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The collapse of marginally bound, inhomogeneous, pressureless (dust) matter, in spheri-
cal symmetry, is considered. The starting point is not, in this case, the integration of the
Einstein equations from some suitable initial conditions. Instead, starting from the corre-
sponding general exact solution of these equations, depending on two arbitrary functions
of the radial coordinate, the fulfillment of the Lichnerowicz matching conditions of the
interior collapsing metric and the exterior Schwarzschild one is tentatively assumed (the
continuity of the metric and its first derivatives on the time-like hypersurface describing
the evolution of the spherical 2-surface boundary of the collapsing cloud), and the con-
sequences of such a tentative assumption are explored. The whole analytical family of
resulting models is obtained and some of them are picked out as physical better models
on the basis of the finite and constant value of its intrinsic energy.
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1. Introduction: general considerations

The subject of this paper is to deal with the implications of reasonable and well
motivated simplifying assumptions in modelling relativistic gravitational collapse
scenarios of dust matter in a spherically symmetric space-time. As it is often done
in General Relativity, we assume tentatively that the metric of the differentiable
manifold of the theory is C1 class and we will let this assumption to play a central
role in the present work by imposing when necessary the corresponding matching
Lichnerowicz conditions.1 In this context, the novel assumptions we consider and
analyze, and whose correctness we verify, are:

(A) Out of the intrinsic singularity, there exists a global Gauss coordinate system,
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adapted to the symmetry and to the dust, in which the metric is of class C1,
spatially flat and asymptotically Minkowskian, at rest at this 3-space infinity.

(B) We require the resulting collapsing models to have finite and constant intrinsic
energy. Then, additional sound requirements lead finally to a particular simple
physical situation.

More specifically, the interior dust region and the exterior Schwarzschild one
should be smoothly matched via the fulfillment of the mentioned Lichnerowicz
matching conditions1 in the above Gauss coordinates, which are both (i) comoving
with the dust at the interior region and (ii) adapted every where to the spherical
symmetry and to free-falling observers at rest at the spatial infinity (parabolic or
marginally bound collapse situation). Contrarily, in the above Gauss coordinates
satisfying (A) and (B), which will be called intrinsic coordinates (see Sec. 6), the
well known Oppenheimer-Snyder metric2 does not satisfy neither the Lichnerowicz
matching conditions, nor the finite and constant character of the intrinsic energy.
We will see it in Sec. 4 and subsection 6.2.

Contrarily, some of our collapsing metrics satisfying the above conditions (i) and
(ii) have actually vanishing intrinsic energy, which is a particular way of having a
finite constant intrinsic energy.

But, we and other authors have elsewhere argued3–7 that universes having zero
intrinsic energy (and zero linear and angular momenta) could be good candidates
to be quantically created from vacuum fluctuations, according to the original Fomin
and Tryon suggestions.8,9

In their pioneering work, Oppenheimer and Snyder2 studied qualitatively the
main issues concerning gravitational collapse scenarios, and they constructed an
exact spherically symmetric collapse model of a pressureless homogeneous matter
with parabolic (also called marginally bound) evolution. Parabolic evolution means
that this Oppenheimer-Snyder model was adapted to a Gauss congruence of ob-
servers, comoving with the homogeneous dust fluid, whose simultaneous 3-surfaces
of proper constant time are flat (the induced 3-metric has a vanishing Ricci tensor).
The interior region is described by the spatially flat Einstein-de Sitter metric and the
exterior one by the Schwarzschild solution, both expressed in Gauss coordinates.a

This collapse situation, as well as its inhomogeneous counterpart, although not be-
ing quite realistic, are good theoretical models due to their simplicity and provide
important information when they are taken as a test-bed in numerical relativity.12

a Otherwise, the spherically symmetric homogeneous dust collapse described by a closed Fried-
mann metric matched with the exterior Schwarzschild solution is extensively analyzed in a lot of
General Relativity text books (see, for instance, Refs. 10, 11). Sometimes, this collapse has been
called “Oppenheimer-Snyder collapse”, though perhaps this name should be better reserved for
the “marginally bound homogeneous” case considered in Ref. 2 (and appropriately termed in this
manner in Refs. 12, 13). Currently, after the English translation of the work by Datt14 (see also
Refs. 15, 16), the extended appellation “Oppenheimer-Snyder-Datt collapse” is also in use,17,18 al-
though Ref. 14 exclusively concerns the exact integration of the Einstein equations in some special
cases, but not its potential application to gravitational collapse scenarios.



April 27, 2018 0:35 WSPC/INSTRUCTION FILE
IJMPD˙27˙5˙˙2018˙˙1850057

Spherical Symmetric parabolic dust collapse: C1 matching metric with zero intrinsic energy 3

Therefore, it seems very suitable to extend the Oppenheimer-Snyder spherical
marginal bound situation to include an inhomogeneous dust allowing radial non
trivial dependence of the proper energy density. Thus, in the present paper we
deal with an inhomogeneous generalization of the result in Ref. 2 without imposing
any particular initial conditions. However, we tentatively impose in an admissible
coordinate system the Lichnerowicz matching conditions.1 Thus, the corresponding
inner and outer solution are consistently matched on a timelike 3-surface describing
the evolution of the star 2-surface collapse. As far as we know, such a study, involving
non homogeneous density and matching Lichnerowicz conditions, has never been
performed, at least in all the literature quoted in the present paper.

The Lichnerowicz conditions are only well known axioms taken as devices to
define global metric solutions. These axioms have the property of being satisfied
in the Newtonian approximation, that is, the Poisson equation for the Newtonian
potential admits C1 solutions for any space bounded, regular, finite mass, source.
Of course, even with this validity in the Newtonian approximation, we could deny
these axioms in general, but in our manuscript, in the domain of the metric solutions
that we have considered, we have found more interesting to assume them tentatively
and explore the consequences of the assumption. In any case, see Ref. 19 and ref-
erences therein for an alternative matching study without requiring necessarily the
Lichnerowicz conditions.

Of course, a lot of work has been carried out in order to obtain exact analytical
models for a perfect fluid stellar collapse and to analyze its related issues concern-
ing singularities, event horizons and trapped surfaces (for a vast bibliography on
the subject see, for instance, Refs. 17, 20, 21, 22, 23). This extensive work may be
considered as an extension of the Oppenheimer-Snyder collapse by including den-
sity inhomogeneities and pressure contributions, and has been mainly focussed on
the role played by the initial conditions and the subsequent collapsing evolution.
Nevertheless, here, keeping on the specific case of a marginally bound spherically
symmetric dust collapse, we will exhaustively analyze, as remarked above, the role
played by the boundary conditions imposed on the interior-exterior matching sur-
face without imposing initial conditions.

The paper obeys the following structure. First, in Sec. 2 we start from the
known expression for the LTB (Lemâıtre,24 Tolman,25 Bondi26) family of exact
solutions in Gauss comoving coordinates adapted to the spherical symmetry, in
the marginal bound case (i. e. when the three-space curvature tensor vanishes),
from which one recovers the Schwarzschild metric as a particular case. In Sec. 3 we
construct a family of solutions of the Einstein equations that is of C1 class over its
whole domain and that describes a collapsing inhomogeneous dust fluid matched to
the Schwarzschild exterior written in the Gauss coordinate system introduced in Sec.
2, and obeying the marginally bound condition. The homogeneous Oppenheimer-
Snyder dust collapse2 situation is revisited in Sec. 4, and then, this important model
is contrasted with the generic matching model presented in Sec. 3. Then, for the sake
of clarity, in Sec. 5 a truncated one-parametric matching metric family is introduced
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in order to examine the minimal set of additional physical requirements allowing
to fix this parameter. In Sec. 6 we show that this parameter can be naturally
determined by requiring that the intrinsic energy of the whole matching solution
be finite and constant. In the ending Sec. 7 we briefly discuss and comment the
obtained results. An appendix presents the mathematics concerning the application
of the Lichnerowicz matching conditions1 to the generic dust collapse analyzed in
Sec. 3.

We will take units in which c = 1 for the speed of light, and G = 1 for the
gravitational constant. The metric signature will be +2.

A short communication containing some results, without proof, of this work has
been exposed at the Spanish Relativity Meeting ERE-2015.

2. Schwarzschild metric in suitable Gauss coordinates

Let it be the Schwarzschild metric in standard static coordinates:

gS = −
�
1− 2m

r

�
dt⊗ dt+

dr ⊗ dr

1− 2m

r

+ r2h, (1)

with h = dθ⊗ dθ+ sin2θ dφ⊗ dφ the metric on the unit 2-sphere, and m the source
mass parameter. Let us change to the new coordinates (τ, ρ) given implicitly by

τ(t, r) = t+ 2m
�
2

�
r

2m
+ ln

���
√
r −

√
2m

√
r +

√
2m

���
�
, (2)

r(τ, ρ) =
�9
2
m
�
τ − 2

3

ρ3/2√
2m

�2�1/3
, τ <

2

3

ρ3/2√
2m

. (3)

In the new coordinates still adapted to the spherical symmetry of the metric (1)
we have:

gS = −dτ ⊗ dτ +
ρ

r
dρ⊗ dρ+ r2h, (4)

which is a regular extension of the Schwarzschild metric (1) to the region r ∈
(0,+∞), describing the black hole region with its horizon, r ∈ (0, 2m], and its
exterior r > 2m. In Kruskal coordinates27 {u, v, θ,φ}, this whole region is u > v
and arbitrary θ and φ.

The above metric form (4) of the Schwarzschild solution has been considered in
Refs. 2, 4, 28, 29. It is written in Gauss coordinates, that is, the metric components
g00 and g0i (i = 1, 2, 3) are g00 = −1, g0i = 0, and they become asymptotically at
rest coordinates for ρ → ∞, with respect to ordinary static Schwarzschild coordi-
nates, since on the one hand we have ρ/r ∼ 1 +

√
2m τρ−3/2 → 1, and τ is an up

bounded variable: notice that, according to Eq. (3), where ψ(λ) ≡ 2λ3/2/(3
√
2m)

is the singular time corresponding to the collapse of the star surface ρ = λ. Be-
sides, on the other hand, we have from (2), for r → ∞, dτ ∼ dt +

�
2m/r ∼ dt.

Furthermore, the coordinates {τ, ρ} are regular coordinates everywhere, except for
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the essential singularity r = 0 and, with the appropriate coordinate transformation,
they become asymptotically rectilinear at the three-space infinity (for ρ = r, metric
(4) becomes the Minkowski metric in spherical coordinates). The metric form (4)
is a very suitable one for ascribing an intrinsic energy to the space-time metric de-
scribing a marginally bound gravitational collapse (see Sec. 6).b This Schwarzschild
metric is a particular case of the LTB metric, solution of the Einstein equations
(see, for instance, Refs. 15, 16):

g = −dτ ⊗ dτ +A� 2dρ⊗ dρ+A2h, (5)

where A� ≡ ∂ρA, and A ≡ A(τ, ρ) is given by

A(τ, ρ) =
�9

2
M(ρ)[τ − ψ(ρ)]2

�1/3
, (6)

M(ρ) and ψ(ρ) being arbitrary functions of ρ, 0 ≤ ρ < ∞. The time coordinate
domain is −∞ < τ < ψ(ρ). In particular, taking

M(ρ) = const. = m > 0, ψ(ρ) =
2

3

ρ3/2√
2m

, (7)

we recover (4), with A(τ, ρ) = r given by Eq. (3). Let us consider in this particular
case the times τh and τs defined respectively by A(τh, ρ) = 2m and A(τs, ρ) = 0
(with τs > τh), that is

τh = τs −
4m

3
, τs =

2

3

ρ3/2√
2m

. (8)

A free falling observer whose world line is given by constant ρ, θ and φ reaches the
event horizon r = 2m at proper time τh, and the essential singularity r = 0 at
τs > τh.

The metric (5) involving two arbitrary functions of ρ, M(ρ) and ψ(ρ), is sourced
by a pressureless (dust) matter content whose stress energy tensor Tαβ is

Tαβ = µ(τ, ρ)uαuβ , (9)

with µ(τ, ρ) the proper dust density function, which is given by:

4πµ =
M �

A2A� (10)

(see again Refs. 15, 16 for a brief account concerning the related whole family of
exact solutions). Notice that the above (τ, ρ, θ,φ) Gauss coordinates are comoving
with the source dust and are adapted to the present spherical symmetry, that is, in
particular, uα = (1, 0, 0, 0).

bAnother appropriated and well known Gauss coordinate system for the Schwarzschild space-time
is the one introduced by Novikov30 (see also Ref. 10). In this case, the three-spaces τ = constant
are not flat, and then, in dealing with a marginally bound collapse scenario, the associated Novikov
metric form is not as suitable as the metric form (4).
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Function M(ρ) can be seen to be the total mass inside the radius ρ, and is
the particular value that, in our case, the Misner-Sharp31 mass function takes.
Function ψ(ρ) represents the proper time when the essential singularity A(τ, ρ) = 0
takes place. More precisely, let it be a radially falling observer at constant radial
comoving coordinate ρ from the center ρ = 0; then its world line meets the essential
singularity at the proper time τs = ψ(ρ).

Of course, a gauge freedom remains: the radial coordinate changes ρ̄ = ρ̄(ρ)
leaving invariant the metric form (5). Then, one of the free functions M(ρ) or ψ(ρ)
may be equalled to an arbitrarily prescribed function of ρ. Actually, as we will see
below in detail, for a collapse model, the required matching conditions constrain
the values that functions M(ρ) and ψ(ρ), and their derivatives, can take on the
matching surface. This is a crucial consideration for the interpretation of our results:
in our case, the set of conditions that M(ρ) and ψ(ρ) must fulfill are required by
the accomplishment of the Lichnerowicz matching conditions1 (the matching of the
interior space-time metric, describing the collapse, and the Schwarzschild exterior).
We will come back to this point below (see Sec. 4) in connection with the familiar
prescription of the function ψ(ρ) usually taken for marginally bound homogeneous
dust collapse (see, for instance, Refs. 2, 12).

As mentioned above, metric (5) is a subclass of the LTB family of dust solutions,
where the abbreviation comes from the original works by Lemâıtre,24 Tolman25 and
Bondi.26 This subclass is the most general spherical symmetric dust solution with
flat three-spaces given by τ = constant.c

3. Generic parabolic matching model for inhomogeneous dust
collapse

Assume, as it is often done, that the differentiable manifold, V4, of General Rela-
tivity, is of C2 class and that the gravitational potentials are of C1 class, i.e., the
metric first derivatives are locally continuous functions, that is to say, are continu-
ous everywhere the coordinate system used exists. Can we match the Schwarzschild
exterior metric form (4) with an interior one represented by (5) with A(τ, ρ) given
by (6)? We will see that such is the case.d

To begin with, since ρ in (4) is a comoving radial 3-space coordinate, everywhere

cIn fact, in the case of the Datt metric gD (see Ref. 14, 15, 16) the three-spaces τ = constant are
non-flat. Moreover, these 3-spaces are the level surfaces of the A function of this solution because
it is a function of the sole proper time τ , A(τ). This means that the gradient dA is everywhere
timelike, gD (dA, dA) < 0, on the whole metric domain (which is a T -region,30 i. e, the Datt
function A defines a timelike gradient coordinate according to the parlance used in Refs. 32, 33).
dNotice that, according to Ref. 1, these differentiability requirements on the gravitational poten-
tials are manifestly compatible with the differential structure of V4 if, in addition, one requires
that the Hessian matrix components of the admissible coordinate transformations are piece-wise
C2 class functions (or, “par morceaux” according to the nomenclature used in Ref. 1). This con-
dition ensures that, under coordinates changes whose third and fourth derivatives could present
some Hadamard discontinuities (see Ref. 34 p. 85, and Eq. (21) next), the C1 differential character
of the metric components remains invariant. Nevertheless, the second derivatives of the metric



April 27, 2018 0:35 WSPC/INSTRUCTION FILE
IJMPD˙27˙5˙˙2018˙˙1850057

Spherical Symmetric parabolic dust collapse: C1 matching metric with zero intrinsic energy 7

out of r = 0, let it be ρ = const. ≡ λ, the value of this coordinate for the corre-
sponding 2-surface separating the outside region from the inside one, at the time
τ . Then, in accordance with the general Lichnerowicz prescription,1 expressing in
this case the assumed C1 character of the metric, the 3-space metric components gij
(g00 = −1, g0i = 0, everywhere out of r = 0), and their first derivatives, have to be
continuous across ρ = λ, in order to consistently match both solutions, the exterior
Schwarzschild metric with a particular interior LTB solution (Eq. (5)) driven by a
pressureless matter, i.e., by dust.

By derivation of (6) with respect to τ and ρ, the following expressions result:

Ȧ = ε

�
2M

A
, (11)

A� =
1

3

M �

M
A− ε

�
2M

A
ψ�, (12)

with ε ≡ sgn[τ−ψ(ρ)] describing, respectively, an expanding (Ȧ > 0) or contracting
(Ȧ < 0) configuration when ε = +1 or ε = −1. Then, taking into account that
A

3

2 (τ, ρ) = ε 3
2

�
2M(ρ) [τ − ψ(ρ)], the events (τ, ρ, θ,φ) where A� vanishes display

generically a 3-surface given by the relation:

A�(τ, ρ) = 0 ⇐⇒ τ(ρ) = ψ(ρ) + 2
M(ρ)

M �(ρ)
ψ�(ρ) (13)

and arbitrary (θ,φ). This relation can be interpreted as follows. Assuming that
M(ρ) is a non-negative function, the proper time τ(ρ) at which A� vanishes will be
hidden under the essential singularity at A = 0 (that is τ(ρ) > ψ(ρ)) if, and only
if, M �(ρ) and ψ�(ρ) have equal sign, i.e. if they are both increasing or decreasing
functions. The question of this hiddeness possibility is the problem named of shell
crossing. See Refs. 36, 37.

Then, for a gravitational collapse (ε = −1) the reader can easily verify the above
matching can be achieved with the following values of the functions M(ρ) and ψ(ρ):

M(ρ) =





m+

∞�

k=3

Mk(1−
ρ

λ
)k, ρ ≤ λ

m, ρ ≥ λ

(14)

and

ψ(ρ) =






λ3/2

4
√
2m

(
ρ2

λ2
+ 2

ρ

λ
− 1

3
) +

∞�

k=3

ψk(1−
ρ

λ
)k, ρ ≤ λ

2

3

ρ3/2√
2m

, ρ ≥ λ

(15)

could present some Hadamard discontinuities (the metric first derivatives being at last piece-wise
C2 class). See Ref. 35 for a recent discussion concerning these requirements.
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giving what we call the “generic matching metric” (see Appendix A), where the
constant coefficients Mk and ψk, otherwise arbitrary, have to ensure the conver-
gence of the corresponding series, and will be constrained by the remaining physical
requirements imposed on the model (see Secs. 5 and 6).

Functions (14) and (15) form a broad class of analytic solutions for our matching
problem.e This solution, for ρ ≥ λ, reproduces the exterior Schwarzschild metric
in the coordinates of (4) with r ≡ r(τ, ρ) given by (3). Obviously, any of these
solutions could also be obtained by integrating the Einstein field equations with the
corresponding initial conditions A(τi, ρ), Ȧ(τi, ρ), τi standing for the initial time
τi − ψ(0) < 0. The particular values of the expressions A(τi, ρ), Ȧ(τi, ρ), would
be obtained substituting in (6) and (11), respectively, the corresponding values of
M and ψ given by (14), (15), which insures the C1 class character of these initial
conditions.

It is important to stress that, in accordance with the general result in Ref. 38,
the Darmois–Israel matching conditions39,40 (continuity of the induced metric and
the extrinsic curvature across the matching Σ surface ρ = λ) are also fulfilled by
the space-time metric (5) no matter how the A(τ, ρ) function given by (6) may be,
provided that A be continuous across the matching surface Σ. In fact, the induced
metric, γ, and the extrinsic curvature, K, of a time-like three-surface defined by
ρ = constant are given by

γ = −dτ ⊗ dτ +A2(τ, ρ)h, K = −A(τ, ρ)h. (16)

Then, the continuity of A across the matching surface Σ, expressed like [A]
Σ
= 0,

ensures the continuity of both γ and K across Σ, that is, in the same notation,
[γ]

Σ
= [K]

Σ
= 0 are indeed fulfilled.

For τ = 0 and for all ρ ≥ λ, the substitution of (14) and (15) into (6) and (11)

leads to A(0, ρ) = ρ and Ȧ(0, ρ) = −
�

2m
ρ
. These are then the initial conditions

corresponding to our “generic matching metric” obtained from (14) and (15), for
ρ ≥ λ. In fact, this last initial condition says that, at each ρ ≥ λ, the speed of the
infalling observer is equal to the Newtonian escape velocity. But, such initial values
are not always satisfied for ρ < λ in our model (14) and (15) due to the fact that this
model has been constructed by requiring the accomplishment of the Lichnerowicz
matching conditions.

This is a characteristic of the present models, making them different from other
models considered in the literature which imposes that, under a global radial coor-

eNote that the required matching conditions are also satisfied by taking for ψ(ρ) the generalization

of the expression (7) we have chosen for the Schwarzschild metric, that is, ψ(ρ) → �ψ(ρ) ≡ 2
3

ρ3/2√
2M(ρ)

for all ρ > 0, with M(ρ) given by (14). This means that for ρ ≤ λ the general family of ψ(ρ)
functions obeying the matching requirement is a weighted linear combination aψ(ρ) + (1− a) �ψ(ρ)
with ψ(ρ) given by (15), and a ∈ [0, 1]. A model with a = 0 has been recently analyzed and applied
to test the fulfillment of the cosmic censorship conjecture in a broad class of inhomogeneous dust
collapsing scenarios (see Ref. 23).
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dinate choice, the above initial conditions, A(0, ρ) = ρ and Ȧ(0, ρ) = −
�

2M(ρ)
ρ

be

satisfied for every value of ρ ∈ (0,∞) (cf. Refs. 17, 21).

4. Oppenheimer-Snyder homogeneous dust collapse

In Ref. 2, the marginally dust homogeneous spherically symmetric collapse was
considered by expressing the functions M(ρ) and ψ(ρ) (after a change in notation)
in the following manner:

M
OS
(ρ) =





m
�ρ

λ

�3
, ρ ≤ λ

m, ρ ≥ λ
(17)

and

ψ
OS
(ρ) =






2

3

λ3/2

√
2m

, ρ ≤ λ

2

3

ρ3/2√
2m

, ρ ≥ λ,

(18)

where we use the OS abbreviation for Oppenheimer and Snyder.2 In this case, the
areal radial metric function A(τ, ρ) is

A
OS
(τ, ρ) =






�9m
2

�1/3 ρ

λ

�
τ − 2

3

λ3/2

√
2m

�2/3
, ρ ≤ λ

�9m
2

�1/3�
τ − 2

3

ρ3/2√
2m

�2/3
, ρ ≥ λ.

(19)

As it has been stressed at Sec. 3, about Eq. (16), the Darmois matching conditions
are also fulfilled in the present case of an homogeneous (see next Eq. (24)) collapse,
whose space-time metric is (5) with A(τ, ρ) given by (19). This is so since [A

OS
]
Σ
= 0.

However [A�
OS
]
Σ
�= 0, because

[A�
OS
]
Σ
= − q

λ

τ

(τ − τc)1/3
, (20)

where for a given function X(τ, ρ), its Hadamard discontinuity,34 [X]
Σ
, across the

matching Σ surface ρ = λ, is defined by

[X]
Σ
= lim

�→0+
X(τ,λ+ �)− lim

�→0+
X(τ,λ− �), (21)

and, where the notation

q ≡
�9m

2

�1/3
, τc ≡

2

3

λ3/2

√
2m

, (22)

will be used from now on, τc being the time when the “simultaneous” essential
singularity A

OS
(τs, ρ) = 0 occurs for every dust comoving observer (again, see next

Eq. (24)).
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Fig. 1. M
OS

(ρ) (top) and ψ
OS

(ρ) (bottom) functions describing the Oppenheimer-Snyder col-
lapse. Their first derivative are discontinuous across the matching surface {Σ : ρ = λ}, implying
that A�

OS
is also discontinuous across Σ, [A�

OS
]
Σ

�= 0. Normalized variable, ρ
λ , and normalized

functions, M
m ≡ M

OS

m and Ψ ≡ 3
2

√
2m

λ3/2 ψOS
, are used.

Then, the metric component gρρ = A� 2 is discontinuous across Σ,

[A�2
OS
]
Σ
= − q2

λ2

τ(τ − 2τc)

(τ − τc)2/3
. (23)

Consequently, the tentatively assumed differentiability axioms1 requiring that
the gravitational potentials gµν(xα) be functions of class C1 (i. e. continuously dif-
ferentiable functions of the admissible coordinates {xα}) are not fulfilled in this case
(see Figure 1).

Of course, since the Oppenheimer-Snyder metric fulfills the matching Darmois
conditions through Σ, there are local Gauss coordinate systems built from Σ where
the matching Lichnerowicz conditions of this metric are fulfilled too. This is actually
the specific meaning, referred to the present case, of the general result proved in Ref.
38, that under some differentiable requirements, fulfilled in our case, Darmois and
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Lichnerowicz conditions are “equivalent”. However, these local coordinates will not
be anymore intrinsic coordinates as they are in the case of the general metrics of Sec.
3. Actually, the sole freedom we are left in the coordinate choice is the one related
to the gauge freedom ρ → ρ̄(ρ), mentioned in the penultimate paragraph of Sec.
2. Obviously, this kind of freedom cannot account for the time depending metric
discontinuity present in Eq. (23). These intrinsic coordinates, whose uniqueness
will be discussed next, at the end of the subsection 6.1, are the appropriate ones
to calculate the intrinsic energy of the metric considered (see Sec. 6). We want
to calculate this intrinsic energy, for the metrics of the present paper, in order to
discriminate those of these metrics that would seem specially physical (the ones
with a constant and finite intrinsic energy), from the remaining ones (with a time
dependent intrinsic energy, that even more could be infinite).

Substituting (17) and (19) for ρ < λ in (10), the dust density becomes homoge-
neous in this case:

µ
OS
(τ) =

1

6π(τ − τc)2
, (24)

and approaches to infinite when τ goes to τc. The 3-surface (apparent horizon)
defined by the equation g(dA

OS
, dA

OS
) = 0, that is equivalent to the algebraic

condition A
OS
(τ, ρ) = 2M

OS
(ρ), is reached by the comoving observers at the time

τh(ρ) < τs given by

τh(ρ) = τc −
4m

3

�ρ

λ

�3
(25)

for ρ ≤ λ, while for ρ ≥ λ we must write (8) instead of (24). Notice that, according
to (24), the “central observer” world-line (ρ = 0 and variable τ) belongs to a regular
state, except for τ = τc where µOS becomes infinite.

5. Truncated matching metric for inhomogeneous dust collapse

In this section we construct a truncated solution for a dust collapse satisfying the
differentiability and matching requirements, according with the prescriptions con-
sidered in the Sec. 3, and then, we contrast its main characteristics with the more
familiar ones founded in the literature on the subject. Such a model is defined by
the following specification of the free functions M(ρ) and ψ(ρ),

M(ρ) =





m− α

�
1− ρ2

λ2

�3
, ρ ≤ λ

m, ρ ≥ λ
(26)

and

ψ(ρ) =






λ3/2

4
√
2m

(
ρ2

λ2
+ 2

ρ

λ
− 1

3
), ρ ≤ λ

2

3

ρ3/2√
2m

, ρ ≥ λ,

(27)
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and where α is a constant to be determined from additional physical requirements
on the model (see next section). Notice that Eq. (26) is a special polynomial case
that follows from the general development Eq. (14) by considering a particular
election of the coefficients Mk. Moreover, the fact that Eq. (26) only contains even
potential exponents, ensures that M(ρ) has also zero first derivative at the center
ρ = 0, according with the regularity conditions imposed in collapse scenarios (see,
for instance, Refs.17, 21, and Figure 2 in Sec. 6).

These functions, M(ρ) and ψ(ρ) satisfy

[M ]
Σ
= [M �]

Σ
= [M ��]

Σ
= [ψ]

Σ
= [ψ�]

Σ
= [ψ��]

Σ
= 0, (28)

ensuring the fulfillment of the Lichnerowicz matching conditions (A.1), according
with the results displayed in the Appendix A.

For this truncated model, the corresponding “truncated matching metric” has an
essential singularity A(τ, ρ) = 0 which is “non-simultaneous” for the dust comoving
observers since it occurs at different proper time values, τs(ρ) = ψ(ρ), for different
observers, that is,

τs(ρ) =
λ3/2

4
√
2m

�ρ2

λ2
+ 2

ρ

λ
− 1

3

�
, (29)

the density µ given by (10) becoming infinite at this time.
A natural physical requirement is to take M(ρ) ≥ 0 and M �(ρ) > 0 for ρ �= 0.

This is accomplished by taking ξ ∈ (0, 1], where ξ ≡ α/m. Then, taking into account
that in (27) ψ(ρ) is an increasing function, ψ�(ρ) > 0, one gets from (13) that A�(τ, ρ)
can only vanish for τ(ρ) ≥ ψ(ρ). Then, the points (τ, ρ) where A� vanishes, if any,
are hidden by the essential singularity A = 0.

The function A(τ, ρ) giving the metric (5) for the model is directly obtained from
(26) and (27). Then, for ρ ≥ λ, the function A(τ, ρ) reduces to A(τ, ρ) = r(τ, ρ)
indeed, the space-time metric being the Schwarzschild one in this exterior region,
and, in particular, A(0, ρ ≥ λ) = ρ, according to Eq. (3).

An appropriated election we could take for the arbitrary constant α seems to be
α = m, giving the maximum value for the ξ parameter, ξ = 1. In the next section
we justify such an election from the study of the ADM (Arnowit-Deser-Misner41)
energy associated with the present model, when using intrinsic coordinates.

6. Constraining the matched metric from the study of its intrinsic

energy

In Ref. 42, using intrinsic coordinates, we have studied the metric intrinsic energy
derived from the Weinberg complex prescription11 for the general family of LTB-
metrics, given by the line element in suitable Gauss coordinates

gLTB = −dτ ⊗ dτ +
A� 2

1− k(ρ)
dρ⊗ dρ+A2h, A ≡ A(τ, ρ) (30)
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in the frame of some particular void models constructed with this family. The func-
tion k(ρ) appearing in (30) is related to the curvature of the proper time synchro-
nization attached to the Gauss observers comoving with the dust fluid. In this case,
and using comoving Gauss coordinates, the calculation of the Qi00 component of
the Weinberg pseudotensor, Qi00 = (∂ig− ∂jgij)/2, with gij the three-space metric
and g ≡ δijgij , gives (in accordance with Ref. 43)

Qi00 = − 1

ρ2

� (A− ρA�)2

ρ
+

kρA� 2

1− k

�
ni, (31)

where k ≡ k(ρ) and ni = ni ≡ ρi/ρ stands for the unit vector associated with the
asymptotic rectilinear coordinates ρi,

ρ1 = ρ sin θ cosφ, ρ2 = ρ sin θ sinφ, ρ3 = ρ cos θ, (32)

constructed from the starting (τ, ρ, θ,φ) comoving Gauss coordinates.
In the general case, for asymptotically Minkowskian metrics, the divergence of

Qi00, ∂iQi00, in asymptotically rectilinear Minkowskian coordinates provides the
integrand for the spatial volume integral giving the metric energy, P 0 (see Ref.
11). If the metric is smooth enough, we can transform this 3-volume integral to
a 2-surface integral over the infinite 3-space boundary, this common energy being
the ADM mass. Here, more specifically, we are dealing with expression (31) in the
marginally bound collapse (k = 0) case, the volume integral giving the Weinberg
metric energy P 0, or ADM energy,

P 0 = − 1

8π

�
∂iQ

i00d3ρ (33)

becoming

P 0 =
1

8π

�
∂

∂ρi

�
(A− ρA�)2

ni

ρ3

�
dρ1dρ2dρ3, (34)

where we have taken 8π for the Einstein constant.
We point out that, in the next subsection, the expression (34) for P 0, will be cal-

culated in intrinsic coordinates, that is comoving Gauss coordinates, adapted to the
spherical symmetry of the metric, and to its asymptotically Minkowskian charac-
ter, and being at rest at the 3-space infinity with respect to the static Schwarzschild
observers, all this according to what have been explained in Sec. 2. Because of these
intrinsic coordinate properties, according to Refs. 4, 42, the resulting energy P 0

will be called the intrinsic energy of the corresponding metric (for some additional
comments about its physical meaning see Sec. 7). We make the natural assumption
that this intrinsic energy is the one which has to vanish in order that we can raise
the question whether the corresponding metric could be quantically creatable from
“nothing” (see for instance Refs. 44, 45).
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6.1. Calculating the intrinsic energy of the truncated matching

metric

Then, let us calculate this intrinsic energy P 0 of the above truncated matching
metric. Since now Qi00 is regular enough (its first derivatives are continuous ev-
erywhere, except for ρ = 0) we can apply the Gauss theorem to the 3-volume in
(34) and express it as a 2-surface integral on the boundary. More specifically this
boundary will be made of two 2-surfaces, ρ = +∞ and ρ = � > 0 where � is a
positive infinitesimal quantity. Then, we will take the limit � → 0.

So, in an evident notation we will have

P 0 = P 0
∞ + lim

�→0
P 0
� , (35)

with

P 0
∞ = lim

ρ→+∞

1

8π

�

Sρ

Q cos θdθdφ =
1

2
lim

ρ→+∞
Q (36)

where the double integral is calculated on the 2-sphere of radius ρ, Sρ, and

P 0
� = −1

2
Q|ρ=�, (37)

and where

Q ≡ 1

ρ
(A− ρA�)2. (38)

To calculate easily the limit (36), notice that for ρ > λ (and so for ρ → ∞) our
truncated metric is the Schwarzschild metric (4), that is, (5) with (6) and (7). Then
an easy calculation gives for ρ > λ, q having being defined at Eq. (22),

Q = q2
τ2

ρ
�
τ − 2

3
ρ3/2
√
2m

�2/3
, (39)

whose limit for ρ → ∞ , and any attainable τ value, vanishes. Notice that we
cannot put there τ ≥ ψ(ρ = λ), since for this value of ρ the outer spherical shell
of the star has just reached its own singularity and we have no more a classical
object ruled by General Relativity. According to (27) this upper classical limit of τ

is τ = 2
3

λ
3/2

√
2m

≡ τc (see Eq. (22)).

In all, the contribution P 0
∞ to the total P 0 vanishes and we are left with the other

contribution lim�→0 P 0
� . Let us calculate it. First, according to (12) with ε = −1,

we can write Q as

Q = ρ
� 9M

2(τ − ψ)

�2/3��1
ρ
− 1

3

M �

M

�
(τ − ψ) +

2

3
ψ�
�2
. (40)

Then, we are going to calculate P 0 for τ < ψ(0) since, as already commented,
for τ = ψ(0) the inner spherical shell of the star reaches the intrinsic singularity and
full General Relativity is no more valid. But, according to (27), ψ(ρ) is a growing
function of ρ, which means that in (40) τ < ψ(ρ), ∀ρ. Thus, in order to calculate
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limρ→0 Q, we only have to study how the functions M and M �, present in (40),
behave in this limit. To begin with, let us assume that in (26) we have α �= m. In
such a case, having in mind (26) for ρ < λ, the limiting behaviour of M and M �

when ρ → 0 is

M → m− α �= 0, M � → 6α

λ2
ρ. (41)

From this we can easily see that there is a unique term in Q, Eq. (40), the first
one, which diverges as 1/ρ when ρ → 0. All in all, in (35), the first summand,
P 0
∞, vanishes, while the limit when � → 0 of the second one, P 0

� , of our “truncated
matched metric” when α �= m diverges. In all, P 0 diverges, which makes implausible
the existence in Nature of the corresponding metric: have in mind that this metric
corresponds initially to a regular finite physical system, more specifically to a finite
self gravitating mass before reaching the last collapse stages, a gravitating mass
that by no means should exhibit an infinite intrinsic energy.

Furthermore, in the parlance of Ref. 4, the “truncated matched metric” (α �= m)
would be non “creatable” because of the non vanishing value of its intrinsic energy.

Contrarily to this, following the precedent reasoning in the present section, it is
straightforward to see that the “truncated matched metric” with α = m, that we
will call henceforth the “simple matching metric”, has a vanishing intrinsic energy,
P 0, and so a finite and constant one, that by itself would not be incompatible with
the existence in Nature of the α = m metric (differently to the case α �= m with, as
we have seen, a divergent P 0). Then, because of this vanishing, it could be a metric
candidate to be quantically creatable from “nothing”.44,45

The functions M(ρ) and ψ(ρ) for the “simple matching metric” with α = m are
represented in Figure 2. We can see that these two functions, τ(ρ) and ψ(ρ), are
both non-decreasing functions, which according to (13) leads to inequality τ(ρ) >
ψ(ρ), ∀ρ, that is, in this case, the vanishing of A� would happen after the time
singularity which is non sense. Notice that this is a particular case of what was
already mentioned in the paragraph following Eq. (29).

For completeness we give here the mass density function µ(τ, ρ) for this “simple
matching metric”. First, let us introduce the dimensionless variables

t ≡ τ

m
, x ≡ ρ

λ
, (42)

and the dimensionless parameterf

ξ =
λ

2m
. (43)

Substituting (26) and (27) for ρ < λ and α = m in (10), the dust density

fSee Ref. 23 for the role that this parameter plays in connection with a closely related collapse
situation.
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Fig. 2. The functions M(ρ) (top) and ψ(ρ) (bottom) in the case of the simple (α = m) matching
metric for a marginally bound dust collapse model. Their first and second derivatives are continuous
across the matching surface {Σ : ρ = λ}, ensuring the natural fulfillment of the Lichnerowicz
matching conditions across Σ. Normalized variable, ρ

λ , and normalized functions, M
m and Ψ ≡

3
2

√
2m

λ3/2 ψ, are used.

becomes in this case:

µ(t, x) =
2

πm2

(x2 − 1)(x− 1)
�
ξ3/2p(x)− 2t

���
ξ3/2p(x)− 2t

�
3(x2 − 1)(x− 1) + 2ξ3/2x(x4 − 3x2 + 3)

�

(44)
where, for convenience, we have denoted

p(x) ≡ x2 + 2x− 1

3
. (45)

UsingMathematica software, it is easy to study the behaviour of the mass density
function given by Eq. (44), as well as the density profiles curves given by µ(τb, ρ) at
any fixed time before the essential singularity time of the ρ-shell, τb < ψ(ρ). This
have been carried out for ξ = 2, 20, 200, 2000, .... All the graphics show that, for
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any τb, the density profile is finite at the center, monotony decreasing for increasing
ρ ∈ [0,λ], and such that

lim
ρ→λ

µ(τb, ρ) = 0 ∀τb < ψ(ρ). (46)

See, in particular, the specific case represented in Fig, 3, where y ≡ πm2µ/2.

!"# !"$ !"% !"& '"!
!

!"!!'

!"!!#

!"!!(

!"!!$

!"!!)

!"!!%

"

Fig. 3. Density profiles of the simple matching metric for ξ = 4. The upper (black), middle (red)
and lower (blue) lines, correspond to t = −5, t = −10 and t = −20, value of t time, respectively.

Furthermore, it is easy to verify, following a similar way, that the generic match-
ing metric has also a vanishing intrinsic energy, P 0, provided that we fit the coeffi-
cients Mk in (14) such that the resulting M(ρ) series expansion begins at least with
the quadratic power of ρ.

Notice that there is no contradiction between the above P 0 vanishing and the
well known result P 0 = m for any spherical metric smoothly matched to the
Schwarzschild outer metric in static coordinates, since we use here intrinsic co-
ordinates (see Sec. 7 for further discussions).

Now, a few words about the uniqueness of the defined intrinsic coordinates, in
relation to the freedom gauge, ρ → ρ̄(ρ), mentioned at the penultimate paragraph
of Sec. 2. Such freedom should be constrained such that, fast enough, ρ̄ → ∞ when
ρ → ∞ and ρ̄ → 0 when ρ → 0, in order to preserve the finite and stationary
character of the intrinsic energy in the new coordinate ρ̄. Further, the function ρ̄(ρ)
should be C1 class in order to preserve the matching Lichnerowicz conditions.

6.2. Calculating the intrinsic energy of the Oppenheimer-Snyder

metric

To finish the present section, let us now show that the Oppenheimer-Snyder (O-S)
metric studied in Sec. 4 has a non finite and not constant, and so a non vanishing
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value for its intrinsic energy, differently to our “simple matching metric” (α =
m). The O-S metric would be, then, a non quantum “creatable” metric. We point
out here this creativiness question only to remark how great can be the difference
between metrics that do not fulfill the same matching conditions, despite the fact
that all them fulfill the same evolving differential equations and share very similar
sources.

The first thing to be noticed in order to calculate P 0, in the O-S case, is that now
the integrand in the 3-volume integral of (33) is no more regular every where (besides
the intrinsic singularity at τ = ψ(ρ)), since as already remarked this metric does
not match continously through the 3-surface ρ = λ. More specifically, the function
A� is discontinuous at ρ = λ according to (20).

Then, similarly to what has been done in the case of the “simple matching
metric”, we will cast the 3-volume integral in (33) to a 2-surface integral on the
appropriate boundary, although now this boundary is made out of four 2-surfaces:
the ρ → ∞ and the ρ → 0, plus two more ones, ρ = λ + � and ρ = λ − �, with
� → 0 (� > 0). Therefore P 0 will be the sum of four different limit contributions,
from four 2-surface integrals, that in an evident notation can be written as P 0

∞, P 0
� ,

P 0
λ+�

, P 0
λ−�

.
The first contribution P 0

∞ vanishes again, since for ρ > λ (and then for ρ → ∞)
the O-S metric becomes the exterior Schwarzschild metric, like in the precedent case
of the “simple matching metric”, and so, like in this case, we have P 0

∞ = 0.
The second contribution, P 0

� , vanishes too, since according to (19), for ρ < λ
(and so for ρ = � too), the corresponding A function is linear in ρ, which means that

Q in (38) vanishes identically, except for τ = 2
3

λ
3/2

√
2m

≡ τc. But, for the O-S metric,
τc is the time of the simultaneous collapse, such that we only have to consider times
τ < τc if we want to remain in the classical frame of General Relativity.

Then, we are left with the remaining contributions coming from P 0
λ+�

and P 0
λ−�

,
that is

P 0 = lim
�→0

(P 0
λ+� + P 0

λ−�) =
1

2
lim
�→0

(Q|λ+� −Q|λ−�) ≡
1

2
[Q]

Σ
(47)

Having in mind (38) and using the fact that A is continuous through ρ = λ, we
obtain

P 0 =
�λ
2
[A�2]

Σ
−A(τ, ρ = λ)[A�]

Σ

�
, (48)

and using (20) and (23) one finally obtains

P 0 =
q2

2λ

τ2

(τ − τc)2/3
, (49)

for τ < τc, as we have explained before.
Thus, for the O-S metric, the intrinsic energy P 0 does not vanish. Further, it

depends on τ and grows without limit when τ approaches τc. These last properties
do not seem good news for the physical character of the O-S metric, since this is the
asymptotically Minkowskian metric of a finite system (m and λ are finite) which
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remains isolated, neither absorbing, nor emitting, gravitational or electromagnetic
radiation, and further without accreting or expelling any matter. Actually, because
of these characteristics, the intrinsic P 0 value for the O-S metric would be expected
to be finite and to remain constant. This is just what happens to our “simple
matching metric” for instance, its intrinsic P 0 being zero. In this way, the physical
character of this last metric would be enhanced. Therefore, and according to our
point of view, the O-S metric would not be a good metric candidate to actually exist
in Nature, but the “simple matching metric” could in principle be such a candidate.

Whatever could it be, and in another words, in the present paper, we have
assumed both, the Lichnerowicz matching conditions and the existence of a finite
stationary intrinsic energy, and we have explored the consequences of these two
assumptions on the corresponding metrics of our LTB metric family. Obviously, the
goodness of the metric solutions found in this way rely on the goodness of these, in
any case, interesting assumptions.

7. Discussion

In the book by Hawking and Ellis,46 p. 58, the authors assume that a suitable
space-time would be represented by a C2 class differentiable manifold in accordance
with a common point of view on the subject (see details in Ref. 1). But at the same
time, those authors reduce the importance of the assumption made by making the
following comment “In fact, the order of differentiability of the metric is probably
not physically significant. Since one can never measure the metric exactly, ...”.

However, the results of our calculations in the present paper show that the con-
sequences of imposing the Lichnerowicz matching conditions are far of having minor
consequences. On the contrary, imposing them we have passed from the known O-
S metric, that does not satisfy these conditions, to another metric, “the simple
matching metric”, sensibly different either locally or globally. Thus, for instance,
this “simple matching metric” has a vanishing intrinsic energy, P 0, while P 0 for
the O-S metric does not vanish, depending on time τ and growing up indefinitely
when τ approaches the essential singularity. As commented at the end of the pre-
vious section, and letting aside the rough assumption of an stellar collapse with an
everywhere vanishing pressure, this could make the existence in Nature of the O-S
metric rather implausible. However, this possible difficulty would not be present in
the case of the ‘simple matching metric” since it has a finite and constant intrinsic
energy (more specifically, a vanishing one).

The concept of the energy P 0 of a metric, as derived from an energy momen-
tum complex (the Weinberg one in our case), is not always considered a physical
quantity, but is always considered as such for asymptotic Minkowskian metrics,
in the appropriated coordinates. All the metrics studied in the present paper are
asymptotic Minkowskian metrics, in particular the “simple matching metric” and
the O-S ones. So, in our case, P 0, although coordinate dependent (as it could not
otherwise be), should be considered in principle as some kind of physical energy in
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some precise sense. As it is well known, for asymptotic Minkowskian metrics, P 0,
when calculated in asymptotic Minkowskian coordinates, is the time component of a
Minkowskian linear 4-momentum vector. However, what we have calculated here is
the intrinsic value of P 0 which, by definition, is not calculated in merely asymptotic
Minkowskian coordinates, but in intrinsic coordinates: the spherical symmetrical co-
ordinates associated to a congruence of everywhere free falling observers, comoving
with the infalling pressureless matter, asymptotically Minkowskian and at rest at
the 3-space infinity. As a result, the intrinsic value of P 0 is no more the time com-
ponent of a Minkowski 4-vector. But this does not change the fact that this intrinsic
energy remains a total conserved quantity whose different parts, the relativistic ki-
netic energy of the matter and the gravity contribution, enter in a mutual balance.
This kind of balance is constitutive of the definition of total energy, either in the
present case or in another similar one of the rest of classical physics. Here the bal-
ance is ensured by the conservation of the (Weinberg) energy-momentum complex,
that is by the vanishing of its ordinary divergence. In all, our intrinsic energy P 0

is a physical energy, in the above intrinsic coordinates, that as such should remain
finite and constant for any metric whose source be an isolated, finite, regular, mass
distribution, as it is initially the kind of mass distributions considered in the present
paper. See again the penultimate paragraph of subsection 6.2 in relation to this.

Some more comments on the physical meaning of the metric energy and intrinsic
metric: in order that we can recover for the energy defined in this way the usual
properties of the energy of a non-gravitational system, we should use appropriate
coordinate systems among all the arbitrary systems of the general relativity. First,
these appropriate coordinates should be “realized with real bodies”, that is, “the
triple of space coordinates x1, x2, x3, can be any quantities defining the position of
bodies in space, and the time coordinate x0 can be defined by an arbitrary running
clock” (see Landau and Lifshitz, The theory of classical fields, Pergamon Press,
1971, epigraph 84). Further, the resulting coordinates must be well adapted to the
asymptotic Minkowskian character of the metric if such character were the case.

Even with these constraints, many different physically meaningful coordinate
systems can exist, to each one corresponding a different value of the above defined
metric energy, this difference in the values being in accordance with what already
happens in the absence of any gravitational field. Can, then, Gauss coordinates
(that is, coordinates in which g00 = −1, g0i = 0) be one of these meaningful coordi-
nate systems? Yes, they can: to begin with they are realized with real bodies, but
besides it they are particularly suitable coordinates, the reason being the following
one: the defined energy of the gravitational field and its source is, as a 3-volume
integral, the addition of many (actually infinite in number) elementary energy con-
tributions, all them taken in the same time coordinate. But in general, this time
is not a “synchronous time” (see again the above epigraph 84), so that we can be
adding non simultaneous contributions in order to calculate the total energy, which
is not a convenient situation. Needless to say that this problem is no present in non-
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gravitational systems, but it is neither present in presence of gravitation if we take
Gauss coordinates, since in such a case the time is synchronized. Thus, in Gauss co-
ordinates we recover the behavior of the defined energy in non-gravitating systems,
that is, that the total energy becomes the addition of its simultaneous elementary
contributions.

Then, what about our intrinsic energy? Is it a physical value of our defined
energy? To begin with, it is calculated in Gauss coordinates, which as we just have
seen are particularly suitable coordinates to produce a physical energy value. But in
accordance with its denomination, “intrinsic”, and trying to generalize what could
be call intrinsic energy of a system of free particles in special relativity, we want an
energy value which be due to the metric itself, without the mentioned “fictitious”
partial contributions, and without other partial contributions raised by observers
not belonging to our measured systems (like, in our case, static external observes,
instead of observers tied to source matter freely falling dawn). This is why the
particular Gauss coordinates used in the definition of our intrinsic energy are, in
the case of the considered metrics, co-moving with the source matter, adapted to the
asymptotically Minkowskian character, and to the spherical symmetry, and at rest
at the 3-space infinity, with respect to ordinary static Schwarzschild coordinates.

The just above definition of intrinsic coordinates, for the simple metrics con-
sidered in the present paper, is a particular case of a larger, non-unique, intrinsic
coordinate definition given in Ref. 3.

Now, before finishing the present section, in according with what has been men-
tioned at the Introduction, it is known that the O-S metric provides important
information when it is taken as a test-bed in numerical relativity. In our opinion,
the well matched metrics in the present paper can play a similar role even better,
since now all the initial conditions for the numerical integration of the Einstein
equations will be continuous functions everywhere (out of the essential singular-
ity, of course), and more specifically across the matching surface. In principle, such
properties could avoid spurious oscillations due to the Gibbs phenomena (see, for
instance, Ref. 47) making the calculations more robust.

To finish this section, we find that our present work allows us to select some
solutions mathematically and physically significant from a large family of metric
solutions of Einstein field equations, i.e., the pressureless LTB solutions for a fi-
nite mass. The tentative selection criterium is double: fulfillment of smooth enough
matching conditions, and asking for a finite, constant value of the corresponding
intrinsic energy.
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Appendix A. Lichnerowicz matching conditions and dust collapse

For the subclass of the LTB family of dust metrics given by (5), the Lichnerowicz
matching conditions guarantee that the metric coefficients A and A� are function of
class C1, by imposing the nullity of the following Hadamard discontinuities across
the matching 3-surface {Σ : ρ = λ}:

[A]
Σ
= [A�]

Σ
= [A��]

Σ
= 0. (A.1)

from which the new equalities [Ȧ]
Σ
= [Ȧ�]

Σ
= 0 follow.

This appendix is devoted to establish the following result:
Let it be a LTB metric (5) describing a spherically symmetric dust collapse in

parabolic evolution and let us consider the matching with the exterior metric (4).
The Lichnerowicz matching conditions (A.1) are satisfied on the matching surface
{Σ : ρ = λ} if, and only if, the free functions M(ρ) and ψ(ρ) (providing the function
A(τ, ρ) from (6)) and their derivatives are subject to the following conditions:

[M ]
Σ
= [ψ]

Σ
= [M �]

Σ
= [ψ�]

Σ
= 0, (A.2)

and

[M ��]
Σ
=

3

2
ε
�2M

A

�3/2

|Σ
[ψ��]

Σ
. (A.3)

where the proportionality factor between the discontinuities of the second deriva-
tives in (A.3) is calculated on Σ, by putting M(λ) = m and A(τ,λ) =
3

�
9
2m[τ − ψ(λ)]2, with ψ(λ) = 2

3
λ
3/2

√
2m

(see Eq. (7)).
In order to prove this result, let us write the first derivatives of the function A,

Ȧ = ε

�
2M

A
, (A.4)

A� =
1

3

M �

M
A− ε

�
2M

A
ψ�, (A.5)

and express the second derivatives in this convenient way:

Ä = −M

A2
, (A.6)

Ȧ� = ε
2

3

M �
√
2M

1√
A

+
M

A2
ψ�, (A.7)

A�� =
1

3

�M ��

M
A− M �2

M2
A+

M �

M
A�

�
− Ȧ� ψ� − Ȧψ��. (A.8)

Then, from Eqs. (6) and (A.4) we have:

[A] = [Ȧ] = 0 ⇐⇒ [M ] = [ψ] = 0, (A.9)

where, from now on, the Hadamard discontinuities will be written without subscript.
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On the other hand, from Eqs. (A.5) and (A.7), taking into account (A.4) and
(A.9) the following relations must be satisfied:

[A�] =
1

3

A

M
[M �]− ε

�
2M

A
[ψ�], (A.10)

[Ȧ�] = ε
2

3

1√
2MA

[M �] +
M

A2
[ψ�]. (A.11)

The homogeneous linear system [A�] = 0 and [Ȧ�] = 0 in the two unknown [M �]
and [ψ�] has non vanishing determinant 1/A �= 0, and then, its sole solution is the
trivial one, [M �] = [ψ�] = 0. Consequently:

[A�] = [Ȧ�] = 0 ⇐⇒ [M �] = [ψ�] = 0. (A.12)

Now, from Eq. (A.8), and taking into account that (A.9) and (A.12) ensures that M
and ψ are function of class C1 in the whole domain of the used Gauss coordinates,
we obtain for the discontinuities of the second derivatives the relation:

[A��] =
1

3

A

M
[M ��]− ε

�
2M

A
[ψ��], (A.13)

and the condition given by Eq. (A.3) follows:

[A��] = 0 ⇐⇒ [M ��] =
3

2
ε
�2M

A

�3/2

|Σ
[ψ��], (A.14)

where we must take ε = 1 or ε = −1 for a expanding or collapsing scenario,
respectively. Further, since (A.14) must remain valid for any value of τ (present in
the A function), the only way that (A.14) can be fulfilled is having both [M ��] =
[ψ��] = 0.

By construction, for the “generic matching metric” analyzed in Sec. 4, one has
conveniently taken [M ��] = [ψ��] = 0, ensuring directly from (A.13) that [A��] = 0.

Finally, since [A] = 0, it must be [Ä] = 0, which is consistent with (A.6).

Note.- It is to be remarked that the obtained non-vanishing value of the intrinsic
energy, P 0, of the Oppenheimer-Snyder metric [see Eq. (49)] is bound to the fact
that in the used intrinsic coordinates this metric is not a solution of the Einstein
field equations in the strict sense on the star 2-surface. Actually, after this paper
was published, we noticed that this energy value would become zero, as could be
expected, provided we complete this metric in order to be everywhere a solution of
the Einstein field equations, in the sense of the distributions (the calculation details
will be published elsewhere). However this vanishing result does not remain stable
when we break slightly the original spherical symmetry of the problem. Then, the
conclusions we draw in the published paper from the above non-vanishing of P 0

should perhaps be revised having in mind these last results.
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