern 

of the impact, on hydrology, of upstream watershed activities (Gereta et al., 2009, 2002). It 

may be interesting to note that though there may be some reduction of streamflow in the 

Mara by implementation of agroforestry, the impact would be lower on Tanzanian side of the 
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Mara compared to the Kenyan side. Integration of management of trans-boundary basins is 

also emphasised in IWRM and therefore the more need for a holistic view of watershed 

management in the MRB. Therefore, our findings viewed in the lens of IWRM would provide 

crucial information for watershed management in the greater basin. The three scenarios 

further provide some guidelines on trade-offs that can be made between streamflows and 

other environmental services especially by the Kenyan government that is keen on increasing 

the tree cover of the heavily deforested upper Mara basin and Mau Forest in general (GoK, 

2009). 

At a global level, SWAT is increasingly getting wide application in land-use and water 

resources studies (Gassman et al., 2010). Because agroforestry is also a common land-use 

practice worldwide especially in the tropical Africa, Asia and America (World Agroforestry 

Centre, 2009), there is need to provide ways/methods of modelling agroforestry in SWAT. 

We have provided a simple approach to model agroforestry in SWAT using the current model 

structure, with good results. However, more needs to be done to make the model structure 

flexible to enable modelling different systems of agroforestry e.g. allow intercropping in the 

same HRU. 

4 CONCLUSIONS 

SWAT model was used to simulate the impact of agroforestry on the hydrology of the MRB. 

Prior to simulation of agroforestry scenarios the model was successfully parameterized, 

calibrated and validated. We have provided a simple approach for simulating agroforestry in 

SWAT using the current model structure. We however note that more needs to be done on the 

model structure to make it flexible to incorporate different systems of this important land-use. 

Another contribution of this study was to provide a simple way in which the model can 

reasonably simulate tree growth in the tropics without changing the source code. Though 

simple, this kind of parameterization, which involves adjusting the minimum LAI and 
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fraction of tree heat unit to initiate growth, was considered better than the use of the default 

parameters that are better suited for temperate. Use of this approach of parameterization can 

greatly improve SWAT land-use modelling in tropical countries of the world. 

Model simulation scenarios showed that agroforestry would generally reduce the surface 

runoff, lateral flow, groundwater contribution to streamflow and the water yield while the 

evapotranspiration would increase. The relative change in water balance components is 

proportional with increase in area under agroforestry. The decrease in surface runoff was 

mainly attributed to improved water infiltration conditions offered by the trees while decline 

in baseflow and overall water yield was attributed to the extra water use by trees that are not 

only able to extract water from shallow aquifer storage owing to their deep rooting system 

but also transpire more due to their bigger aerodynamic conductance. This suggests that the 

gain aquifer storage, made by increased infiltration, is outweighed by extra water removal by 

agroforestry trees; the net effect being decline in both baseflow and total water yield.  

Spatial scale was found to have a significant role in determining the magnitude of change in 

hydrology; the impact of agroforestry was bigger for the smaller up-stream Nyangores sub-

watershed compared with that of the entire MRB. This shows that the impact on hydrology is 

directly related to the fraction of the watershed implemented with agroforestry. It was also 

found that the slope of change of water yield with increase in tree cover was different for the 

MRB compared to that of one of its upstream sub-watershed (Nyangores). This was attributed 

to the spatial variability of climate within the MRB. This implies that generalization or 

extrapolation of effect of agroforestry (or any other change in tree cover) from small to larger 

watersheds may not be accurate without eliminating or taking into account the climate 

variability within or between the watersheds. This information is particularly important for 

scientific community working on small experimental study sites with an aim of extrapolating 

the results (or modelling) to large watersheds. 
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We conclude/suggest that these findings would be more beneficial to water resources 

managers when viewed from a broader perspective of IWRM. Agroforestry has many other 

related ecosystem services e.g. soil erosion control, which is directly related to our findings 

of reduction in surface runoff. We have shown how reduced surface runoff, and by extension 

soil erosion control, may also have multiplication of other benefits such as drinking water 

quality improvement and enhanced crop production for the subsistence farmers in the 

watershed. Owing to the high levels of competition for land between forestry and crop 

production in the basin, the results of the three agroforestry scenarios that are based on tree 

cover increment, may be used as a guideline to assist water resource managers and policy 

makers in making practical trade-offs between change in water yield and other benefits of 

agroforestry. 
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Table I: Calibrated SWAT model parameters 

Parameter Calibrated parameter 

values 

Parameter 

range used 

for 

calibration 

Description 

common Upper 

Mara 

MRB 

Surlag 3.74   0  -  4 Surface runoff lag coefficient 

AWC* 0.14   -0.20 – 0.20 Available water capacity of soil 

CN FRSE 35   35 - 40 Initial Soil 

conservation service 

(SCS) runoff curve 

number for moisture 

condition II 

Forest 

‗evergreen‘ 

FRST 36   35 - 40 Mixed forest 

AGRR 60   60 -75 Agriculture 

SWHT 71   60 - 75 wheat 

RNGE 36   35 - 45 rangelands 

CH_N  0.12 0.09 0.01-0.3 Manning's "n" value for the main 

channel 

CH_K  3.23 2.98 0-10 Effective hydraulic conductivity in 

main channel alluvium (mm/hr) 

ALPHA_BF  0.75 0.98 0.6  -  0.99 Base flow alpha factor (l/days) 

GW_delay  31.0 4.91 0 - 31 Ground water delay time (days) 

GW_Revap  0.14 0.10 0.02 - 0.15 Groundwater "revap" coefficient 

GWQMN  200 1869 150 - 2000 Threshold depth of water in the 

shallow aquifer required for return 

flow to occur (mmH2O) 

Rchrg_dp  0.25 0.10 0.02 - 0.25 Deep aquifer percolation fraction 

*percent of the parameterized soil awc for layer of each soil 
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Table II: size of the watershed converted to forest under the three agroforestry scenarios 

 
Mara River Basin (area = 10,550 km

2
) 

 
Scenario Lower slope threshold (%) area (ha) % of watershed area 

S1 20 18,559 1.8 

S2 15 34,321 3.3 

S3 10 63,810 6.0 

 
Nyangores sub-watershed (area = 692 km

2
) 

Scenario Lower slope threshold (%) area (ha) % of watershed area 

S1 20 4,420 6.4 

S2 15 9,965 14.4 

S3 10 19,380 27.9 
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Table III: Daily and monthly Nash-Sutcliffe efficiencies (NSE) and Klingupta efficiencies 

(KGE) 

Calibration 

                Daily            Monthly 

Gauging station NSE KGE NSE KGE 

Nyangores 0.65 0.81 0.77 0.88 

Maramines 0.46 0.72 0.78 0.89 

Validation 

Nyangores 0.63 0.80 0.74 0.85 

Maramines 0.56 0.52 0.79 0.63 

Amala 0.67 0.67 0.75 0.68 

 

 

  



This article is protected by copyright. All rights reserved. 

Table IV: Water balance (in mm) of the Nyangores sub-watershed for the three agroforestry 

scenarios  

 
Base S1 S2 S3 

Precipitation  1429.6 

Surface runoff  29.7 25.5 20.6 13.8 

Lateral flow  29.2 28.0 27.5 27.0 

Groundwater flow (GwQ)  295.4 281.4 263.9 235.7 

Revap  0.45 0.46 0.47 0.48 

Total water yield  354.3 334.9 311.9 276.5 

Evapotranspiration (ET)  1057.8 1076.4 1098.6 1133.1 

Potential ET (PET)  1605.9 

Groundwater flow (GwQ) is the groundwater contribution to streamflow.  
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Table V: Water balance (in mm) of the MRB for the three agroforestry scenarios 

 
Base S1 S2 S3 

Precipitation  1044.6 

Surface runoff  23.8 22.9 22.1 20.8 

Lateral flow   10.3 9.9 9.8 9.7 

Groundwater flow (GwQ)  106.1 103.8 101.2 96.9 

Revap  124.4 123.9 123.5 122.8 

Total water yield  140.1 136.6 133.2 127.3 

Evapotranspiration (ET)  750.9 755.0 758.8 765.6 

Potential ET (PET)  1628.9 

Groundwater flow (GwQ) is the groundwater contribution to streamflow.  

 

  



This article is protected by copyright. All rights reserved. 

 

Figure 1: Mara River Basin 
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Figure 2: LAI simulated using a) case 1: the default setting in SWAT (Minimum LAI = 0.75; 

‗start growing season‘ PHU fraction = 0.15) and b) case 2: adjusted values (Minimum LAI = 

3.00; ‗start growing season‘ PHU fraction = 0.001). PHU = 3500 
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Figure 3: Land–use and agroforestry scenario maps (for Nyangores sub-watershed only): (a) 

Land–use/cover map (2014); also represents the base scenario. (b, c, and d) Agroforestry 

scenarios 1, 2, and 3 respectively (showing the forest cover in the base scenario (light green) 

and additional areas simulated with woodlot agroforestry (dark green). 
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Figure 4: Daily hydrographs for observed and simulated streamflow of: a) Nyangores River 

at Bomet, b) Mara River at Mara mines and c) Amala River at Mulot 
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Figure 5: Relative impact of increasing area under agroforestry on water balance of: a) 

Nyangores sub-watershed and b) larger MRB. SurQ is the Surface runoff, LatQ is the lateral 

flow, GWQ is the groundwater contribution to streamflow, Total WYLD is the total water 

yield and ET is the evapotranspiration 
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Figure 6: Relationship between ratio (%) of watershed (simulated with agroforestry) and 

percent change in water yield for MRB and Nyangores 


