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Abstract

As indicated by its title, this work consists of a study of graphene under a constant magnetic field.
In Chapter 1, we start by studying the properties the square and lattice without a magnetic field in

order to become familiarized with their basic properties.
In Chapter 2, we apply a constant magnetic field to the systems studied in Chapter 1 and determine

its wavefunctions. The expressions we arrive at are approximations, and as such, we compare them
with numerical results provenient from diagonalization of the tight-binding Hamiltonian.
Chapter 3 introduces the formalism necessary to calculate the conductivity of a general lattice,

culminating in Kubo’s formula, which will become the equation from which the conductivity will be
calculated. Following this, on Chapter 4, we apply the results obtained in Chapter 2 in order to
determine the linear conductivity of graphene. After doing so, we compare the obtained expressions
against numerical results obtained by the software KITE, which uses the Kernel Polynomial Method to
obtain its results faster than other programs. As such, a small introduction to KPM using the density
of states as an example is also presented.





Contents

1 Magnetic Field in a Crystal 13
1.1 Magnetic Field in a Tight-Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.1 Tight-Binding Model in a Periodic Lattice . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Magnetic Field and Peierls Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Square Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 No Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Constant Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.4 Continuum Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.5 Magnetic Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Open Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4 Determining the Phases for a General Lattice . . . . . . . . . . . . . . . . . . . . . . . 25
1.4.1 The Vector Potential A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.2 Relation to the Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.4.3 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Graphene 31
2.1 Graphene without Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Peierls Substitution in Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Wavefunctions and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Minimal Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3.1 Expansion of the Peierls Phase to First Order . . . . . . . . . . . . . . . . . . . 40
2.4 Numerical Results and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.2 Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.3 Open Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 General Response Theory 49
3.1 Average of an operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Schrödinger Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.2 Interaction Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.1.3 Kubo Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Current Density and Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Time-dependent Electric Field in the Tight-Binding Hamiltonian . . . . . . . . . . . . 53

3.3.1 Length Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Velocity Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



João Guerra

3.4 Current Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 First-order Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Transport in Graphene 59
4.1 Conductivity in the Length Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Equivalence Between Gauges for Periodic Boundaries . . . . . . . . . . . . . . . . . . . 60
4.3 Graphene’s Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Calculation of σxx(ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Kernel Polynomial Method - KPM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Chebyshev Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Expansion of a function in a series of Chebyshev Polynomials . . . . . . . . . . 63
4.4.3 Evaluation of Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.4 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4.4.1 Dirichlet Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4.4.2 Fejér Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4.3 Jackson Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.4.4 Lorentz Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.5 Example - Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 KITE Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Conclusions 75

6 Appendices 77
6.1 Appendix A - Averages of Creation and Annihilation Operators . . . . . . . . . . . . . 77
6.2 Appendix B - Integrals of complex exponentials . . . . . . . . . . . . . . . . . . . . . . 79
6.3 Appendix C - Calculation of ∇×A . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10



Introduction

Since the first time it was isolated in 2004 [1], graphene has been shown to possess a variety of optical
and magneto-optical properties that make it a unique material, leading to an intensive study that
has been conducted in recent years. In particular, one of the fields that has been subject to a lot of
investigation is graphene’s linear and non-linear behavior when an external magnetic field is applied.
Some of the studied phenomena studied include the high non-linear optical conductivity [2, 3, 4, 5],
four-wave mixing [2, 3, 6], Faraday rotation [7, 8, 9, 10], third harmonic generation [6, 4], Kerr effects
[6, 4], fractional quantum Hall effect and magnetoplasmons [7, 11]. These phenomena are all absent or
different from the case when there is no magnetic field applied, which makes the study of graphene’s
linear and non-linear properties study a very promising one.





Chapter 1

Magnetic Field in a Crystal

In this chapter we start by introducing the tight-binding model to describe the electrons’ behavior in
a crystal. We then follow by introducing a magnetic field in the tight-binding description. This will be
applied to the square lattice, where we determine its energy spectrum and wavefunctions, and compare
it with numerical results.

1.1 Magnetic Field in a Tight-Binding Model

In order to study the effects of the magnetic field in a crystal, we must first introduce a model that
describes the electrons in a crystal. After introducing the tight-binding model, we will introduce the
magnetic field through the Peierls substitution.

1.1.1 Tight-Binding Model in a Periodic Lattice

A periodic lattice is generated by the translation of a unit cell. Thus, we can write the position of a
unit cell as

R =
D∑
i=1

miai (1.1.1)

where D is the lattice dimension, {ai} are the basis vectors that generate the lattice, andmi are integer
coefficients.

Inside unit cells, we can have more than one atom, whose positions inside the cell are given by δα
(α is a label that represents the atoms inside the unit cell). With this, we can write the position of
any atom in the lattice as

rα = R+ δα. (1.1.2)

For the 2D case, we write the position of a unit cell as

R = ma1 + na2

where m and n correspond to m1 and m2 of eq.(1.1.1).

Having explained our notation for the positions of atoms in a 2D lattice, we are now ready to
introduce the tight-binding model. A tight-binding model [18], is an approximation made for studying
the dynamics of electrons moving on an atomic lattice. Such model Hamiltonians may arise from
a finite differences approximation of the Schrodinger Hamiltonian, from the hybridization between
electron orbitals of nearby atoms, or even postulated as phenomenological models. At any rate, their
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general form in the Wanier basis (and disregarding electron-electron interactions) is∑
i

ε(ri)|ϕ(ri)〉〈ϕ(ri)| −
∑
i 6=j

t(ri, rj)|ϕ(ri)〉〈ϕ(rj)|,

where ε(ri) are the on-site energies, and t(ri, rj) is the hopping integral, which is associated to the
probability amplitude for the electron to hop between the atoms in position ri and rj . In second
quantization, this looks like

H =
∑
i

ε (ri) c
† (ri) c (ri)− t

∑
〈i,j〉

c† (ri) c (rj) ,

where the usual approximation of nearest neighbor hoppings was considered.

1.1.2 Magnetic Field and Peierls Phase

A magnetic field is introduced in the tight-binding Hamiltonian by adding a phase to the hopping

t (ri, rj)→ t (ri, rj) e
iϕ(ri,rj)

where this phase, known as Peierls phase [12], is defined as

ϕ(ri, rj) =
e

~

rj∫
ri

A(r, t) · dr (1.1.3)

where e is the electron charge and A is the vector potential, which is related to the magnetic field
through its curl

∇×A = B. (1.1.4)

Knowing that
∇× (∇f) = 0

for any function f , we can add a gradient to A without altering the magnetic field. This is called
a Gauge freedom, in the choice of A, and is useful in choosing a vector potential that simplifies the
calculations.

1.2 Square Lattice

Although the focus of this work is the study of graphene, we will start by studying the square lattice.
Due to its simpler structure, the calculations turn out less complex than for graphene, but at the same
time, many of the results and tendencies observed also hold for graphene.
Furthermore, we will focus our discussion on the square lattice with periodic boundary conditions.

The reason to do so is because very large systems with open boundaries are well described by smaller
lattices with periodic boundaries. This point shall also be discussed in the following section when we
compare numerical results for both open and periodic boundaries.

1.2.1 No Magnetic Field

The tight-binding Hamiltonian for the square lattice is

14
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H = −t
L−1∑
m,n=0

c†(m,n)c(m+ 1, n) + c†(m,n)c(m− 1, n) + c†(m,n)c(m,n+ 1) + c†(m,n)c(m,n− 1)

(1.2.1)
when considering hoppings only between nearest-neighbors. In this case, the hopping integral t is the
same for all four neighbors. The periodic boundary conditions are inserted in the Hamiltonian by
making the identifications

c†(m,n) = c†(m+ Lx, n) (1.2.2)

c†(m,n) = c†(m,n+ Ly) (1.2.3)

where Lx and Ly are the periods of the lattice along x and y. The Hamiltonian is invariant by
translations of any lattice vector R = maêx +naêy, where a is the lattice parameter. This means that
the Hamiltonian commutes with the translation operator for such vectors. From this, we can say that
the eigenfunctions of the translation operator will also be the eigenfunctions of the Hamiltonian [13].
These eigenfunctions can be written in single-particle basis as

|ψ(kx, ky)〉 =

L−1∑
n,m=0

ψkx,ky(m,n)|m,n〉 (1.2.4)

where kx and ky can, for now, take any value and

ψkx,ky(m,n) =
1

L
e−ik·r =

1

L
e−ia(kxm+kyn) (1.2.5)

The periodic boundary conditions impose that ψkx,ky(m,n) must have the same value after translations
of Lxa1 and Lya2. Checking for the periodicity along x, we arrive at a constraint for kx:

ψkx,ky(m,n) = ψkx,ky(m+ Lx, n)

e−iakxLx = 1

kx =
2π

Lxa
nx (1.2.6)

where nx is any integer between 0 and Lx − 1. The same result applies to ky when checking for the
periodic conditions in the y direction.

Having obtained the eigenfunctions of the Hamiltonian, we can get an expression for the eigenvalues
by applying the Hamiltonian to the eigenfunctions

E|ψ(kx, ky)〉 = H|ψ(kx, ky)〉 (1.2.7)

which results in

E(kx, ky)|ψ(kx, ky)〉 = −t
[
eiakx + e−iakx + eiaky + e−iaky

]
|ψ(kx, ky)〉

E(kx, ky) = −2t [cos (kxa) + cos (kya)] (1.2.8)

This dispersion relation is plotted in Fig.1.1.
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Figure 1.1: Dispersion relation for the square lattice with periodic boundary conditions. The energy is
written in units of the hopping integral t.

We can now use this result to write the diagonal Hamiltonian

H =
∑
kx,ky

E(kx, ky)|ψ(kx, ky)〉〈ψ(kx, ky)| (1.2.9)

where kx and ky go from 0 to 2π/a as seen before. In second quantization, this Hamiltonian is written
as

H =
∑
kx,ky

E(kx, ky)c
†(kx, ky)c(kx, ky)

where c†(kx, ky) and c(kx, ky) are given by

c†(kx, ky) =
1

L

∑
n,m

eia(kxm+kyn)c†(m,n) (1.2.10)

c(kx, ky) =
1

L

∑
n,m

e−ia(kxm+kyn)c(m,n). (1.2.11)

Conversely, we can also write the creation and annihilation operators in real space as a sum of the
ones for k-space:

c†(m,n) =
1

L

∑
kx,ky

e−ik·rc†(kx, ky) (1.2.12)

c(m,n) =
1

L

∑
kx,ky

eik·rc(kx, ky) (1.2.13)

We can now easily diagonalize a tight-binding Hamiltonian with translation symmetry by replacing
the creation and annihilation operators in position basis by their expressions in eqs.1.2.12 and 1.2.13.
This will be helpful when working in graphene, as its Hamiltonian is also invariant by translations of
lattice vectors.

16



1.2 Square Lattice Chapter 1 Magnetic Field in a Crystal

1.2.2 Constant Magnetic Field

A magnetic field is introduced in a tight-binding Hamiltonian through the following substitution

t(ri, rj)→ eiϕ(ri,rj)t(ri, rj)

where ϕ(ri, rj) is called the Peierls phase. This phase is given by

ϕ(ri, rj) =
e

~

∫ rj

ri

A(r) · dr

where e is the electron charge and A(r) the vector potential that describes the magnetic field.

For the case of the square lattice, the Peierls phases between nearest neighbors are

ϕ(ri, ri ± aêx) =
e

~

ri±aêx∫
ri

Ax · dx (1.2.14)

ϕ(ri, ri ± aêy) =
e

~

ri±aêy∫
ri

Ay · dy (1.2.15)

By choosing a gauge such that one of the components of A is zero, two of the four phases will become
zero. As such, we make Ay = 0. From this choice, we have that the vector potential that gives us a
constant magnetic field on the z direction is

A = −Byêx (1.2.16)

which can be verified by evaluating its curl

∇×A = Bêz. (1.2.17)

Having chosen A, we can now replace it in eq.(1.2.14) and calculate the two non-zero Peierls phases:

ϕ(ri, ri ± aêx) =
e

~
B

(m±1)a∫
ma

ydx = ± e
~
Bay (1.2.18)

Because we are working on a discrete lattice, we can write the coordinate y as na. This allows us to
write the phase in terms of the flux on a unitary cell φ = Ba2, the quantum of flux φ0 = h

e , and the
coordinate n.

ϕ(ri, ri ± aêx) = ±2π
φ

φ0
n (1.2.19)

Looking at the Hamiltonian with the Peierls phase, it is clear that it has a different periodicity than
that of the lattice.

H = −t
∑
m,n

e
2πi φ

φ0
n
c†(m,n)c(m+ 1, n) + e

−2πi φ
φ0
n
c†(m,n)c(m− 1, n)

+ c†(m,n)c(m,n+ 1) + c†(m,n)c(m,n− 1)

As the phase depends on n, the Hamiltonian will no longer have translation symmetry in general. If
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we want to impose periodic boundary conditions, we have to constrain the flux to specific values.

1.2.3 Boundary Conditions

When imposing periodic boundary conditions, the flux will be constrained to certain values, as the
Peierls phase must be the same after a translation of the lattice period. Looking at the expression for
the phases, we can outright see that they do not depend on x, meaning that the boundary conditions
along this direction do not impose any constraints on the phase. Imposing boundary conditions along
y, we get that

ϕ(ri, rj) = ϕ(ri, rj + Lya) + 2πM (1.2.20)

where M is any integer. After inputting the expression for the phases, this equation becomes

2π
φ

φ0
Ly = 2πM ⇐⇒ φ

φ0
=
M

Ly
(1.2.21)

This means that the only allowed values of the flux for the square lattice with periodic boundary
conditions are multiples of φ0/Ly.

Going back to the Hamiltonian, and introducing the phases, we have

H = −t
∑
m,n

e
2πi φ

φ0
n
c†(m,n)c(m+ 1, n) + e

−2πi φ
φ0
n
c†(m,n)c(m− 1, n)

+ c†(m,n)c(m,n+ 1) + c†(m,n)c(m,n− 1)

At this point, we would want to do the same as in the case without magnetic field: write the creation
and annihilation operators in momentum space and find the dispersion relation. However, due to the
dependence of the phases in n, there is no translation symmetry along the y direction, meaning that
the solutions studied earlier do not apply. However, as there is no dependence on x in the phase, the
translation symmetry along this direction is not broken. This allows for the expansion of the creation
and annihilation operators in terms of plane waves along x. After simplifying, we obtain

H = −t
∑
kx,n

2 cos

(
kxa+ 2π

φ

φ0
n

)
c†(kx, n)c(kx, n)+c†(kx, n)c(kx, n+1)+c†(kx, n)c(kx, n−1) (1.2.22)

As this Hamiltonian is diagonal in kx, we can write it by blocks

H =
∑
kx

c†(kx)H(kx)c(kx) (1.2.23)

where c†(kx) =
(
c†(kx, 0) . . . c†(kx, L− 1)

)
, c(kx) is its Hermitian conjugate, and H(kx) is given

by

18



1.2 Square Lattice Chapter 1 Magnetic Field in a Crystal

−t



2 cos(kxa+ 2π φ
φo

) 1 0 . . . 1

1 2 cos(kxa+ 4π φ
φo

) 1 . . . 0

0 1
. . .

...
...

...
... . . . 2 cos(kxa+ 2π(L− 1) φφo ) 1

1 0 . . . 1 2 cos(kxa+ 2πL φ
φo

)


(1.2.24)

Notice the 1 in the positions (1, L) and (L, 1) of the matrix. These entries represent the hoppings
between the sites 0 and L−1, assuring the periodic boundaries along y. For the case of open boundaries
in the y direction, the result is very similar to this one. The differences are that the flux does not have
any restriction on the values it can take, and the entries (1, L) and (L, 1) of H(kx) are 0.

1.2.4 Continuum Approximation

As the Hamiltonian is diagonal in kx, the eigenvectors of the Hamiltonian are going to be some linear
combination of the position states |n〉

|φλ〉 =
∑
n

αλ(kx, n)|kx, n〉 (1.2.25)

where λ is a label for the associated eigenvalue. In order to determine these α coefficients, we use
eq.(1.2.7), obtaining

Eλαλ(kx, n) = −t
[
2 cos

(
2π

φ

φ0
n+ kxa

)
αλ(kx, n) + αλ(kx, n− 1) + αλ(kx, n+ 1)

]
(1.2.26)

This result is not one equation, but actually a set of L equations, one for each value of n. As it proves
to be impossible to find a solution to this system, we approximate α to a continuum function (which is
a valid approximation for a very large L). This makes it possible to expand α(kx, n+1) and α(kx, n−1)

in a power series of n around α(kx, n)

αλ(kx, n± 1) = αλ(kx, n)± dαλ
dn

(kx, n) +
1

2

d2αλ
dn2

(kx, n) (1.2.27)

In this case, we expand to second order because the first order terms will cancel. Replacing in
eq.(1.2.26), we obtain a differential equation for αλ(kx, n):

Eλαλ(kx, n) = −t
[(

2 cos

(
2π

φ

φ0
n+ kxa

)
+ 2

)
αλ(kx, n) +

d2αλ
dn2

]
(1.2.28)

Due to the co-sine term, we cannot find an exact solution to this differential equation. However, notice
that this equation is the wavefunction equation for a particle in a potential given by

V (kx, n) = −2t

[
cos

(
2π

φ

φ0
n+ kxa

)
+ 1

]
(1.2.29)

and mass − ~2
2ta2

. As we cannot find the exact solution, we can approximate the potential around its
minimum and determine approximated wavefunctions for the lowest energies of the system. Defining
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n′ as the value of n where the potential is minimum, we have

2π
φ

φ0
n′ + kxa = 2πq (1.2.30)

where q is any integer. Using the expressions we already found for kx (eq.(1.2.6)) and φ/φ0 (eq.(1.2.21)),
n′ becomes

n′ =
1

M
(Lq − nx) (1.2.31)

From this expression, we can learn some information about this system. As n varies between 0 and
L−1, q has to be an integer between 0 and M −1. This is so because when q = M , the value of n′ will
have an added factor of L compared to when q = 0, and because of the periodic boundary conditions,
those two points would be the same. This means that the number of minima of the potential, which
is the number of values q can take, will be equal to M . Furthermore, the variation of kx induces a
translation of the minima.

With an expression for the minima, we can expand the co-sine around it, yielding

cos

(
2π

φ

φ0
n+ kxa

)
≈ 1− 1

2

(
a

lB

)4

(n− n′)2 (1.2.32)

where lB is called the magnetic length and its expression is given by

lB =

√
φ0a2

2πφ
=

√
La2

2πM
(1.2.33)

Going back to the differential equation, replacing the expansion of the co-sine, we have

−td
2αλ
dn2

+ t

(
a

lB

)4

(n− n′)2αλ(kx, n) = (Eλ + 4t)αλ(kx, n) (1.2.34)

which has a striking resemblance with the equation for the quantum harmonic oscillator. Applying a
change of variable to n

n→ x = n− n′

we obtain exactly that:

−td
2αλ
dx2

+ t

(
a

lB

)4

x2αλ(kx, x) = (Eλ + 4t)αλ(kx, x) (1.2.35)

We now have transformed the problem of finding the coefficients of the wave functions into an harmonic
oscillator problem. The solutions for this equation can be found in any introductory quantum mechanics
textbook, such as [12]. In order to obtain the solutions for this problem, we write the solution for the
quantum harmonic oscillator, but with the coefficients of the above equation

m→ ~2a2

2t

ω → 2t

~

(
a

lB

)2

obtaining
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α0(kx, n) =

(
1

π

(
a

lB

)2
) 1

4

e
− 1

2
a2

l2
B

(n−n′)2

(1.2.36)

for the lowest energy level. The coefficients for higher energy levels can be obtained from this one as

αλ(kx, n) =
1√
λ!

1√
2λ

[
a

lB
n− lB

a

d

dn

]λ
α0(kx, n) (1.2.37)

We can now analyze how α0(kx, n) behaves as the system’s parameters vary. Looking at the form of
its expression, α0(kx, n) is a Gaussian centered on n′ and σ = (lB/a)2. From eq.(1.2.33) we see that
l2B is inversely proportional to the flux φ, which means that increasing it will decrease the width of the
Gaussian, causing it to be more dense around n′.

From eq.(1.2.35) we can also take the values of the energy associated with the coefficients. Knowing
that the energy of a quantum harmonic oscillator is quantized as

Eλ = ~ω
(
λ+

1

2

)
(1.2.38)

where λ is a non-negative integer. Identifying the second term of eq.(1.2.35) with it, we get

Eλ =
4πφ

φ0

(
λ+

1

2

)
t− 4t (1.2.39)

As with the α coefficients, there is also a dependence on φ in the energy. In this case, for higher values
of the flux, the spacing between energy levels will become larger.

With this, we have reached an approximation for the lowest energy values of the square lattice with
a magnetic field and its respective wavefunctions.

1.2.5 Magnetic Cell

In order to better understand what happens to the electrons on a periodic lattice when we increase
the magnetic field, we can introduce the concept of magnetic cell. Writing the flux as

φ

φ0
=
M

L
(1.2.40)

where L is the period of the lattice, made the same in both directions, and M divides L and is greater
than one, we call a cell with size L′ = L/M the magnetic cell. Using this definition of magnetic cell,
we can rewrite the coordinate n as

n→ n+mL′ (1.2.41)

where m labels the magnetic cells that constitute a period of the lattice and n is now between 0 and
L′− 1. This introduces a new dimension in the problem, which, as we will see, will end up simplifying
it. Using this definition on the Hamiltonian, we get

H = −t
∑
kx

M−1∑
m=0

L′−1∑
n=0

V (kx,m, n)c†(kx,m, n)c(kx,m, n)

+ c†(kx,m, n)c(kx,m, n+ 1) + c†(kx,m, n)c(kx,m, n− 1)

+ c†(kx,m, 0)c(kx,m− 1, L′ − 1) + c†(kx,m,L
′ − 1)c(kx,m+ 1, 0) (1.2.42)
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where
V (kx,m, n) = 2 cos

(
2π

φ

φ0

(
n+mL′

)
+ kxa

)
(1.2.43)

The last two terms of the Hamiltonian represent the hoppings between the last atom of a magnetic
cell and the first of the next one. We can simplify this Hamiltonian by noticing that V (k,m, n) does
not actually depend on m

V (kx,m, n) = 2 cos

(
2π
M

L

(
m
L

M
+ n

)
+ kxa

)
= 2 cos

(
2πm+ 2π

φ

φ0
n+ kxa

)
= 2 cos

(
2π

φ

φ0
n+ kxa

)
(1.2.44)

This makes the Hamiltonian invariant by translations along m. Expanding the operators as we did in
eqs.1.2.12 and 1.2.13 but now for m, we obtain

H = −t
∑
kxkm

L′−1∑
n=0

V (kx, n)c†(kx, km, n)c(kx, km, n)

+ c†(kx, km, n)c(kx, km, n+ 1) + c†(kx, km, n)c(kx, km, n− 1)

+ e−ikmaL
′
c†(kx, km, 0)c(kx, km, L

′ − 1) + eikmaL
′
c†(kx, km, L

′ − 1)c(kx, km, 0) (1.2.45)

We can write this Hamiltonian similarly to eq.(1.2.23)

H =
∑
kx,km

c†(kx, km)H(kx, km)c(kx, km) (1.2.46)

where
c(kx, km) =

(
c(kx, km, 0) . . . c(kx, km, L

′ − 1)
)

(1.2.47)

c†(kx, km) is its hermitian conjugate and H(kx, km) is defined as

−t



2 cos(kxa) 1 0 . . . e−ikmaL
′

1 2 cos(kxa+ 2π φ
φ0

) 1 . . . 0

0 1
. . .

...
...

...
... . . . 2 cos(kxa+ 2π(L′ − 2) φφ0 ) 1

eikmaL
′

0 . . . 1 2 cos(kxa+ 2π(L′ − 1) φφ0 )


(1.2.48)

which has a very similar form to the one in eq.(1.2.24). By writing the Hamiltonian in this form, the
process of obtaining the eigenvalues is much easier, as we now have to determine the eigenvalues of M
L′ × L′ matrices, instead of a ML′ ×ML′ matrix, which would take M times longer.

As for the wavefunctions, we can write them as

ψλ,kx,km(x, n,m) = eikxxeikmaL
′mψλ,kx,km(n) (1.2.49)

where ψλ,kx,km(n) are the eigenvectors obtained from the diagonalization of the Hamiltonian in 1.2.48.
This means that ψλ,kx,km(n) will be the same for both magnetic cells, which is equivalent to saying
that the wavefunctions for the L × L lattice will be the wavefunctions for the L′ × L′ magnetic cell,
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1.3 Numerical Results Chapter 1 Magnetic Field in a Crystal

repeated through all magnetic cells.

1.3 Numerical Results

Having arrived at approximated expressions for the energy and wavefunctions for the square lattice,
we want to know how good our results are. One way to do this is to compute the eigenvalues and
eigenvectors of the Hamiltonian and plot them against the results we obtained. In this section we will
make these comparisons for the energy and wavefunctions, and analyze how they change by varying
the system’s parameters. The numerical results were obtained using Wolfram Mathematica.

1.3.1 Energy

In Fig. 1.2 a), we have plotted eq.(1.2.39) against the eigenvalues of the Hamiltonian in eq.(1.2.24)
for the lowest 31 levels and φ/φ0 = 1/2048. For the range of energies represented, the two sets of
points are very close to one another, which indicates that our approximation holds. We can also see,
however, that for higher energy levels, the two sets of points start growing farther from one another,
which indicates that as we increase the energy, our approximation becomes less efficient. This is to be
expected, as we expanded the potential around its minima, so we naturally have that the lower the
energy, the better the approximation.
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Continuum
Numerical
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a) b)

Figure 1.2: Lowest 31 values for the energy in units of the hopping integral, represented as function
of the energy level λ. The system’s parameters are L = 2048 and φ/φ0 = 1/L for a)
and φ/φ0 = 4/L for b). Red dots represent the eigenvalues calculated through numerical
diagonalization of the Hamiltonian while black ones are the energy values obtained through
eq.(1.2.39).

In Fig.1.2 b) we plotted the same system, but with φ/φ0 = 1/512. We can see here that, as observed
in the previous section, by increasing the magnetic field, the energy difference between energy levels
increases. Also, fixing the level λ, we notice that the approximation in Fig.1.2 b) becomes worse than
the one in a), which means that the quality of the approximation is determined by the energy and not
by the level. So, if we want to obtain many energy levels where our approximation is valid, we just
need to lower the magnetic field (which in turn means increasing the period of the system, seeing as
the lowest allowed value for φ is proportional to 1/L)
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Another important aspect that cannot be seen in Fig.1.2 is the degeneracy of the eigenvalues. As
seen in the previous section, the potential is periodic, meaning that the eigenvalues of the Hamiltonian
will have a degeneracy equal to the number of times the potential repeats itself from 0 to n− 1. Using
the fact that the potential is a co-sine, the number of times it repeats itself will be equal to the number
of minima, which, as calculated earlier, is m = Lφ/φ0. Applying this to Fig.1.2 b), (L = 2048 and
φ/φ0 = 1/512), we see that its eigenvalues are 4-times degenerate, which agrees with the numerical
results obtained.
Having seen the limits of our approximation, we can now plot how the full spectrum of the eigenvalues

of the Hamiltonian varies with the magnetic field. The result is presented in Fig. 1.3 and the resulting
image is known as “Hofstadter Butterfly”. This plot shows us how complex a lattice under a magnetic
field is, which is why we restrict our study to low energies.
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0

2

E
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 t

Figure 1.3: Eigenvalues of a 256×256 square lattice with periodic boundary conditions as function of
m = Lφ/φ0

1.3.2 Wavefunctions

In Fig.1.4, we plot some of the low energy wavefunctions, both from the analytical expression and
from the numerical diagonalization of the Hamiltonian of eq.(1.2.24). As it can be seen, there is an
almost complete overlap between both curves. However, as the energy associated to the wavefunction
increases, differences start to appear between the curves.
Similarly to what we did to the energy, we can see how the wavefunctions change by varying the

magnetic field. The result, shown in Fig. 1.5, is just as foretold when we introduced the concept of
magnetic cell: the wavefunction repeats itself for all the magnetic cells. This is what we see in Fig.,
where for φ/φ0 = 4/L we get that for the lowest energy, we have four points around which there is
a harmonic oscillator behavior. Using the expression for n′, these points are 0, L/4, L/2 and 3L/4,
which is in agreement with the figure.
Additionally, we also plot eq.(1.2.36) in Fig.1.5. As we are representing the wavefunctions for the

lowest energy, we obtain a very good fit, which is why there only appears to be one curve.

1.3.3 Open Boundary Conditions

Up until now, we focused on studying the square lattice with periodic boundary conditions, which is
an approximation for an open system with a very large L. Although we do not have an expression
to describe the energy bands or the wavefunctions of a system with open boundaries, we can use the
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Figure 1.4: Square lattice wavefunctions represented as function of n (the lattice sites along the y
direction) obtained through diagonalization of a 128 × 128 Hamiltonian with φ/φ0 = 1/L
and k = 0 (black) and the analytical solutions obtained through eqs. 1.2.36 and 1.2.37 for
the same parameters (red).

Hamiltonian of eq.(1.2.24) to describe such a system and obtain numerical results. We can see how
these results evolve as we increase the size of the system, and see if they converge to the results obtained
with periodic boundaries.
We will start by plotting the energy as a function of kx. In the case of periodic boundaries, the

energy does not depend on kx, which means that the Landau levels will be constant. However the
same does not happen when the system has open boundaries, as we can see in Fig.1.6. In this figure,
for values of kx close to 0 and 2π, the energy starts to increase for the open boundaries case. Going
back to eq.(1.2.30), we see that these values of kx correspond to wavefunctions centered around the
edges of the lattice. This makes sense, as the states that differ between periodic and open boundaries
description should be the ones near the edges. The increase in energy can be justified with the high
Another quantity that we can analyze in order to study the effect of the open boundaries is the

density of states. In Fig.1.7, we represent the lowest Landau level of the density of states of a square
lattice with open and periodic boundaries. As we increase L, the states that appear far from the peak
start to decrease in amplitude. This means that by increasing L, the density of states of an open
system tends to the one for periodic boundaries.

1.4 Determining the Phases for a General Lattice

In the case of the square lattice, the constraints of periodic boundary conditions on the phases were
determined without problems. This is due to the fact that in the square lattice, the lattice vectors are
orthogonal, and there is only one atom per unit cell. However, for other lattices, this may not be the
case: finding expressions for the phases that can satisfy periodic boundary conditions can become a
troublesome task. With this in mind, we will develop in this section a method through which we can
obtain the Peierls phases for any lattice with periodic boundary conditions.
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Figure 1.5: Wavefunction for the lowest energy level of a square lattice with period L = 1024, kx = 0
and φ/φ0 = 4/L calculated by diagonalization of the Hamiltonian 1.2.24 (black) and by
eq.(1.2.36) (red).
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Figure 1.6: Lowest Landau levels for a square lattice with open boundaries and φ/φ0 = 1/128.

1.4.1 The Vector Potential A

Using the lattice vectors, we can define the reciprocal lattice vectors bi through the orthogonality
relation

ai · bj = 2πδij (1.4.1)

Like the lattice vectors, the reciprocal lattice vectors constitute a complete basis of the space we are
working in (in the 2D case, of the plane). As such, we can write the vector potential A(r) as

A(r) =
∑
i

Ai(r)bi (1.4.2)

As we are studying the case where the magnetic field is constant, this means that the components
of A will depend linearly on r, that is, Ai(r) will be a linear combination of the various components
of r. In particular, we can write r in the reciprocal lattice basis, yielding

A(r) =
∑
ij

(Aijr · bj) bi (1.4.3)

where Aij are coefficients that will determine the magnetic field. We can also write the transpose of
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Figure 1.7: Zoom-in of the density of states of a square lattice on the lowest Landau level with φ/φ0 =
1/4096. The black curve represents periodic boundary conditions, while the other three
are for open boundaries with different sizes. Only one Landau level is shown because,
otherwise, the image would become visually confusing.

A as
AT (r) =

∑
ij

(Aijr · bi) bj .

which has the following property
A(r1) · r2 = AT (r2) · r1.

This property will be very important when determining the constraints on the phases due to periodic
boundaries.

1.4.2 Relation to the Magnetic Field

Let us write A as function of the magnetic field. Starting from

B = ∇×A

and using eq.(1.4.3), for the 2D case, we arrive at

B =
(2π)2

V
(A21 −A12) êz.

where V is the area if a unit cell. Writing B = Bêz, this expression becomes

B =
(2π)2

V
(A21 −A12) (1.4.4)

Fixing the magnetic field, we just need to choose A12 and A21 such that this equality holds. This
means that A11 and A22 can take any value.
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1.4.3 Periodic Boundary Conditions

Let us start by considering the case where there is only one atom per unit cell. As A is linear in r,
the Peierls phase between two points ri and rj becomes

~
e
ϕ(ri, rj) =

rj∫
ri

dr ·A(r) = (rj − ri) ·A
(
ri + rj

2

)
. (1.4.5)

Now, we have to impose the periodic boundary conditions on the phase. Writing the period of the
lattice along the direction an as Ln, the boundary conditions along that dictate that

eiϕ(ri+Lnan,rj+Lnan) = eiϕ(ri,rj)

which is equivalent to

e

~
(rj − ri) ·A (Lnan) = 2πλ (1.4.6)

where λ is some integer. Unwinding the definitions of the position vectors and the vector potential,
this equation becomes

e

~
∑
m,p,q

(
xmj − xmi

)
am · bpApq (Lnan · bq) = 2πλ

e

~
(2π)2

∑
m

(
xmj − xmi

)
AmnLn = 2πλ

e

~
∑
m

(
xmj − xmi

)
2πAmnLn = λ (1.4.7)

As
(
xmj − xmi

)
and Ln are already integers, it should suffice that e

~2πAmn be an integer. However,
as we want to obtain the lowest possible values for Amn, we instead impose that e

~2πAmnLn be an
integer, which is equivalent to writing

Amn =
φ0Mmn

(2π)2Ln
(1.4.8)

whereMmn is a matrix of integers. Using eq.(1.4.4), we can write the values the to which the magnetic
field is constrained:

B =
φ0
V

(
M21

L1
− M12

L2

)
.

Choosing M21 = 0 is a particular choice of gauge (Landau gauge), which leads to

φ

φ0
=
M12

L1
(1.4.9)

where φ = BV is the flux through a unit cell. As M12 is any integer, this result agrees with the one
we obtained earlier for the square lattice.

Let us now study how this solution fits our problem when we have more than one atom per unit cell.
Rewriting eq.(1.4.6) for this case, we have

e

~
(rβj − r

α
i ) ·A (Lnan) = 2πλ

e

~
(rj − ri) ·A (Lnan) + (δβ − δα) ·A (Lnan) = 2πλ (1.4.10)
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The term without the orbitals vanishes when we write Aij as in eq.(1.4.8). Applying it to the previous
equation, we have

e

~
∑
m,p,q

(δβm − δαm)am · bp
φ0Mpq

(2π)2 Lq
(Lnan · bq) = 2πλ∑

m

(δβm − δαm)Mmn = λ (1.4.11)

Unlike in the case of the lattice vectors, (δβm − δαm) will not in general be an integer. This means that
the choice of Mmn will have to be so that (δβm − δαm)Mmn is an integer. However, this is only possible
if (δβm − δαm) is a rational number, which may not be the case.
In order to solve this, we make use of the Gauge freedom when writing A. Adding the gradient of

a function F (r) to A, the Peierls phase becomes

e

~
ϕ(rαi , r

β
j ) = (rβj − r

α
i ) ·A

(
rαi + rβj

2

)
+ F (rβj )− F (rαi ).

Choosing F (r) as
F (rαi ) = −A(rαi ) · δα (1.4.12)

satisfies the periodic boundary conditions for any lattice. Rewriting the vector potential with this
F (r), the Peierls phases become

e

~
ϕ(rαi , r

β
j ) = (rβj − r

α
i ) ·A

(
rαi + rβj

2

)
+A(rβj ) · δβ −A(rαi ) · δα. (1.4.13)

This expression, with a choice of A that satisfies eq.(1.4.4), allows us to calculate the Peierls phases
for any lattice, with the guarantee that the periodic boundary conditions are obeyed.
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Chapter 2

Graphene

Having seen how a magnetic field is introduced in a 2D lattice, we are now ready to study the case of
graphene under a constant magnetic field. First, we will make a brief introduction of the properties of
graphene when no magnetic field is applied. This will be followed by the introduction of the magnetic
field in the tight-binding Hamiltonian, which will lead to a system of equations for which we will obtain
an approximate solution. Additionally, we will also introduce the magnetic field in a way that is much
more used in the literature: minimal coupling on the approximated Hamiltonian around the Dirac
points. we will compare the two methods and discuss the results they yield. The last section will
consist of numerical results that will plotted against the obtained expressions, just as we did for the
square lattice.

2.1 Graphene without Magnetic Field

Graphene’s structure can be described by two triangular Bravais lattices displaced by a vector δ. This
means that each unit cell has two atoms, which makes the problem more complex than in the case of
the square lattice.

The lattice vectors of graphene and the displacement vector δ can be chosen as:

a1 = a (1, 0) (2.1.1)

a2 =
a

2

(
1,−
√

3
)

(2.1.2)

δ =
a

2

(
1,− 1√

3

)
(2.1.3)

where a is the length of the lattice vectors. This lattice structure is represented in Fig. 2.1 a). The
two different Bravais lattices are labeled as sublattice A and B. As for the reciprocal lattice vectors,
they are obtained by the orthogonality relation with the lattice vectors, ai · bj = 2πδij , and read

b1 =
2π

a

(
1,

1√
3

)
(2.1.4)

b2 =
2π

a

(
0,− 2√

3

)
. (2.1.5)

The first Brillouin zone generated by these vectors is represented in Fig.2.1 b). The k vectors inside
the first Brillouin zone can be written as

k = k1b1 + k2b2 =
m1

L
b1 +

m2

L
b2 (2.1.6)
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where m1 and m2 are integers between 0 and L− 1.

Figure 2.1: a) Graphene structure with the lattice vectors a1 and a2 and the displacement vector
δ. The sublattices A (white circles) and B (black circles) are also represented. b) First
Brillouin Zone of graphene, with the reciprocal lattice vectors and Dirac points K and K ′.

Each atom has three nearest neighbors, all of which belong to the opposite sublattice. With this
choice of lattice and displacement vectors, the tight-binding Hamiltonian for this system will be [14]:

H = −t
∑
m,n

a†(m,n)b(m,n) + a†(m,n)b(m− 1, n) + a†(m,n)b(m,n− 1) + h.c (2.1.7)

where a† and a are the creation and annihilation operators for atoms in the sublattice A, b† and b

for the sublattice B, and the sum is over all unit cells. Notice that each term contains the hoppings
between the A atom and its neighbors (the first three terms) and the hoppings between the B atom
of the same cell and its neighbors (the hermitian conjugate). Thus, by summing over all unit cells we
are taking into account every atom of the lattice.

Similarly to the square lattice, graphene’s Hamiltonian is invariant by translations of the lattice
vectors. This allows us to write the creation operators in momentum-space (eqs.1.2.12 and 1.2.13 ) as

a†(m,n) =
1

L

∑
k1,k2

e−i2πk1me−i2πk2na†(k1, k2) (2.1.8)

b†(m,n) =
1

L

∑
k1,k2

e−i
2π
3
(k1+k2)e−i2πk1me−i2πk2nb†(k1, k2) (2.1.9)

where the sum on k1 and k2 is over the first Brillouin zone. Replacing these expressions for the
operators in the Hamiltonian, we obtain

H = −t
∑
k1,k2

ei
2π
3
(k1+k2)

(
1 + e−i2πm1 + e−i2πm2

)
a† (k1, k2) b (k1, k2) + h.c (2.1.10)

This Hamiltonian can also be written in matrix form

H =
∑
k

(
a† (k) b† (k)

)
Hk

(
a (k)

b (k)

)
(2.1.11)
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where

Hk = −t

(
0 sk

s∗k 0

)
(2.1.12)

sk = eik·δ
(

1 + e−i2πk1 + e−i2πk2
)
. (2.1.13)

Writing the Hamiltonian in this form, we can see that the energy values for each k will be the eigenvalues
of Hk, which are

E(k) = ±|sk| = ±t [3 + 2 (cos (2πk1) + cos (2πk2) + cos (2π (k1 − k2)))]
1
2 . (2.1.14)

This is the dispersion relation for graphene, which is represented in Fig.2.2. In the first Brillouin zone,
this expression has two zeros

K =
2

3
b1 +

1

3
b2 =

2π

a

(
2

3
, 0

)
(2.1.15)

K ′ =
1

3
b1 +

2

3
b2 =

2π

a

(
1

3
,− 1√

3

)
(2.1.16)

which are called Dirac points. In order to study what happens at low energies, we make a linear
expansion of the dispersion relation around these Dirac points. This results in

E(q) ' ±vF~q (2.1.17)

where q is the momentum relative to the Dirac points and q is its module. This is a very interesting
result, as this dispersion relation has a relativistic form, where instead of the speed of light we have
the Fermi velocity.

vF =

√
3

2

ta

~
≈ 106m/s. (2.1.18)

Just as we wrote the dispersion relation near the Dirac points, we can do the same for the Hamilto-
nian. Starting with an approximation around q = k −K, sq becomes

sq = ei(K+q)·δ [1 + e−i2πK1(1− 2πiq1) + e−i2πK2(1− 2πiq2)
]
. (2.1.19)

Working this expression, we obtain a simplified result

sq = 2π

[
−
√

3

2
q1 + i

(q1
2
− q2

)]
(2.1.20)

=

√
3

2
a(qx + iqy). (2.1.21)

In the last step we decomposed q1 and q2 on its components along the coordinated axes, which brings
about a simpler expression. With this, the Hamiltonian around K becomes

Hq = −vF

(
0 qx − iqy

qx + iqy 0

)
(2.1.22)

This expression can be written in a more compact way by introducing the Pauli matrices. Doing so,
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Figure 2.2: Graphene’s dispersion relation as a function of k1 and k2. The orange part is the positive
solution and the blue one the negative one. Both solutions are zero in two points - the
Dirac points.

results in
Hq = −vFσ · q (2.1.23)

The case for the other Dirac point is entirely analogous, yielding

Hq′ = −vFσ† · q′ (2.1.24)

where q′ = k −K ′.

These Hamiltonians resemble the Dirac Hamiltonian for a massless particle in 2 dimensions (hence
the name Dirac points for K and K ′). This approximated Hamiltonian, due to being linear in the
momentum, will make some calculations further ahead more simple; however, as this is a linear ap-
proximation, some phenomena may not be described by this Hamiltonian, so we have to bare in mind
that this is just an approximation.

2.2 Peierls Substitution in Graphene

We will now introduce a magnetic field through Peierls substitution. For each term, we have three
phases we need to calculate: ϕ((m,n), (m,n)+δ), ϕ((m,n), (m−1, n)+δ) and ϕ((m,n), (m,n−1)+δ),
which we will call ϕ1, ϕ2 and ϕ3. To determine them, we will use the results obtained in Section 1.4.
Writing the potential vector as

A = A12 (r · b2) b1 +∇F (r) (2.2.1)

where A12 = φ
(2π)2

and F (r) is as defined in eq.(1.4.12), the phases become
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ϕ1 = 0

ϕ2 = −2π
φ

φ0

(π
6

+ n
)

(2.2.2)

ϕ3 = 0.

Due to the periodic boundary conditions, the minimum flux allowed is φ0
L , as seen in eq.(1.4.9).

We could now add these phases to the tight-binding Hamiltonian in order to obtain a description of
graphene in a magnetic field; however, we will not utilize this gauge, but the more common Landau
gauge, which is given by

A(r) = −Byêx. (2.2.3)

The reason for doing this is because we want to compare the results obtained through Peierls sub-
stitution in the tight-binding Hamiltonian with those usually obtained in literature through minimal
coupling on eqs.(2.1.23) and (2.1.24). Denoting A1(r) the vector potential of eq.(2.2.1) and A2(r) the
one in the Landau gauge, the gauge transformation that takes one into the other is

A2(r) = A1(r) +∇F ′(r) (2.2.4)

where

F ′(r) = −F (r) +
φ

2πφ0

[
(r · b2)2

4
− (r · b2)

6
− (r · b1)

3

]
. (2.2.5)

In this expression, the first term, −F (r) cancels the same term in the initial Gauge. The second term
is responsible for transforming the non-gradient part of the vector potential from being along b1, into
being along êx.

The Peierls phases we obtain in the Landau gauge are

ϕ1 = π
φ

φ0
n (2.2.6)

ϕ2 = −π φ
φ0
n (2.2.7)

ϕ3 = 0.

Applying periodic conditions to these phases, we obtain a result different from the ones in eq.(2.2.2).
Exemplifying for ϕ1, we obtain

ϕ1(n+ L)− ϕ1(n) = 2πM =⇒ φ

φ0
=

2

L
M (2.2.8)

whereM is any integer. This the double of the value we obtained in the initial gauge. This means that,
when working on the Landau gauge, we will quantize the flux according to this expression. However,
we must bare in mind that when applying periodic boundary conditions on graphene with magnetic
field, the minimum flux we can obtain is φ = φ0

L .

2.2.1 Wavefunctions and Energy

Putting the phases obtained for the Landau gauge in the Hamiltonian, it becomes
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H = −t
∑
m,n

e
iπφ
φ0
n
a†(m,n)b(m,n) + e

−iπφ
φ0
n
a†(m,n)b(m− 1, n) + a†(m,n)b(m,n− 1) + h.c (2.2.9)

As we introduced the magnetic field through a vector potential that only depends on n, the Hamiltonian
still has translation symmetry along m, which allows us to write the operators as a function of k1.
Using eqs.(2.1.8) and (2.1.9), but making the expansion only for k1, we have

a†(m,n) =
1√
L

∑
k1

e−i2πk1ma†(k1, n) (2.2.10)

b†(m,n) =
1√
L

∑
k1

e−i
2π
3
k1e−i2πk1mb†(k1, n) (2.2.11)

Replacing the operators in the Hamiltonian, we obtain

H = −t
∑
k1,n

ei
2π
3
k1

(
e
iπφ
φ0
n

+ e
−iπφ

φ0
n
e−i2πk1

)
a†(k1, n)b(k1, n) + ei

2π
3
k1a†(k1, n)b(k1, n− 1) + h.c

(2.2.12)

= −t
∑
k1,n

e−i
π
3
k12 cos

(
πφ

φ0
n+ πk1

)
a†(k1, n)b(k1, n) + ei

2π
3
k1a†(k1, n)b(k1, n− 1) + h.c (2.2.13)

This Hamiltonian resembles the one we obtained for the square lattice, but it has one key difference:
we have two sublattices, which, as will become evident, will complicate the equations we will obtain.

With an expression for the Hamiltonian, we can now study the wavefunctions and energy of this
system. By applying the Hamiltonian to a general eigenstate |ψλ〉, written as

|ψλ〉 =
∑
n

αλ(k1, n)a†(k1, n) + βλ(k1, n)b†(k1, n) (2.2.14)

and equaling it to Eλ|ψλ〉, we obtain two sets of coupled equations:

Eλαλ(k1, n) = −t
[
2e−i

π
3
k1 cos

(
π
φ

φ0
n− πk1

)
βλ(k1, n) + ei

2π
3
k1βλ(k1, n− 1)

]
(2.2.15)

Eλβλ(k1, n) = −t
[
2ei

π
3
k1 cos

(
π
φ

φ0
n− πk1

)
αλ(k1, n) + e−i

2π
3
k1αλ(k1, n+ 1)

]
. (2.2.16)

Altough we cannot find an exact solution to these equations, we can try to study them for certain
regimes. First, we will make a variable change in order to eliminate the complex exponentials

α̃λ(k1, n) = e−iπk1(n−
1
6)αλ(k1, n) (2.2.17)

β̃λ(k1, n) = e−iπk1(n+
1
6)βλ(k1, n). (2.2.18)

We can now start by studying the solutions for zero energy,

0 = −t
[
2 cos

(
π
φ

φ0
n− πk1

)
β̃λ(k1, n) + β̃λ(k1, n− 1)

]
(2.2.19)

0 = −t
[
2 cos

(
π
φ

φ0
n− πk1

)
α̃λ(k1, n) + α̃λ(k1, n+ 1)

]
. (2.2.20)
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which lead us to a recursion relation for the coefficients α̃ and β̃. As both equations are very similar,
we will only show the calculations for the first one. In this case, we obtain a recursion relation for the
β̃ coefficients:

β̃λ(k1, n− 1) = −2 cos

(
π
φ

φ0
n− πk1

)
β̃λ(k1, n). (2.2.21)

In the limit of a very large L, we need the amplitude of the wavefunction to vary smoothly between
neighboring sites. This means that the wavefunctions for zero energy will be localized around points
n′ such that ∣∣∣∣2 cos

(
π
φ

φ0
n′ − πk1

)∣∣∣∣ = 1. (2.2.22)

Fixing the value of k1, we can solve this equation for n′:

π
φ

φ0
n′ − πk1 = θ =⇒ n′ =

φ0
πφ

(θ + πk1) (2.2.23)

where θ is any angle such that cos(θ) = ±1
2 . Note that, as in the square lattice, the number of points

n′ depends on the flux. Using the definition of n′, we can write eq.(2.2.21) in a more suggestive way:

β̃λ(k1, n− 1) = −2 cos

(
θ + π

φ

φ0
(n− n′)

)
β̃λ(k1, n). (2.2.24)

Al tough we assured that the amplitude varies slowly, depending on the value of θ, there may be a
change of the phase between neighboring sites. In the case of cos(θ) = −1

2 , the coefficients all have the
same phase; however, when cos(θ) = 1

2 , we have a phase difference of π. In order to eliminate this, we
make a variable change

˜̃
βλ(k1, n) = eiπnβ̃λ(k1, n) (2.2.25)

which leads to
˜̃
βλ(k1, n− 1) = 2 cos

(
θ + π

φ

φ0
(n− n′)

)
˜̃
βλ(k1, n). (2.2.26)

In this case, as cos(θ) = 1
2 , the coefficients ˜̃

βλ will vary slowly. These coefficients will be very similar
to the β̃ in the case when cos(θ) = −1

2 , as the only difference in the equations is a minus sign.

We saw that there are solutions whose amplitude varies slowly around certain n′ points for zero
energy. We can use this result as an approximation to study states with energy close to zero. Doing
so, we can write eq.(2.2.19) as:

Eλα̃λ(k1, n) = −t
[
2 cos

(
θ + π

φ

φ0
(n− n′)

)
β̃λ(k1, n) + β̃λ(k1, n− 1)

]
(2.2.27)

where cos(θ) = −1
2 . As we have already seen that these coefficients vary slowly, we can expand them

in a Taylor series up to first order:

β̃λ(k1, n− 1) ≈ β̃λ(k1, n)− dβ̃λ
dn

(2.2.28)

which, replacing in eq.(2.2.27), becomes

Eλα̃λ(k1, n) = −t
[(

2 cos

(
θ + π

φ

φ0
(n− n′)

)
+ 1

)
β̃λ(k1, n)− d

dn
β̃λ

]
. (2.2.29)

We could uncouple both equations and try to find a solution for the coefficients. However, due to the
complexity of the resulting differential equation, it is not possible. In order to transform these two
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equations into solvable ones, we need to expand the co-sine around n = n′ (just as we did for the
square lattice). Doing this, the differential equation becomes

Eλαλ(k1, n) = −t
[(
±
√

3
πφ

φ0
(n− n′)

)
β̃λ(k1, n)− d

dn
β̃λ

]
. (2.2.30)

where the signal depends on the value of θ. Writing this and the other differential equation in matrix
form, we get

−ta
√

3

2

 0 ∓ 1
l2B

(y − y′)− d
dy

∓ 1
l2B

(y − y′) + d
dy 0

[ α̃λ(k1, y)

β̃λ(k1, y)

]
= Eλ

[
α̃λ(k1, y)

β̃λ(k1, y)

]
(2.2.31)

where l2B = ~
eB is the magnetic length we defined in the previous chapter, and the n coordinate is

now written as y = −
√
3
2 na. This equation can be simplified even further by defining ỹ = y−y′

lB
, which

results in

− ta
lB

√
3

2

[
0 ∓ỹ − d

dỹ

∓ỹ + d
dỹ 0

][
α̃λ(ỹ)

β̃λ(ỹ)

]
= Eλ

[
α̃λ(ỹ)

β̃λ(ỹ)

]
. (2.2.32)

This problem can now be solved by defining the staircase operators as functions of ỹ and ∂ỹ, as is done
in [14],

c =
1√
2

(ỹ + ∂ỹ) (2.2.33)

c† =
1√
2

(ỹ − ∂ỹ) (2.2.34)

and the coefficients α and β as quantum harmonic oscillator functions. Writing eq.(2.2.32) for θ = 2π
3

(for the minus sign), we obtain

√
2ta

lB

√
3

2

[
0 c

c† 0

][
C1φλ(ỹ)

C2φλ′(ỹ)

]
= Eλ

[
C1φλ(ỹ)

C2φλ′(ỹ)

]
(2.2.35)

where C1 and C2 are normalization constants and φλ is the quantum harmonic oscillator function of
the λ level. Working one of the equations that come from this system, we obtain

√
2ta

lB

√
3

2
C2

√
λ′φλ′−1(ỹ) = EλC1φλ(ỹ) (2.2.36)

which imposes that λ = λ′ − 1. The other equation yields the same result. From these equations we
can also take the values of the energy and a relation between the normalization constants. Writing the
two equations, now with the constraint on λ′, we have

√
2ta

lB

√
3

2
C2

√
λ+ 1 = EλC1 (2.2.37)

√
2ta

lB

√
3

2
C1

√
λ+ 1 = EλC2 (2.2.38)

which yields a condition for C2

C2
1 = C2

2 =⇒ C1 = ±C2. (2.2.39)
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Replacing in eq.(2.2.37), we obtain an expression for the energy

Eλ = ±
√

2ta

lB

√
3

2

√
λ+ 1 (2.2.40)

where the sign depends on the values of C1 and C2. With this, we can write our coefficients α̃ and β̃
as [

α̃λ(ỹ)

β̃λ(ỹ)

]
= C1

[
φλ(ỹ)

±φλ+1(ỹ)

]
(2.2.41)

where the plus (minus) sign represents the state associated with the positive (negative) energy in
eq.(2.2.40). As for the normalization constant, it will depend on λ. As φλ is already a normalized
function, for the general case, C1 = 1√

2
. However, when λ = −1, φλ = 0, which means that C1 has to

be 1.

Going back to eq.(2.2.32), we still need to analyze the case of θ = 4π
3 (the plus sign). This yields

a similar system to the one we just solved, through which we obtain the following solutions for the
coefficients [

α̃λ(ỹ)

β̃λ(ỹ)

]
= C1

[
φλ+1(ỹ)

±φλ(ỹ)

]
. (2.2.42)

and the energy solutions are the same.

As for the case when cos(θ) = 1
2 , the equations we obtain for ˜̃

β(k1, n) are the same as eqs.(2.2.30),
where the minus sign refers to θ = 5π

3 and the plus sign refers to θ = π
3 . Thus for θ = π

3 , we have[
α̃λ(ỹ)

β̃λ(ỹ)

]
= eiπnC1

[
φλ(ỹ)

±φλ+1(ỹ)

]
(2.2.43)

and for θ = 5π
3 , the solution becomes[

α̃λ(ỹ)

β̃λ(ỹ)

]
= eiπnC1

[
φλ+1(ỹ)

±φλ(ỹ)

]
. (2.2.44)

With these solutions, we could write the original α and β coefficients. However, we want to compare
these results with numerical ones obtained through diagonalization of the tight-binding Hamiltonian.
This is much easier to do if the coefficients are real, which is not the case for the α and β coefficients.

2.3 Minimal Coupling

Up until here, we worked with a tight-binding Hamiltonian where we introduced a Peierls phase, and
from there worked the equations that gave us the wavefunctions. Another approach to this problem is
to define the Hamiltonian in the continuum without the magnetic field, and then introduce it through
the minimal coupling p→ p+ eA.

Hq = vFσ · (p+ eA) (2.3.1)

Writing the vector potential as A = B(y, 0), this Hamiltonian becomes

Hq = vF

(
0 ~qx + eyB − ~iqy

~qx + eyB + i~qy 0

)
(2.3.2)
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Here, we chose to write the momentum in the position representation. Doing so, it becomes clear that
the eigenvectors dependence on x will be just a plane wave. Thus, the eigenvectors will have the form

ψqx(x, y) = eiqxx

(
φA(y)

φB(y)

)
(2.3.3)

Applying the Hamiltonian to this eigenvector results in

vF
~
lB

(
0 lBqx + y

lB
− lB∂y

lBqx + y
lB

+ lB∂y 0

)
ψqx(x, y) = Eψqx(x, y) (2.3.4)

where we wrote the constants in terms of lB =
√
~/eB. Now, the procedure is essentially the same as

done before: we write ỹ = lBqx + y
lB
, identify the creation and destruction operators as functions of ỹ

and ∂ỹ and calculate the functions φ1 and φ2. Because the calculations are the same as we did in the
previous section, we will skip them and write the wavefunctions

ψqx(x, y) = Cλe
iqxx

(
φAλ+1(ỹ)

±φBλ (ỹ)

)
(2.3.5)

where the ± denotes that the signal of the energy of the state and Cλ is the normalization coefficient.
This solution, however, is only valid on points with q ∼ 0. The other solution, for the Hamiltonian
near K ′ is obtained in an equivalent way:

ψq′x(x, y) = Cλe
iq′xx

(
φAλ (ỹ)

±φBλ+1(ỹ)

)
. (2.3.6)

Now, we need to know if these solution correspond to the ones found in the previous section. Taking
k to be the Dirac points, we obtain 4 solutions for each Dirac point. From these four solutions, one
of them, centered around n = 0 for both Dirac points, corresponds to these ones. However, the other
three solutions do not appear when we use the minimal coupling. In order to study why, we will start
by going back to the tight-binding Hamiltonian.

As for the energy, the expression obtained through this method is the same as the one in eq.(2.2.40).

2.3.1 Expansion of the Peierls Phase to First Order

As the solutions we found through minimal coupling are centered on n = 0, we will expand the Peierls
phase around it and see what results we obtain. Doing it, the tight-binding Hamiltonian becomes

H = H0 − t
∑
m,n

iπ
φ

φ0
n
(
a†(m,n)b(m,n)− a†(m,n)b(m− 1, n)

)
(2.3.7)

where H0 is the Hamiltonian without the magnetic field. In the same way as before, we write a general
eigenstate of this Hamiltonian as

|ψ〉 =
∑
m,n

α(m,n)a†(m,n) + β(m,n)b†(m,n) (2.3.8)
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which leads to the following set of equations

Eα(m,n) = −t
[(

1 + iπ
φ

φ0
n

)
β(m,n) +

(
1− iπ φ

φ0
n

)
β(m− 1, n) + β(m,n− 1)

]
(2.3.9)

Eβ(m,n) = −t
[(

1− iπ φ
φ0
n

)
α(m,n) +

(
1 + iπ

φ

φ0
n

)
α(m+ 1, n) + α(m,n+ 1)

]
(2.3.10)

we will make a variable change to α and β so that we may write their derivatives in momentum space
as the momentum near the Dirac point

α(m,n) = eiK·rα̃(m,n) (2.3.11)

β(m,n) = eiK·rβ̃(m,n). (2.3.12)

Replacing the α and β coefficients, the equations become

Eα̃(m,n) = −teiK·δ
[(

1 + iπ
φ

φ0
n

)
β̃(m,n) +

(
1− iπ φ

φ0
n

)
e−iK·a1 β̃(m− 1, n) + e−iK·a2 β̃(m,n− 1)

]
(2.3.13)

Eβ̃(m,n) = −te−iK·δ
[(

1− iπ φ
φ0
n

)
α̃(m,n) +

(
1 + iπ

φ

φ0
n

)
eiK·a1α̃(m+ 1, n) + eiK·a2α̃(m,n+ 1)

]
.

(2.3.14)

Although we cannot solve exactly this discrete model, as seen before, we can approximate the co-
efficients of the neighboring sites by expanding them up to first order. Expanding β̃(m − 1, n) and
β̃(m,n− 1) up to first order, the right-hand side of eq.(2.3.13) becomes

Eα̃(m,n) = −teiK·δ
[
1 +

(
1− d

dm

)
e−iK·a1 +

(
1− d

dn

)
e−iK·a2+ . (2.3.15)

+iπ
φ

φ0
n

(
1−

(
1− d

dm

)
e−iK·a1

)]
β̃(m,n). (2.3.16)

Let us start by considering the terms without φ/φ0. Using the definition of the lattice vectors, we can
write the derivatives in the previous equations as derivatives in order to x and y

d

dm
= a∂x (2.3.17)

d

dn
=
a

2

(
∂x −

√
3∂y

)
. (2.3.18)

Writing the derivatives in the momentum representation (∂x = iqx), the terms without magnetic field
are given by

vF~ (qx − iqy) β̃(m,n) (2.3.19)

which is the result we obtained in eq.(2.1.22), when no magnetic field is applied. This makes sense, as
this term is the only one when B = 0. Going through the same procedure for eq.(2.3.14), we obtain a
similar result

vF~ (qx + iqy) α̃(m,n) (2.3.20)

which, again, agrees with the results of Section 2.1.

As for the terms multiplied by φ/φ0, we can start by noticing that the ∂x term is actually a second
order term. This is because the nφ/φ0 is already a first order term, so when multiplied by qx, it
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Figure 2.3: Energy levels of a periodic graphene lattice with L = 4096 and φ/φ0 = 1/2048. Black dots
represent the energy calculated through numerical diagonalization of the Hamiltonian in
eq.(2.2.12). Red dots represent the energy calculated using eq.(2.2.40).

becomes second order. Ignoring qx, this part of the expression becomes

−teiK·δiπ φ
φ0
n

(
1−

(
−1

2
+ i

√
3

2

))
β̃(m,n) = vF eByβ̃(m,n). (2.3.21)

Writing these results in eqs.2.3.13 and 2.3.14, we obtain

E

(
α̃(m,n)

β̃(m,n)

)
=

(
0 ~qx + eyB − i~qy

~qx + eyB + i~qy 0

)(
α̃(m,n)

β̃(m,n)

)
(2.3.22)

which is equal to the result obtained in earlier in eq.(2.3.2). With this, it becomes clear that when
we use the minimal coupling to introduce the magnetic field in graphene, what we are actually doing
is expanding the Peierls phase up to first order around n = 0. Thus, it is only natural that the
wavefunctions we find be the ones centered around n = 0, and that we do not find any of the other
ones.

2.4 Numerical Results and Comparison

Just as in the square lattice, we will now proceed to compare the analytical expressions we obtained
with the results obtained through diagonalization of the Hamiltonian in eq.(2.2.12).

2.4.1 Energy

In Fig.2.3 we plot the values of the energy obtained with eq.(2.2.40) against the ones obtained by
diagonalization of the Hamiltonian. For values of the energy up to 0.3t, the agreement between both
sets is very good. From there on, the values yielded through the two methods start to diverge from
one another.
We can also see how the energy varies by changing the system’s parameters, as we did for the square

lattice. As suggested by eq.(2.2.40), the energy spectrum does not depend on either the period of the
lattice L or kx, as can be verified by diagonalizing Ham 2.2.12 for different values of these parameters.
When varying the magnetic field, we obtain the same behavior we observed in the square lattice: the
spacing between energy levels increases with the magnetic field.
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2.4.2 Wavefunctions

In Fig.2.4, we plot the wavefunctions for E = 0, k1 = 0 and φ
φ0

= 2
L . We see that there are four localized

wavefunctions, two of which are smooth, and the other two have an oscillating phase. According to
eq.(2.2.23), the smooth solutions should be centered around n′ = L

3 ,
2L
3 and the oscillating ones around

n′ = L
6 ,

5L
6 . Looking at the figure, we see that this is the case.

From Fig.2.4 we can also verify the relation between the α̃ and β̃ for the smooth wavefunctions.
Looking at eq.(2.2.41), we see that for the lowest energy level, α̃ = 0 and β̃ = φ0, where this φ0 refers
to the harmonic oscillator wavefunction of the lowest energy and not the quantum of flux. In the
graphic, we can see that α̃ is zero around n′ = L

3 , and β̃ appears to have the of φ0.

0 32 64 96 128

n

-0,2
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0

0,1

0,2

α
β

Figure 2.4: Wavefunctions for E = 0, φ
φ0

= 2
L , L = 128 and k1 = 0. The black and red curves represent

the α̃ and β̃ coefficients respectively.

This last point can be checked by plotting φ0 against these curves, which is represented in Fig.2.5.
In this figure, we plot φ0 centered in 2L

3 and 5L
6 , in addition to the module of the wavefunctions. The

reason we used the module in this representation is because it is impossible to visually determine the
accuracy of the fit for the fast-oscillating wavefunctions. We can see in this figure that the fit is best
in the center of the curves, and that near the base, it starts to wear off. This is because, as we go
away from the center, we will start entering the domain of another solution, which means that away
from n′, the different solutions interact, thus deforming the approximated curves whose expression we
obtained.

Another aspect that we can represent is how the solutions behave for symmetric values of the energy.
According to the equations we obtained for the wavefunctions, the difference between a positive and
negative energy solution will be a minus sign in one of the coefficients. In Fig.2.6, we see precisely
that: comparing the wavefunctions for a certain n′ for both energies, one of the curves (either α̃ or β̃)
has a different sign.
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Figure 2.5: Wavefunctions for φ
φ0

= 2
L , L = 128 and k1 = 0 as function of n. Black and red curves

represent the α̃ and β̃ coefficients respectively, calculated through diagonalization of the
Hamiltonian in eq.(2.2.12). The green and blue curves represent the α̃ and β̃ coefficients
calculated in the continuum approximation through eqs.(2.2.42) and (2.2.44) respectively.
The wavefunctions are represented in module so it becomes easier to compare the results.
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Figure 2.6: Eigenfunctions for the first non-zero energy levels. The first figure represents the wave-
functions for the positive energy and the second one for the negative energy. The other
parameters remain the same ( φφ0 = 2

L , L = 128 and k1 = 0).
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Regarding the dependence on k1, the result we obtained for graphene is the same as in the square
lattice: changing k1 will only inflict a translation upon the wavefunctions. In Fig.2.7 we represent
the lowest energy wavefunctions for k1 = 1

3 which corresponds to one of the Dirac points. Using the
equation for n′ (eq.(2.2.23)) and using this value of k1, we see that the values of n′ will be translated
by L

3 . Looking at the figure, this is exactly what happens. Furthermore, as we used the k1 of one of
the Dirac points, we expect to see a smooth solution around n′ = 0, which is also verified in Fig.2.7.
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Figure 2.7: Wavefunctions for E = 0, φ
φ0

= 2
L , L = 128 and k1 = 1

3

Finally, we can also vary the magnetic field and see what effects it has on the wavefunctions. In
Fig.2.8 we see that the wavefunctions are the same ones we had for φ

φ0
= 2

L , but duplicated. This result
is the same as the one we obtained for the square lattice, where the number of points n′ is directly
proportional to the flux. Increasing the magnetic field also decreases the width of the wavefunctions,
as was also seen for the case of the square lattice.
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Figure 2.9: Landau Levels of graphene with open boundary conditions and φ/φ0 = 1/128.
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Figure 2.8: Wavefunctions for E = 0, φ
φ0

= 4
L , L = 128 and k1 = 0.

2.4.3 Open Boundary Conditions

We can also study the effect of open boundary conditions on graphene. We start by plotting the energy
as function of k1 in Fig.2.9. Unlike the case with periodic boundaries, here there are energy levels that
depend on k1. These levels are the ones associated with the edge states that are not present when we
impose periodic boundaries on the system.

In Fig.2.10 we show the density of states for both boundaries. Just as we observed for the square
lattice, as we increase the size of the graphene lattice with open boundaries, its density of states will
tend to the one calculated with periodic boundary conditions. This can be seen both in the increase
of the height of the peaks, and in the decrease of the amplitude of the states between peaks.
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Figure 2.10: Density of states of graphene with both open and periodic boundary conditions and φ/φ0 =
1/256
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Chapter 3

General Response Theory

In this chapter, we will determine an expression for the conductivity of a crystal as a function of its
Hamiltonian. In order to do so, we need to calculate the mean value of the current density J , which is
done using the Kubo formula. The calculations in this chapter are based on Chapters 2 and 3 of [15].

3.1 Average of an operator

The conductivity of a system can be obtained by the expression for the average of the current J . With
this in mind, we will arrive at an equation that yields the expected value of an operator for a system
with a small time-dependent perturbation V (t) to an Hamiltonian H0 whose solutions we know. This
equation is known as Kubo’s formula.
The average of a fermionic operator is given by [12]

〈J〉 (t) =
∑
n

f(εn) 〈n|J |n〉 (3.1.1)

where the states |n〉 are the eigenstates of the Hamiltonian and f(εn) is the Fermi-Dirac distribution

f(εn) =
1

1 + e−βεn
(3.1.2)

Introducing the density matrix

ρ =
∑
n

f(εn)|n〉〈n| (3.1.3)

allows us to write eq.(3.1.1) as

∑
n

f(εn) 〈n|J |n〉 =
∑
m

〈m|Jρ|m〉 = Tr (ρJ) . (3.1.4)

The problem with this expression is that it uses the eigenstates of the full Hamiltonian, which we
do not know. In order to solve this, we want to determine the time evolution of the eigenstates of
H0.write these states as the time evolution from the eigenstates of H0.

3.1.1 Schrödinger Picture

In quantum mechanics, the temporal evolution of a state is given by Schrödinger’s equation [12]

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 (3.1.5)
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We can define a time-evolution operator U(t, t0) that relates a state in an instant t0 to an instant t

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (3.1.6)

This operator U(t, t0) can be found using Schrödinger’s equation. For the case where H does not
depend on time, we have

U(t, t0) = e−iH(t−t0)/~ (3.1.7)

so, a state |ψ(t)〉 can be written as

|ψ(t)〉 = e−iH(t−t0)/~|ψ(t0)〉 (3.1.8)

However, our Hamiltonian has a time dependence, which makes it impossible to solve its Schrödinger
equation.

3.1.2 Interaction Picture

In the interaction picture, it is assumed that we can separate the Hamiltonian into two parts: a time
independent Hamiltonian H0 whose solutions we already know, and a time-dependent perturbation
V (t). We start by writing the definitions of the states and operators in this picture:

|ψI(t)〉 = eiH0t/~|ψS(t)〉 (3.1.9)

JI(t) = eiH0t/~JS(t)e−iH0t/~ (3.1.10)

where the S and I subscripts denote the Schrödinger and Interaction pictures respectively. From these
expressions, we can see that the average value of an operator is left invariant.

From the Schrödinger equation, we can arrive at the equation for the time evolution of the wave-
functions in the Interaction Picture:

i~
∂

∂t
|ψS(t)〉 = (H0 + VI(t)) |ψS(t)〉 (3.1.11)

i~
∂

∂t

(
e−iH0t/~|ψI(t)〉

)
= (H0 + VI(t))

(
e−iH0t/~|ψI(t)〉

)
H0e

−iH0t/~|ψI(t)〉+ i~e−iH0t/~ ∂

∂t
|ψI(t)〉 = (H0 + VI(t))

(
e−iH0t/~|ψI(t)〉

)
i~
∂

∂t
|ψI(t)〉 = VI(t)|ψI(t)〉. (3.1.12)

From this equation, we can find an expression for |ψI(t)〉 as a function of its value at t = t0 and the
perturbation V (t). Integrating both sides of the equation on time from t0 to t, we obtain

|ψI(t)〉 = |ψI(t0)〉+
1

i~

∫ t

t0

dt1V (t1)|ψI(t1)〉 (3.1.13)

We can now replace the |ψI(t′)〉 inside the integral with the whole second member, which results in

|ψI(t)〉 = |ψI (t0)〉+
1

i~

∫ t

t0

dt1V (t1)

(
|ψI (t0)〉+

1

i~

∫ t1

t0

dt2V (t2) |ψI (t2)〉
)
. (3.1.14)
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Repeating this procedure, we obtain higher-order terms in V (t), assuming this series converges

|ψI(t)〉 =

[
1 +

1

i~

∫ t

t0

dt1V (t1) +

(
1

i~

)2 ∫ t

t0

dt1V (t1)

∫ t1

t0

dt2V (t2) + ...

]
|ψI (t0)〉. (3.1.15)

As the perturbation will be proportional to the electric field and we are interested in studying the
conductivity for the lowest orders, we will truncate this sum at some order.

3.1.3 Kubo Formula

Going back to our equation for the average of an operator

〈J〉 = Tr (ρJ) (3.1.16)

we can write the density matrix operator in the Interaction Picture as

ρI =
∑
n

f(εn)|nI(t)〉〈nI(t)| (3.1.17)

=
∑
n

f(εn)

(
1− 1

i~

∫ t

t0

dt1V (t1)

)
|nI(t0)〉〈nI(t0)|

(
1 +

1

i~

∫ t

t0

dt1V (t1)

)
+O(V 2) (3.1.18)

where we only wrote explicitly the terms up to first order. As we will only focus on the response of
first order, we will only keep these terms, ignoring all higher-order contributions. Doing so, we can
write the density matrix as

ρ
(1)
I =

∑
n

f(εn)|nI(t0)〉〈nI(t0)| − f(εn)
1

i~

∫ t

t0

dt1V (t1) |nI(t0)〉〈nI(t0)| (3.1.19)

+ f(εn)|nI(t0)〉〈nI(t0)|
1

i~

∫ t

t0

dt1V (t1) (3.1.20)

where the first term is the density matrix for H0, which we will call ρ0. Replacing this in the expression
for the average of an operator

Tr (ρIJI) = Tr
[
ρ0JI(t) +

1

i~

∫ t

t0

dt1 (V (t1) ρ0 − ρ0V (t1)) JI(t)

]
. (3.1.21)

Due to cyclic property of the trace, the second term in the above expression can be written as

Tr [(V (t1) ρ0 − ρ0V (t1)) JI(t)] = Tr [ρ0 [JI(t), V (t1)]] . (3.1.22)

With this, we finally arrive at the Kubo Formula for first-order:

〈J〉 (t) = 〈JI(t)〉0 +
1

i~

∫ t

t0

dt1 〈[JI(t), V (t1)]〉0 . (3.1.23)

where the subscript zero denotes that the average is done in respect with ρ0 instead of ρI(t). Now, we
only need an expression for the V (t) and JI(t) so we can get to an expression for the conductivity.
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3.2 Current Density and Conductivity

The relation between a current density J and a constant electric field E is often introduced in the
form of Ohm’s Law:

J = σE (3.2.1)

where the factor σ that relates them is called conductivity. The conductivity is a response function
that relates an applied electric field at a certain point in time and space (r′, t′) to the current density
at (r, t). For a constant field, this conductivity does not depend on any coordinates, but the same
cannot be said for fields that are not constant. In this case, Ohm’s Law takes a more general form [16]:

J(r, t) =

∫
dr′dt′σ(r − r′, t− t′)E(r′, t′). (3.2.2)

From here on, we are going to focus on electrical fields that are uniform in space, so we can drop the
spatial dependence. For simple systems this description is enough, but in general, the conductivity
behaves as a tensor. This leads to an expression for the conductivity with higher-order terms in the
electric field:

Jα(t) =

∫
dt1σαβ(t− t1)Eβ(t1) +

∫
dt1dt2σαβγ(t− t1, t− t2)Eβ(t1)Eγ(t2) + ... (3.2.3)

This is the general form of the current density. We can see that there is not one conductivity tensor,
but an infinity of them, due to the higher-order terms.

In general, it is more useful to write the conductivity as a function of frequency, rather than time.
This is done by taking the Fourier transform in both members of eq.(3.2.3). Applying this to the linear
term, we have

∫ +∞

−∞
dteiωtJ (1)

α (t) =

∫ +∞

−∞
dteiωt

∫ +∞

−∞
dt1

∫ +∞

−∞

dω′

2π
e−iω

′(t−t1)σαβ(ω′)

∫ +∞

−∞

dω′′

2π
e−iω

′′t1Eβ(ω′′)

(3.2.4)

As the only dependences in t and t1 are in the exponentials, we can perform the integrations in time,
yielding

J (1)
α (ω) =

∫ +∞

−∞

dω′

2π
2πδ(ω − ω′)σαβ(ω′)

∫ +∞

−∞

dω′′

2π
2πδ(ω′ − ω′′)Eβ(ω′′) (3.2.5)

We can now use the second delta function to eliminate the integral in ω′′, which leads to the general
expression for the first order term

J (1)
α (ω) =

∫ +∞

−∞

dω′

2π
2πδ(ω − ω′)σαβ(ω′)Eβ(ω′). (3.2.6)

We could simplify this expression even further because of the delta that remains, but in order to see
the similarities with higher-order terms, this expression will be kept in this form.

The calculations for higher-order terms are done in the same way as for first-order, resulting in the
following expression for the nth order term
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J (n)
α (ω) =

∫
dω1

2π
...
dωn
2π

2πδ (ω − ω1 − ...− ωn)σαα1...αn (ω1, ..., ωn)Eα1 (ω1) ...Eαn (ωn) (3.2.7)

where the coefficient σαα1...αn (ω1, ..., ωn) is the nth order conductivity. These are the objects we
ultimately want to calculate, although in this work we will settle for the lowest order ones.

3.3 Time-dependent Electric Field in the Tight-Binding Hamiltonian

From classical electrodynamics we know that we can write E and B in terms of a scalar and vector
potential:

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
(3.3.1)

B(r, t) = ∇×A(r, t). (3.3.2)

As mentioned before, we will consider an electric field that is spatially uniform. Such a field can be
obtained by a scalar potential that is linear in space

E = −∇φ(r, t), A(r, t) = 0 (3.3.3)

by a spatially uniform vector potential

E = −∂A(t)
∂t , φ(r, t) = φ(t) . (3.3.4)

or by a linear combination of both. Usually, only one potential is used to describe the electric field, as
it simplifies the calculations. In this work, the scalar potential description will be called length gauge,
while the vector potential description will be called velocity gauge.

3.3.1 Length Gauge

A scalar potential is added to the Hamiltonian as [12]

HE = H0 − eφ(r, t) (3.3.5)

where e is the electron charge and HE is the Hamiltonian in the length gauge. Writing φ in terms of
the electric field, the Hamiltonian in this gauge becomes

HE = H0 + eE(t) · r. (3.3.6)

This Hamiltonian can describe an open system imbued in an electric field, but the linear dependence on
r renders it unable to describe a system with periodic boundaries. Knowing this, we will see whether
we can use the Hamiltonian on the velocity gauge to study such systems.

3.3.2 Velocity Gauge

We will build the Hamiltonian in velocity gauge from the length gauge one. Starting from the fact
that the velocity gauge Hamiltonian must obey the Schrödinger equation
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i~
∂|ψA〉
∂t

= HA(t)|ψA〉 (3.3.7)

we multiply both sides of the equation by a unitary operator U(t) = eiα(r,t):

i~U(r, t)
∂|ψA〉
∂t

= U(r, t)HA(t)|ψA〉 (3.3.8)

i~
∂

∂t
(U(r, t)|ψA〉) = U(r, t)HA(t)U†(r, t)U(r, t)|ψA〉 − ~

∂α(r, t)

∂t
U(r, t)|ψA〉. (3.3.9)

Making the following identifications

HA = U†(r, t)H0U(r, t) (3.3.10)

|ψA〉 = U†(r, t)|ψE〉 (3.3.11)

α(r, t) = i
e

~
A(t) · r (3.3.12)

we see that eq.(3.3.9) becomes the Schrödinger equation for the length gauge. Thus, these identifi-
cations are the Hamiltonian and the wave functions for the velocity gauge. Translating this into the
tight-binding Hamiltonian:

HA = e−i
e
~A(t)·r

−∑
i,j

tij |i〉〈j|

 ei
e
~A(t)·r = −

∑
i,j

tije
i e~A(t)·(rj−ri)|i〉〈j| (3.3.13)

where |i〉 is the occupation state in position basis. The introduction of this phase is the Peierls substitu-
tion. We now have our Hamiltonian written in the velocity gauge, which, as seen in previous chapters,
can describe a system with periodic boundaries due to the periodicity of the complex exponential.

3.4 Current Density Operator

The current is obtained from the Hamiltonian from the variational principle [15]

Jα = − 1

V

dHA(t)

dAα
(3.4.1)

where V is the volume of the system. In order to separate the contributions at various orders, we
expand the Peierls phase, obtaining

HA =
∑
i,j

t (ri, rj) e
i e~A(t)·(rj−ri)|i〉〈j| (3.4.2)

=
∑
i,j

t (ri, rj)

(
1 + i

e

~
A(t) · (rj − ri) +

(
i
e

~
A(t) · (rj − ri)

)2
+ ...

)
|i〉〈j|

= H0 +
∑
i,j

t (ri, rj)

(
i
e

~
A(t) · (rj − ri) +

(
i
e

~
A(t) · (rj − ri)

)2
+ ...

)
|i〉〈j| (3.4.3)

where in the last step we separated the non-perturbed Hamiltonian H0 from the perturbation V (t).
As H0 does not depend on A(t), the current is just
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Jα = − 1

V

δV (t)

δAα
. (3.4.4)

which, applied to eq.(3.4.3), yields

Jα(t) = − 1

V

∑
i,j

(
evαij + e2vαβij A

β(t) + ...
)
|i〉〈j| (3.4.5)

where the nth order coefficient vij is written as

vαα1...αn
ij =

(
i

~

)n+1

t (ri, rj)
(
rαj − rαi

) (
rα1
j − r

α1
i

)
...
(
rαnj − r

αn
i

)
. (3.4.6)

These coefficients can be written in as commutators of H0 and the position operator. In order to do
so, let us start by writing the hopping integral as

t (ri, rj) = 〈i|H0|j〉. (3.4.7)

Note that we can also write a position vector as the action of the position operator on a state

ri|i〉 = r̂|i〉. (3.4.8)

With this, we can take the coefficient of the first-order term in eq.(3.4.5) and write it as

vαij =
i

~
〈i|H0|j〉

(
rαj − rαi

)
=
i

~
〈i|H0r

α|j〉 − 〈i|rαH0|j〉 (3.4.9)

=
i

~
〈i| [H0, r

α] |j〉 =
i

~
[H0, r

α]i,j (3.4.10)

where we use vαij . Going to second order, we have

(
i
e

~

)2
t (ri, rj)

(
rαj − rαi

) (
rβj − r

β
i

)
=
(
i
e

~

)2
〈i| [H0, r

α] |j〉
(
rβj − r

β
i

)
(3.4.11)

=
(
i
e

~

)2
〈i|
[
[H0, r

α] , rβ
]
|j〉

=
(
i
e

~

)2 [
[H0, r

α] , rβ
]
i,j

. (3.4.12)

With these two results, we can write the nth order coefficient as

vαα1...αn
ij =

(
i

~

)n+1

[[[[H0, r
α] , rα1 ] , ..., rαn ]]ij . (3.4.13)

Using the expression for Jα(t), we can write it in the Interaction picture as

JαI (t) = e
itH0
~ Jα(t)e−

itH0
~ . (3.4.14)

Writing the current in a many-particle basis, this expression becomes

JαI (t) = − 1

V

∑
i,j

(
evαij + e2vαβij A

β(t) + ...
)
c†i (t)cj(t) (3.4.15)
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where c†i (t) and cj(t) are the creation and annihilation operators in the interaction picture.

Finally, we can replace this expression in Kubo formula and arrive at an expression for the average
of the current:

〈Jα〉 (t) = − 1

V

∑
i,j

〈
c†i (t)cj(t)

〉
0

(
evαij + e2vαβij A

β(t)
)

(3.4.16)

− ie2

V ~
∑
i,j,k,l

vαijv
β
kl

∫ t

t0

dt1

〈[
c†i (t)cj(t), c

†
k(t1)cl(t1)

]〉
0
Aβ(t1). (3.4.17)

This expression for the average of J depends only on the commutators of H0 with the position operator
and the average of the creation and annihilation operators in the interaction picture.

There is, however, one problem with this expression: the creation and annihilation operators are
expressed in position basis when we only know how to calculate their averages in the eigenbasis. To
solve this, we will rewrite transform the sums over position states into sums in eigenstates. Looking
at the first term, we can write it as

− e
V

∑
i,j

〈
c†i (t)cj(t)

〉
0
vαij = − e

V

〈∑
i,j

Gji(t)v
α
ij

〉
0

(3.4.18)

where we defined the operator Gji(t) as c
†
i (t)cj(t). This sum can be written as the trace of the operators∑

ij

Gji(t)v
α
ij = Tr [G(t)vα] (3.4.19)

which means that they can be written in any basis. In particular, we will write them in the eigenbasis:∑
i,j

Gji(t)v
α
ij =

∑
m,n

Gnm(t)vαmn (3.4.20)

where the labels m and n denote states in the eigenbasis. The same procedure can be made for all the
other operators in eq.(3.4.17). Using the results that are obtained in Appendix A for the averages of
creation and annihilation operators

〈c†m(t1)cn(t2)〉0 = δmnf(εm)e
i
~ εm(t1−t2) (3.4.21)〈[

c†m(t)cn(t), c†p(t1)cq(t1)
]〉

0
= δnpδmq(f(εm)− f(εn))e

i
~ (εm−εn)(t−t1) (3.4.22)

the expression for the average of the current becomes

〈Jα〉 (t) = − 1

V

∑
m

f(εm)
(
evαmm + e2vαβmmA

β(t)
)

− ie2

V ~
∑
m,n

vαmnv
β
nm(f(εm)− f(εn))

∫ t

t0

dt1e
i
~ (εm−εn)(t−t1)Aβ(t1). (3.4.23)
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3.5 First-order Conductivity

With an expression for the average of the current, we can now proceed to calculate the conductivity.
For the zero-order term of eq.(3.4.23)〈

J (0)
α

〉
(t) = − e

V

∑
m

f(εm)vαmm (3.5.1)

we can expand vαmm, obtaining

vαmm =
i

~
[H0, r

α]m,m =
i

~
〈m|H0r

α − rαH0|m〉 =
i

~
εm(〈m|rα|m〉 − 〈m|rα|m〉) = 0 (3.5.2)

This manipulation is only valid for a system with open boundaries. For periodic boundaries, we identify
the operator r with the covariant derivative [17]. Due to time inversion symmetry, vαii also becomes
zero. This result makes sense, as the zero-order term represents the average of the current when no
electric field is applied, which should be zero.

For the first-order conductivity, we start by writing the average of the current in the space of
frequencies, as mentioned in Section 3.2. Applying

∫
dteiωt to both terms of eq.(3.4.23), we obtain

J (1)
α (ω) =

∫ +∞

−∞
dteiωt

[
e2

V

∑
m

f(εm)vαβmmA
β(t) . (3.5.3)

+
ie2

V ~
∑
m 6=n

vαmnv
β
nm(f(εm)− f(εn))

∫ t

t0

dt1e
i
~ (εm−εn)(t−t1)Aβ(t1)

 (3.5.4)

In the second sum, we wrote that the sum is for m 6= n. This is because, as vαmm = 0, in the case of
m = n, the result would be zero. The first term can be written as

e2

V

∑
m

f(εm)vαβmm

∫ +∞

−∞
dteiωtAβ(t) =

e2

V

∑
m

f(εm)vαβmmA
β(ω) (3.5.5)

=
e2

V

∑
m

f(εm)vαβmm

∫ +∞

−∞

dω′

2π
2πδ(ω − ω′)Aβ(ω′)

where in the last step we wrote the expression in the same form as in eq.(3.2.6). As for the second
term, the calculations become more complicated. Looking only at the terms that depend on t or t1,
we can write it as ∫ +∞

−∞
dt

∫ t

t0

dt1e
iωte

i
~ωmn(t−t1)Aβ(t1) (3.5.6)

where we wrote (εi − εj)/~ as ωmn. Expanding Aβ(t1) in a Fourier series, this expression becomes∫ +∞

−∞

dω′

2π

∫ +∞

−∞
dt

∫ t

t0

dt1e
i(ω+ωmn)te−i(ω

′+ωmn)t1Aβ(ω′). (3.5.7)

The major difficulty in this expression comes from the limits of the integral in t1. In Appendix B, we
use the integral representation of the Heaviside function to solve these integrals, which yield∫ +∞

−∞
dt

∫ t

−∞
dt1e

i(ω+ωmn)te−i(ω
′+ωmn)t1 =

2πiδ(ω − ω′)
ω + ωmn + i0+

(3.5.8)
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we can write the first-order term of the average of the current as

J (1)
α (ω) =

∫ +∞

−∞

dω′

2π
2πδ(ω−ω′)

e2
V

∑
m

f(εm)vαβmm −
e2

V ~
∑
m6=n

vαmnv
β
nm

(f(εm)− f(εn))

ω + ωmn + i0+

Aβ(ω′). (3.5.9)

In order to obtain the conductivity, we only need to replace Aβ(ω′) by the corresponding electric field.
Eq.(3.3.4) gives a relation between A(t) and E(t) which we can use to determine their relation in the
frequency space. Taking the Fourier transform of both terms of eq.(3.3.4), we get

E(ω) = iωA(ω). (3.5.10)

Using this result in eq.(3.5.9), we obtain

J (1)
α (ω) =

∫ +∞

−∞

dω′

2π
2πδ(ω − ω′)

− ie2

V ω′

∑
m

f(εm)vαβmm +
ie2

V ~ω′
∑
m 6=n

vαmnv
β
nm

(f(εm)− f(εn))

ω′ + ωmn + i0+

Eβ(ω′)

(3.5.11)
From this expression, we can write the conductivity as

σαβ(ω′) =
ie2

V ω′

−∑
m

f(εm)vαβmm +
1

~
∑
m 6=n

vαmnv
β
nm

(f(εm)− f(εn))

ω′ + ωmn + i0+

 . (3.5.12)

As we have not made any assumptions about H0, this expression is valid for any crystal.
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Chapter 4

Transport in Graphene

Having obtained the wavefunctions of graphene under a constant magnetic field in Chapter 2, and a
general expression for the first-order conductivity in Chapter 3, we will now calculate graphene’s linear
conductivity. After reaching an expression for it, we will compare it with numerical results obtained
using the KITE software, which uses the Kernel Polynomial Method (KPM) to efficiently calculate
transport coefficients. As such, a brief introduction to KPM and an example for the calculation of the
density of states will be presented.

4.1 Conductivity in the Length Gauge

The expression we obtained for the conductivity is written in the velocity gauge. However, when
using an approximated Hamiltonian H0, the length gauge yields better results. As such, we will write
the conductivity in the length gauge. As mentioned before, this is only valid for systems with open
boundary conditions, where the r operator is well-defined. Expanding vαβmm in the expression for the
conductivity (eq.(3.5.12))

− ie
2

V ω

∑
m

f(εi)v
αβ
mm = − ie

2

V ω

∑
m

f(εm)
i

~

[
vα, rβ

]
mm

=
e2

V ω~
∑
m6=n

vαmnr
β
nm (f(εm)− f(εn)) . (4.1.1)

and vαmnv
β
nm as

ie2

V ~ω
∑
m6=n

vαmnv
β
nm

(f(εm)− f(εn))

ω + ωmn + i0+
=

ie2

V ~ω
∑
m6=n

vαmn
i

~
(εm − εn) rβnm

(f(εm)− f(εn))

ω + ωmn + i0+

=
e2

V ~ω
∑
m6=n

vαmn
(
ωmn + ω′ + i0+ − ω′ − i0+

)
rβnm

(f(εm)− f(εn))

ω + ωmn + i0+

=
e2

V ~ω
∑
m6=n

vαmnr
β
nm(f(εm)− f(εn))− e2

~
∑
m,n

vαmnr
β
nm

(f(εm)− f(εn))

ω + ωmn + i0+
.

The first term of this expression cancels with the one obtained in eq.(4.1.1), leaving only

σαβ(ω) = − e2

V ~
∑
m 6=n

vαmnr
β
nm

(f(εm)− f(εn))

ω + ωmn + i0+
. (4.1.2)

This is the conductivity in the length gauge for a system with open boundary conditions.
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4.2 Equivalence Between Gauges for Periodic Boundaries

For periodic boundaries, we cannot handle the position operator as we do for open boundaries; instead,
we define it as

rαmn = i(δmn
∂

∂kα
− iξαmn) (4.2.1)

where ξαmn is the Berry connection, defined as

ξαmn = i〈m| ∂
∂kα
|n〉. (4.2.2)

Using this definition of r, we can write the rβnm(f(εm)− f(εn)) term in eq.(4.1.2) as

rβnm(f(εm)− f(εn)) =
[
rβ, ρ0

]
nm

= i

[
δmn

∂

∂kβ
f(εn)− iξβknm(f(εm)− f(εn))

]
(4.2.3)

The commutation relations we used in this calculation are written in eq.(34) of reference [17]. Further-
more, using eq.(28) of the same reference, we can write vαmn as

vαmn = − i
~

[rα, H0]mn =
1

~

[
δmn

∂εm
∂kα

− iξαkmn(εn − εm)

]
. (4.2.4)

Joining these two expression in eq.(4.1.2), the equation we obtain for the first-order conductivity is

σαβ(ω) = − ie2

V ~2

[∑
m

1

ω

∂εm
∂kα

∂εn
∂kβ

∂f(εn)

∂εn
−
∑
m,n

ξαmn(εn − εm)
ξβnm(f(εm)− f(εn))

ω + ωmn + i0+

]
. (4.2.5)

The first term in this expression is called the intra band term, and the second one the inter band term.
This expression is the same as eq.(89) of [17], where the first-order response of a crystal in length gauge
for periodic boundary conditions is studied. This means that eq.(4.1.2) can also be applied to systems
with periodic boundary conditions.

4.3 Graphene’s Conductivity

With this expression, we only need to calculate vαmn and rαmn. In order to determine these quantities
we will use the Dirac Hamiltonian of eq.(2.3.1) as H0, in similarity to what is done in [2]. Doing so,
we obtain for vαmn

vαmn =
i

~
vF [σ · (p+ eA(r)) , rα]mn (4.3.1)

where σ = σxêx + σy êy and σx and σy are the Pauli matrices, such that

σxêx + σy êy =

(
0 êx − iêy

êx + iêy 0

)
. (4.3.2)

AsA(r) is a function of r, their commutator is zero. This leaves only the term in p, whose commutator
with r is [

pα, rβ
]

= −i~δαβ .

Using this in the expression for vαmn, it becomes

vαmn =
i

~
vF [σ · p, rα]mn = vFσ

α
mn. (4.3.3)
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As for the value of rαmn, we start by expanding vαmn

vαmn =
i

~
[H0, r

α]mn =
i

~
(εm − εn) rαmn. (4.3.4)

Equaling this to the result we obtained in eq.(4.3.3), we get

rαmn =
−ivF
ωmn

σαmn.

Replacing these results in eq.(4.1.2), we get an expression for the conductivity

σαβ(ω) = − ie
2

V ~
∑
m6=n

v2F
ωmn

σαmnσ
β
nm

(f(εm)− f(εn))

ω + ωmn + i0+

where the σαmn and σβnm are not to be confused with the conductivity.

4.3.1 Calculation of σxx(ω)

All that is left is to calculate are the σαmn objects. A state with energy εm is written as

ψm,kx,n′(x, y) = e−ikxx

(
αm(kx, y, n

′)

βm(kx, y, n
′)

)

as determined in Chapter 2. Thus, we can write σmn as

σmn = N
∑
kx,k′x

∫ +∞

−∞
dxdyψ†m,kx,n′(x, y)σψn,k′x,n′(x, y)

where N is the number of states with energy εm. Notice that the n′ for both ψ is the same. As the
wavefunctions are centered around n′, if its value were to be different for both ψ, there would be no
region where both wavefunctions were non-zero. As such n′ has to take the same value for the integral
to be non-zero. Furthermore, the expression we will obtain for σαmn will be the same for any n′, i.e.,
for any of the solutions found in Chapter 2. Being so, we will only present the calculations for one of
the solutions obtained.
Writing ψm,kx,n′(x, y) as

ψm,kx,n′(x, y) = Cme
−ikxx

(
sgn(m)φ|m|−1(ỹ)

φ|m|(ỹ)

)
(4.3.5)

σmn becomes

NCmCn

∫ +∞

−∞
dxdye−ix(kx−k

′
x)

(
m

|m| φ|m|−1(ỹ
′), φ|m|(ỹ

′)

)(
0 êx + iêy

êx − iêy 0

)(
n
|n|φ|n|−1(ỹ)

φ|n|(ỹ)

)
.

Notice that the arguments ỹ are different for both wavefunctions, as they depend on kx. Starting by
solving the integral in x, we get ∫ +∞

−∞
dxe−ix(kx−k

′
x) = Lδ(kx − k′x)

leaving us with
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LNCmCnδ(kx − k′x)

[
sgn(m)(êx + iêy)

∫ +∞

−∞
dyφ|m|−1(ỹ)φ|n|(ỹ)

+sgn(n) (êx − iêy)
∞∫
−∞

dyφ|m|(ỹ)φ|n|−1(ỹ)

 .

The remaining integral can be solved using the orthogonality relations of the φm functions∫ +∞

−∞
dyφm(ỹ)φn(ỹ) = δmn

which lead to

σmn = LNCmCn
[
sgn(m)(êx + iêy)δ|m|−1,|n| + sgn(n) (êx − iêy) δ|m|,|n|−1

]
. (4.3.6)

As for the number of solutions N , we have already seen that they increase linearly with L. Knowing
that for φ

φ0
= 2

L we have four solutions, we can write the total number of solutions N as

N = 2
φ

φ0
L.

Using these results to calculate σxx(ω), we obtain

σxx(ω) = −2
φ

φ0
L2 ie

2

V ~
∑
m 6=n

(CmCn)2 v2F
ωmn

(f(εm)− f(εn))

ω + ωmn + i0+

·
(
sgn(m)δ|m|−1,|n| + sgn(n)δ|m|,|n|−1

) (
sgn(n)δ|n|−1,|m| + sgn(m)δ|n|,|m|−1

)
(4.3.7)

Simplifying the terms with the deltas and writing the volume of the system as L2
√
3
2 a

2, we obtain

σxx(ω) = − 2

πl2B

ie2

~
∑
m6=n

(CmCn)2 v2F
ωmn

(f(εm)− f(εn))

ω + ωmn + i0+
(
δ|m|−1,|n| + δ|m|,|n|−1

)
. (4.3.8)

For σxy(ω) the result is very similar:

σxy(ω) =
2

πl2B

e2

~
∑
m 6=n

(CmCn)2 v2F
ωmn

(f(εm)− f(εn))

ω + ωmn + i0+
(
δ|m|−1,|n| − δ|m|,|n|−1

)
. (4.3.9)

These expressions coincide with the ones that have already been derived in literature, such as in [18].

These are the expressions we will use in the comparisons with numerical results.

4.4 Kernel Polynomial Method - KPM

The Kernel Polynomial Method (KPM) is a numerical method that allows to efficiently calculate
quantities that are written as a trace of operators. This is done by expanding all functions of operators
in Chebyshev polynomials, whose recursion relations make it much faster to calculate said quantities.
The introduction made here is based on [15].
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4.4.1 Chebyshev Polynomials

The Chebyshev polynomial of nth order is defined as

Tn(x) = cos(n arccos(x))

First of all, this means both the argument is defined in the interval ]−1, 1[. This is important, because
usually the arguments of the functions we want to use are not in this range, so a scaling will be needed in
order to apply this method. Second, the Chebyshev polynomials obey the following recursion relation

Tn+1(x) = 2xTn(x)− Tn−1

which can be easily proved from its definition, replacing x by cos(θ):

Tn+1(cos(θ)) = cos((n+ 1)θ) = cos(nθ) cos(θ)− sin(nθ) sin(θ)

= 2 cos(θ) cos(nθ)− cos(θ) cos(nθ)− sin(θ) sin(nθ)

= 2 cos(θ)Tn(cos(θ))− [cos(−θ) cos(nθ)− sin(−θ) sin(nθ)]

= 2 cos(θ)Tn(cos(θ))− Tn−1(cos(θ))

Taking the first two polynomials form their definition,

T0(x) = 1

T1(x) = x

we can now obtain any polynomial from just these two.
These polynomials also satisfy an orthogonality relation:∫ 1

−1

dx

π
√

1− x2
Tm(x)Tn(x) =

1 + δn0
2

δmn

4.4.2 Expansion of a function in a series of Chebyshev Polynomials

Any function f :]− 1, 1[→ R can be expressed in a series of Chebyshev polynomials:

f(x) =

∞∑
n=0

anTn(x)

The coefficients an can be determined using the orthogonality relation:∫ 1

−1

dx

π
√

1− x2
Tn(x)f(x) = an

1 + δn0
2

⇒ an =
2

1 + δn0

∫ 1

−1

dx

π
√

1− x2
Tn(x)f(x)

As an example, let us apply this to a function that appears in the expression for the density of states:
the Dirac Delta.

δ(x− ε) =

∞∑
n=0

an(ε)Tn(x)

The coefficients an(ε) are given by:
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an(ε) =
2

1 + δn0

∫ 1

−1

dx

π
√

1− x2
Tn(x)δ(x− ε) =

2

1 + δn0

Tn(ε)

π
√

1− ε2

We can thus write the Dirac-delta as:

δ(x− ε) =
1

π
√

1− ε2

[
1 + 2

∞∑
n=1

Tn(ε)Tn(x)

]
Another important point that we have to take care of is that the functions that can be expanded in

Chebyshev polynomials have to have their arguments in the interval ]− 1, 1[. As the functions we are
expanding depend on the Hamiltonian, we need to define the action of a function of the Hamiltonian.
For a eigenket of the Hamiltonian |n〉 with eigenvalue εn, we can write:

f(H)|n〉 = f(εn)|n〉

This means that for rescaling the Hamiltonian, what we have to take into account are its eigenvalues.
Thus, the new Hamiltonian and energy become

H̃ = (H − b) /λ

Ẽ = (E − b)λ

with b = (Emax + Emin)/2 and λ = (Emax − Emin)/(2 + ε). The ε is an arbitrarily small value,
and is in the definition of λ to ensure that the arguments do not fall in the boundaries of the interval
]− 1, 1[. Let us now apply this to the density of states:

ρ(ε) =
1

V

∑
n

δ(ε− εn) =
1

V
Tr [δ(ε−H)] =

1

V
Tr[δ(λ(ε̃− H̃))] ==

1

λV

∑
n

an(ε̃)Tr[Tn(H̃)]

with the an(ε) coefficients determined earlier. As we can see, this expression is formally the same as
the original one, the only difference being the additional λ factor in the denominator.

For other functions, such as the conductivity, other quantities that depend on the energy, such as
the frequency, chemical potential and temperature, also have to be rescaled; however, the resulting
expression will always be formally identical to the original one.

4.4.3 Evaluation of Traces

Although for the density of states, we only need to calculate the trace of the Chebyshev polynomials, in
the general case, we have to calculate the trace of the product of operators and Chebyshev polynomials,
such as:

Tr
[
vαigR

( ε
~

+ ω
)
vβδ(ε−H)

]
(4.4.1)

where gR is the retarded Green function. Although this may look time-consuming at first, using the
Chebyshev polynomials’ recursion relation, it becomes a very fast process. Let us start by analyzing
the simple case with just one operator and a Chebyshev polynomial. Taking |φ〉 and |ψ〉 to be arbitrary
states, we can write the general element we have to calculate as:
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µψφn = 〈ψ |ATn(H)|φ〉 = 〈ψA|φn〉

Here, |φn〉 = 2H|φn−1〉 − |φn−2〉, so we can recursively calculate the next µn just by knowing the
previous ones. This saves a lot of time, because if we did not have these recurrence relation, for every
µn we would have to calculate explicitly the corresponding polynomial, which would take a lot more
time.

When there is more than one Chebyshev polynomial, such as in eq.(4.4.1), the procedure we apply
is the following: we define our object,

µψφnm = 〈ψ |ATn(H)BTm(H)|φ〉

and now we fix a value of m, for which µnm becomes
〈
ψ |ATn(H)|φBm

〉
. Now this is just like the

previous case, where we can recursively obtain all Tn(H)|φBm〉. After obtaining these values for all n
and fixed m, we increase m, obtaining |φm+1〉 by recursion and repeat the same procedure again for
all n, and so on for all values of m. For objects which have more than two Chebyshev polynomials,
the procedure is analogous.

Finally, we just need to calculate the trace. In order to do that, let us start by considering a random
vector defined as

|r〉 =
D−1∑
i=0

ξir|φi〉

where {|φi〉} is a basis of the system, D is the number of states of the system and ξri is a complex
random variable with the following properties:

〈ξri〉 = 0

〈ξr′iξrj〉 = 0

〈ξ∗r′iξrj〉 = δr′rδij .

We can write the object 〈r |A| r〉 as

〈r |A| r〉 =
∑
ij

ξ∗riξrjAij

and calculating its average, using the properties we imposed to ξri, we get

〈〈r |A| r〉〉 =
∑
ij

〈ξ∗r′iξrj〉Aij =
∑
i

Aii = Tr [A] .

This means that with a random distribution with the properties mentioned above, we can calculate the
trace of operators from random vectors. There is, however, a question that arises from this method:
how good of an approximation is this method? As this result is only valid on average, there is bound
to be some error from the actual quantity, so we need to quantify that. We can do that by defining
the average over R realizations:

Θ =
1

R

D−1∑
r=0

〈r |A| r〉
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The variation around the average is given by (δΘ)2 =
〈
Θ2
〉
− 〈Θ〉2, whose expression is:

(δΘ)2 =
1

R

[
Tr
(
A2
)

+
(〈
|ξri|4

〉
− 2
) D−1∑

i=0

A2
ii

]
The first thing that stands out is that the variation depends on the random distribution chosen,

which means that we want to chose one that minimizes the variation. The minimum value for the〈
|ξri|4

〉
is 1, and can be demonstrated as follows. Let x = |ξri|. Now, taking the variance of x2, we

get:

〈(
x2 −

〈
x2
〉)2〉

=
〈
x4 − 2x2

〈
x2
〉

+
〈
x2
〉2〉

=
〈
x4
〉
−
〈
x2
〉2

As we already know that
〈
x2
〉
is 1 from the established properties of the distribution, added to the

fact that the variance is cannot be negative, we have that
〈
x4
〉
≥ 1. This leads to the smallest variance

possible being:

(δΘ)2min =
1

R

[
Tr
[
A2
]
−

D−1∑
i=0

Aii

]
which would be exactly zero in the basis in which A is diagonal. However, it is due to the difficulty of
finding such a basis that we are taking this procedure.

4.4.4 Kernels

When approximating a function with a finite number of Chebyshev polynomials, as it will happen
when running numerical simulations, there will be some oscillations near points where the function
is not continuous. A way to improve the approximation [15] is by introducing a new coefficient wn
(weight function) in every term of the expansion such that the oscillations are reduced. A constraint
for this wn is that as N →∞:

fKPM (x) =
1

π

1√
1− x2

N∑
n=0

wnanTn(x)→ f(x)

so that in this limit we get our initial function. With this weight function defined, we can introduce
the Kernel function:

KN (x, y) =

N−1∑
n=0

2

1 + δn0
wnTn(x)

Tn(y)

π
√

1− y2

The kernel gives us a mapping between the function that we are trying to approximate and approxi-
mated function:

fKPM (x) =

∫ 1

−1
KN (x, y)f(y)dy

From the various kernels that can be used, the most common ones are listed below:

4.4.4.1 Dirichlet Kernel

The Dirichlet kernel is obtained with wDn = 1 and is equivalent to the truncation of the series without
a weight function. This kernel remains a good approximation as long as the function f(x) does not
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contain any discontinuities.

4.4.4.2 Fejér Kernel

The Fejér kernel can be obtained from the Dirichlet kernel in the following way:

KF
N (x, y) =

1

N

N∑
n=0

KD
n (x, y)

which results in the coefficients

wFn = 1− n

N

This kernel has the advantage of lowering the weight of higher-order coefficients of the Chebyshev
expansion, which are the ones responsible for oscillations near discontinuities. With these features,
this kernel is more appropriated for functions with discontinuities than the Dirichlet kernel.

4.4.4.3 Jackson Kernel

The Jackson kernel is a kernel that tries to minimize the spreading of sharp features of the function;
as such, we will use it to approximate Dirac deltas. Its weight function is given by:

wJn =
(N − n+ 1) cos

(
πn
N+1

)
+ sin

(
πn
N+1

)
cot
(

π
N+1

)
N + 1

To see how this kernel behaves when approximating a Dirac delta, we are going to calculate the
approximated function’s average and variance.

〈x〉 =

∫ 1

−1
xδKPM (x)dx

We can write x as T1(x) and δKPM (x) using the previously obtained expression, but this time with
the added weight. This results in:

〈x〉 =

∫ 1

−1

N−1∑
n=0

1

π
√

1− x2
2wn

1 + δn0
Tn(x)Tn(ε)T1(x)dx

As we are making ε = 0, we will have to work with the Chebyshev polynomials in zero, which are
simply 0 for odd n, and (−1)n/2 for even n.

〈x〉 =

N−1∑
n=0

2wn
1 + δn0

Tn(0)

∫ 1

−1

Tn(x)T1(x)dx

π
√

1− x2
==

N−1∑
n=0

wnTn(0)δn,1 = w1T1(0) = 0

which is the expected result for the Dirac delta. Moving on to the variance, we need only calculate〈
x2
〉
, as the average was already seen to be zero. Writing x2 as T2(x) + T0(x), we have
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Figure 4.1: Comparison of a Gaussian with σ = π/32 with δKPM (x) calculated with 32 polynomials
[15]

〈
x2
〉

=

∫ 1

−1

N−1∑
n=0

1

π
√

1− x2
2wn

1 + δn0
Tn(x)Tn(0)

[
T2(x) + T0(x)

2

]
dx

=
1

2

N−1∑
n=0

wn (δn,0 − δn,2) =
1

2
(w0 − w2)

Substituting the w coefficients in the equation and working the expression, we get to the result:

〈
x2
〉

=
N sin2

(
π

N+1

)
N + 1

We can now take the limit for largeN , from which we obtain an expression for the standard deviation:

σ ≈
∣∣∣sin( π

N

)∣∣∣ ≈ π

N

In order to evaluate this result, we can compare it with a Gaussian with σ equal to the result obtained.
The results are in represented in Fig.4.1.

Although near the peak, the two curves coincide almost completely, near the base, a difference
emerges. We can analyze this difference by calculating higher-order moments for this distribution.
Calculating

〈
x4
〉
, we get the following expression:

〈
x4
〉
≈ 1− 2

( π
N

)2
which differs from the one for a Gaussian distribution:

〈
x4
〉

= 3σ4 ≈ 3
( π
N

)2
→ 0

These results mean that, although this kernel gives us a good approximation of the Dirac delta for a
small value of N , the same does not apply for distributions of the form xnδ(x), where oscillations will
start to appear.
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4.4.4.4 Lorentz Kernel

Although the Jackson kernel is the best choice for functions with sharp features, it is not for Green
functions, whose imaginary part approaches a Lorentzian rather than a Gaussian, as is the case for the
Dirac delta. The weight function for the Lorentz kernel is:

wLn =
sinh [λ (1− n/N)]

sinh(λ)

Here, λ is a free parameter that represents a compromise between good resolution and damping of the
oscillations.

4.4.5 Example - Density of States

We will now apply this method to the calculation of the density of states on graphene with periodic
boundary conditions. As seen before, the density of states is given by:

ρ(ε̃) =
1

λV

∑
n

an(ε̃)Tr[Tn(H̃)]

First, we need to define the action of the Hamiltonian on the basis states. The basis we are going
to use is {|a,m, n〉, |b,m, n〉}, where |a,m, n〉 denotes an electron on an atom A at position (m,n)

in lattice coordinates. The same goes for |b,m, n〉, but this represents a B atom. Remembering the
Hamiltonian for graphene in a magnetic field (eq.(2.2.12)):

H = −t
∑
m,n

e
iπφ
φ0
n
a†(m,n)b(m,n) + e

−iπφ
φ0
n
a†(m,n)b(m− 1, n) + a†(m,n)b(m,n− 1) + h.c

we can apply it to the basis vectors, obtaining:

H|a,m, n〉 = e
−iπφ

φ0
n|b,m, n〉+ e

iπφ
φ0
n|b,m− 1, n〉+ |b,m, n− 1〉

H|b,m, n〉 = e
iπφ
φ0
n|a,m, n〉+ e

−iπφ
φ0
n|a,m+ 1, n〉+ |a,m, n+ 1〉.

With this information, we can now create a program that calculates the density of states using KPM.
The random distribution used to generate random vectors will be

ξj = exp(2πixj)

where xj is a random number between 0 and 1 with uniform distribution. Its properties can easily be
checked:

〈ξj〉 =

∫ 1

0
dxje

2πixj = 0

〈ξ∗i ξj〉 = 〈ξ∗i 〉 〈ξj〉 (−δij + 1) + δij 〈ξ∗i ξi〉 = δij

∫ 1

0
dxie

2πi(xi−xi) = δij

〈ξiξj〉 = 〈ξi〉 〈ξj〉 (−δij + 1) + δij 〈ξiξi〉 = δij

∫ 1

0
dxie

4πixi = 0

With this random distribution, we made a program in python that calculates the density of states
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of graphene with periodic boundary conditions. In addition to the density of states calculated with
KPM, we also calculated the eigenvalues of the Hamiltonian and plotted them in the same graphic, in
order to check if they coincide with the peaks of the Landau levels. The results are in Fig.4.2

-0,3 -0,2 -0,1 0 0,1 0,2 0,3

E / t

0

0,5

1

1,5
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2,5
Density of States

Hamiltonian’s Eigenvalues

Figure 4.2: Density of states of a graphene lattice 128×128 with periodic boundary conditions cal-
culated using KPM using 1024 Chebyshev polynomials, φ/φ0 = 2/L and Jackson Kernel
(black line) and eigenvalues of the Hamiltonian (red dots) for low energies.

As it can be seen, the peaks of the Landau levels all coincide with the obtained eigenvalues, which
demonstrates the accuracy of the KPM.

We can also vary the number of polynomials and see how it affects the resolution of the peaks.
The results are on Fig.4.3. In here, we can clearly see that as the number of Chebyshev polynomials
increase, the Landau levels become more defined. For 1024 polynomials, the density of states is almost
entirely comprised of Landau levels, which means that for this case, this number of polynomials is
good enough to have an accurate description of the density of states of graphene.
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Figure 4.3: Density of states as calculated with the same parameters as in Fig.4.2, but with different
number of Chebyshev polynomials: a)128; b)256; c)512 and d)1024
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4.5 KITE Results

In this section, we will compare results obtained with KITE with the expressions obtained earlier. The
expressions we will use are those of eqs.(4.3.8) and (4.3.9)

σxx(ω) = − 2

πl2B

ie2

~
∑
m 6=n

(CmCn)2 v2F
ωmn

(f(εm)− f(εn))

ω + ωmn + iγ

(
δ|m|−1,|n| + δ|m|,|n|−1

)
(4.5.1)

σxy(ω) =
2

πl2B

e2

~
∑
m6=n

(CmCn)2 v2F
ωmn

(f(εm)− f(εn))

ω + ωmn + iγ

(
δ|m|−1,|n| − δ|m|,|n|−1

)
. (4.5.2)

where γ is a phenomenological parameter that describes the inelastic scattering of phonons. It is also
necessary to the assure that the conductivity converges when ω = ωmn.

We start by plotting the results obtained by KITE against eq.(4.3.8) in Fig.4.4 a). The distinctive
feature of this conductivity is that there are peaks that correspond to the energy differences between
Landau levels (ωmn). We can also see how for lower frequencies, both the analytical and numerical
results strongly agree; however, for higher frequencies, larger differences between the curves start
to arise, especially in the case of the imaginary part. This behavior happens because we have to
truncate the sum in eq.(4.3.8) at some energy level, and also because the wavefunctions we used are
approximations for low energies.
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Figure 4.4: a) Plot of σxx for εF = 0.1 eV , φ
φ0

= 1
1024 and γ = 0.05 eV. The analytical curves

are obtained from eq.(4.3.8) and the sums are made for the lowest 100 energy levels. b)
Representation of the imaginary part of σxx(ω) for different numbers N of states used in the
calculation through eq.(4.3.8) and comparison with the KITE result. The other parameters
are the same as in a).

The effect of the truncation of the sum can also be studied. In Fig.4.4 b) we plot the imaginary
part of σxx(ω) for three values of N, where N is the number of terms we consider in the sum over m
and n in eq.(4.3.8). In this figure, we can see that, although the agreement between all the curves is
very good for the first peak, for higher energies, we get improved results for higher values of N. This
means that for a high enough N, we can get a very good agreement even for high energies between the
analytical and numerical curves.
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Figure 4.5: Real part of σxx as function of ω
√

φ0
φ for εF = 0.1 eV and γ = 0.05 eV calculated using

KITE; b) σxx calculated with the same parameters as that of a), but the conductivity has
been divided by

√
φ
φ0
..

We now shift our focus to the effect the variation of the magnetic field has on the conductivity. In
Fig.4.5 a) we plotted σxx as function of ω

√
φ0
φ . The reason we scaled ω by such a factor is that, as said

before, the position of the peaks correspond to the differences in energy between the Landau levels.
As we saw before, these energies depend on

√
B, which means that by representing σxx as we do, the

position of the peaks should be the same independently of the value of the magnetic field. This is
exactly what we observe in Fig.4.5 a), where the peaks are all in the same position.

Another aspect of this graphic, is that the amplitude of the peaks increases with the magnetic field.
Looking at eq.(4.3.8), we see that the dependence in B are in lB and ωmn. In the peaks, the term with
the largest contribution to the amplitude is the one in which ω ≈ ωmn, making it so that the factors
that contribute to the dependence on B are

1

l2Bωmn
∝
√
B.

The larger the peak, the more irrelevant the contributions from other terms are, meaning that this
tendency should be better observed the largest peaks. In contrast, for higher frequencies, as the peaks
will be shorter, the weight of the term where ω ≈ ωmn will be smaller; in turn, the 1

ω+ωmn+iγ
factor

will have an increased weight, which will make it so the conductivity does not depend on B.

This dependence on the square root of the magnetic field is not obvious in Fig.4.5 a), so we rescale
these conductivities in Fig.4.5 b). We can see that for the first peak, the three curves have very
close values. As the energy increases, the curves grow apart, until they take different constant values.
Looking back at Fig.4.5 a), we see that these constant values are the same for all curves, which means
that for high energies, the conductivity does not depend on the magnetic field.

Another interesting aspect of the conductivity is its dependence on the Fermi energy. In Fig.4.6 we
represent σxx(ω) for εF = 0.5 eV. Unlike the previous cases, with this Fermi energy, the peaks of the
conductivity are much less pronounced. Additionally, we can see that for ω ∼ 1eV, there is a sudden
increase for all the curves. This behavior is also present in graphene without magnetic field, where
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there is a step at ω = 2εF [19]. As the Fermi energy in this case is 0.5 eV, we can see that the position
of the step in the case when there is no magnetic field is in the area where the sudden rise of the σxx

happens with magnetic field.
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Figure 4.6: Plot of the linear conductivity σxx by KITE with parameters εF = 0.5 eV and γ = 0.05 eV.

Finally, we compute σxy(ω), which is plotted in Fig.4.7. In this case, the agreement between the
analytical and numerical results is even better than for σxx, as the curves almost coincide. We can also
see that there are no peaks in the plot of σxy(ω), which is due to the minus sign in one of the deltas.

/home/joao/xy_B_2048_ef_0.1_scat_0.05.agr

Figure 4.7: Representation of σxy(ω) for εF = 0.1 eV, φ
φ0

= 1
2048 , γ = 0.05 eV, calculated with KITE

and through eq.(4.3.9).

In all the comparisons between numerical and analytical results, we see that there is a discrepancy
at ω = 0. This is due to the broadning of the peaks, which is a consequence of the fact that γ is non-
zero. The Landau levels, which should be highly localized around the Landau energies, acquire a finite
width, which introduce states that are not physical. Furthermore, numerically, for low frequencies, the
conductivity is calculated through the sum of two divergent terms. If there is not enough resolution,
they cancel exactly.
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Chapter 5

Conclusions

In Chapter 1, we found a good approximation for the wavefunctions and energy of a square lattice
with periodic boundary conditions by working the equations obtained by the Peierls substitution on
the tight-binding Hamiltonian. The solutions obtained are valid for low energies and have the form
of the wavefunctions of the quantum harmonic oscillator. Furthermore, we also saw that for systems
with size L ∼ 103 with open boundaries is described with good accuracy by a periodic boundaries
description. In the last section of this chapter, we determined an expression for the vector potential
that respects periodic boundary conditions for any crystal.
In Chapter 2, we used two different gauges to implement the Peierls phase in graphene’s tight-binding

Hamiltonian, which yield different constraints to the flux after applying periodic boundary conditions.
Working the resulting equations, we arrived at two types of solutions for the wavefunctions: smooth
ones, and ones with an oscillating phase. Just as in the square lattice, the approximated solutions for
low energy in graphene with a magnetic field are the wavefunctions of the quantum harmonic oscillator.
However, unlike the square lattice, the Landau levels go with

√
λ and not with λ. Additionally, we also

deduced the energy and wavefunctions of graphene through minimal coupling in the Dirac Hamiltonian,
which we interpreted to be equivalent to an approximation of first-order of the Peierls phase. Comparing
the analytical results with numerical ones, we saw that our approximated solution for low energies were
in good agreement with the ones obtained from the diagonalization of the Hamiltonian. Once more,
we checked that systems with open boundaries are well described by periodic boundary conditions for
L ∼ 103.
In Chapter 3, we presented a deduction of Kubo formula, which enables us to calculate the average

of an operator up until any order. After writing the first-order Kubo formula, we worked an expression
for the current density operator, thus obtaining an expression for its average.
In Chapter 4, we wrote the expression for the first-order conductivity in the length gauge, both

for systems with periodic or boundary conditions. Replacing H0 with the Dirac Hamiltonian, we
obtained the first-order conductivities σxx(ω) and σxy(ω). Using the KITE software, we were able to
compare the obtained expressions with numerical results. These expressions proved to describe the
conductivity accurately for low frequencies; as for high frequencies, the truncation of the sums in the
analytical expressions constitutes a barrier to better results. Another important point is that we could
identify the dependence of the conductivity in B in the graphics we obtained.
Summing up, we were able to obtain a good approximation for wavefunctions of graphene under a

magnetic field, and used them to calculate its linear conductivity accurately.





Chapter 6

Appendices

6.1 Appendix A - Averages of Creation and Annihilation Operators

Calculation of
〈
c†i (t)cj(t)

〉
0

From eq.(3.1.10), we can write the time evolution equation for an operator in the interaction picture
as

d

dt
JI =

i

~
[H0, JI ] .

Applying this equation for a creation operator, we get

d

dt

(
c†i (t)

)
=
i

~

[
H0, c

†
i (t)
]

== e
itH0
~
i

~

[
H0, c

†
i

]
e−

itH0
~ (6.1.1)

where c†i (t) is the creation operator in the Interaction picture and c†i is the one in the Schrödinger
picture. The commutator

[
H0, c

†
i

]
yields

[
H0, c

†
i

]
= εic

†
i .

Putting this result in eq.(6.1.1), we obtain

d

dt

(
c†i (t)

)
=
i

~
εic
†
i (t)

whose solution is

c†i (t) = c†ie
i
~ εi(t−t0)

where t0 is the instant the perturbation is turned on. As for the annihilation operator, the solution is
just the hermitian conjugate

ci(t) = cie
− i

~ εi(t−t0).

With this, we can write 〈c†i (t1)cj(t2)〉0 as

〈c†i (t1)cj(t2)〉0 = 〈c†icj〉0e
i
~ εi(t1−t0)e−

i
~ εj(t2−t0).

Having dealt with the time dependence, we need to calculate the average of the operators in the
Schrödinger picture. We can start by writing it as

〈c†icj〉0 = Tr
[
ρ0c
†
icj

]
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Using Wick theorem for finite temperature, this average yields

〈c†icj〉0 = δijf(εi)

where f(εi) is the Fermi-Dirac distribution.
Finally, putting this expression in the average of the operators in the interaction picture, we obtain

〈c†i (t1)cj(t2)〉0 = δijf(εi)e
i
~ εi(t1−t2).

Calculation of
〈[
c†icj, c

†
kcl

]〉
0

In order to calculate this average, we start by expanding the commutator:[
c†icj , c

†
kcl

]
= c†icjc

†
kcl − c

†
kclc

†
icj

= c†icjc
†
kcl + c†kc

†
iclcj − c

†
k

{
clc
†
i

}
cj

= c†icjc
†
kcl + c†ic

†
kcjcl − δilc

†
kcj

= c†i

{
c†kcj

}
cl − δilc†kcj

= δkjc
†
icl − δilc

†
kcj

Putting this result back into the average, what we get is〈[
c†icj , c

†
kcl

]〉
0

=
〈
δkjc

†
icl − δilc

†
kcj

〉
0

== δkj

〈
c†icl

〉
0
− δil

〈
c†kcj

〉
0

Using the result from the previous section, we obtain the following result〈[
c†icj , c

†
kcl

]〉
0

= δkjδil (f(εi)− f(εj))

Calculation of
〈[
c†icj,

[
c†kcl, c

†
mcn

]]〉
0

Similarly to the previous case, we want to expand this commutator in terms of the previous order term.
Expanding

〈[
c†icj ,

[
c†kcl, c

†
mcn

]]〉
0
we obtain

[
c†icj ,

[
c†kcl, c

†
mcn

]]
=
[
c†icj , c

†
kclc

†
mcn

]
−
[
c†icj , c

†
mcnc

†
kcl

]
(6.1.2)

From this expression, we can rearrange the order of the operators c†kclc
†
mcn in the first commutator

so as to match that of the second one, and cancel it, thus leaving only the commutators that were
needed.

c†kclc
†
mcn = c†kcn

{
c†m, cl

}
− c†kc

†
mclcn

= c†kcn

{
c†m, cl

}
− c†mc

†
kcncl

= c†kcn

{
c†m, cl

}
− c†mcl

{
c†k, cn

}
+ c†kclc

†
mcn

Replacing this into the first term in eq.(6.1.2),

[
c†icj , c

†
kclc

†
mcn

]
=
{
c†m, cl

}[
c†icj , c

†
kcn

]
−
{
c†k, cn

}[
c†icj , c

†
mcl

]
+
[
c†icj , c

†
kclc

†
mcn

]
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We can now see that the last term in this expression cancels the last one on eq.(6.1.2), which leads
to:

〈[
c†icj ,

[
c†kcl, c

†
mcn

]]〉
0

=
{
c†m, cl

}〈[
c†icj , c

†
kcn

]〉
0
−
{
c†k, cn

}〈[
c†icj , c

†
mcl

]〉
0

As we already have the result of the averages that are left, we can replace it, obtaining〈[
c†icj ,

[
c†kcl, c

†
mcn

]]〉
0

= δmlδkjδin [f(εi)− f(εj)]− δknδmjδil [f(εi)− f(εj)]

6.2 Appendix B - Integrals of complex exponentials

In Chapter 4, we need to calculate the result of∫ +∞

−∞
dt

∫ t

−∞
dt′ei(ω+ωpq)te−i(ω

′+ωpq)t′

When both integrals in time go from −∞ to +∞, this integral becomes easy to calculate; however, in
this case, one of the upper limits of the integral is not +∞ but t. This can be solved by inserting an
Heaviside function

Θ(t) =

∫ +∞

−∞

dω

2πi

eiωt

ω − iε

such that for t1 > t it becomes zero. This makes us able to prolong the second integral until +∞,
yielding

∫ +∞

−∞
dt

∫ t

−∞
dt′ei(ω+ωpq)te−i(ω

′+ωpq)t′ =

∫ +∞

−∞
dt

∫ +∞

−∞
dt′
∫ +∞

−∞

dω′′

2πi

eiω
′′(t−t′)

ω′′ − iε
ei(ω+ωpq)te−i(ω

′+ωpq)t′

=

∫ +∞

−∞
dt

∫ +∞

−∞
dt′
∫ +∞

−∞

dω′′

2πi

1

ω′′ − iε
ei(ω+ωpq+ω

′′)te−i(ω
′+ωpq+ω′′)t′

=

∫ +∞

−∞

dω′′

2πi

2πδ(ω + ωpq + ω′′)

ω′′ − iε
2πδ(ω′ + ωpq + ω′′)

= i
δ(ω − ω′)

ω′ + ωpq + iε
2πδ(ω′ + ωpq + ω′′)

In order to calculate the second-order conductivity, we need to calculate the next order integral

∫ +∞

−∞
dt

∫ t

−∞
dt1

∫ t1

−∞
dt2e

i(ω+ωpi)te−i(ω1+ωpm)t1e−i(ω2+ωmi)t2

which is done in exactly the same fashion as the previous one. In this one, we need to introduce two
Heaviside functions, which results in∫ +∞

−∞
dt

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫
dω′

2πi

∫
dω′′

2πi

ei(ω+ωpi+ω
′)t

ω′ − iε
e−i(ω1+ωpm+ω′−ω′′)t1

ω′′ − iε
e−i(ω2+ωmi+ω

′′)t2

=

∫
dω′

2πi

∫
dω′′

2πi

2πδ(ω + ωpi + ω′)

ω′ − iε
2πδ(ω1 + ωpm + ω′ − ω′′)

ω′′ − iε
2πδ(ω2 + ωmi + ω′′)

= 2π

∫
dω′

δ(ω + ωpi + ω′)

ω′ − iε
δ(ω1 + ω2 + ωmi + ωpm + ω′)

ω2 + ωmi + iε

= −2π
δ(ω − ω1 − ω2)

ω1 + ω2 + ωpi + iε

1

ω2 + ωmi + iε
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where in the third to fourth step we used that ωmi + ωpm = ωpi. For the second term we need to
calculate, it is exactly the same procedure, where only the indices of the energy differences in the
exponential change. Substituting them, we get that the second integral is given as

−2π
δ(ω − ω1 − ω2)

ω1 + ω2 + ωpm + iε

1

ω2 + ωpi + iε

6.3 Appendix C - Calculation of ∇×A

The magnetic field B can be written as the curl of A

B = (∂xAy − ∂yAx) êz.

Although we normally write A in its components along the reciprocal lattice vectors, we can convert
it into cartesian coordinates. Writing the reciprocal lattice vectors along in its components along the
coordinate axes

b1 = b1xêx + b1y êy

b2 = b2xêx + b2y êy

the vector potential becomes

A(r) = A1(r)b1 +A2(r)b2 = (A1(r)b1x +A2(r)b2x)êx + (A1(r)b1y +A2(r)b2y)êy

Replacing this result in the equation for the magnetic field, we obtain

B = (∂x(A1(r)b1y +A2(r)b2y)− ∂y(A1(r)b1x +A2(r)b2x)) êz.

We now have to ascertain the dependence on x and y inside A1 and A2. Writing the position vector
as r = m1a1 +m2a2, where m1 and m2 can take any real value, we can write the components of A as

A1(r) =
∑
j

A1jr · bj = 2π
∑
j

A1jmj

A2(r) =
∑
j

A2jr · bj = 2π
∑
j

A2jmj

However, what we need to calculate are the derivatives in order to x and y, so we need to write x1 and
x2 as their function. Rewriting r, we have

r = (m1a1x +m2a2x)êx + (m1a1y +m2a2y)êy

From here, we can we can write equations for m1 and m2 as function of x and y:

m1 =

(
a2yx− a2xy

V

)
m2 = −

(
a1yx− a1xy

V

)
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where V = a11a22 − a12a21 is the area of a unit cell. Replacing in the expression for A1 and A2, we
have

A1(r) =
2π

V
(A11 (a2yx− a2xy)−A12 (a1yx− a1xy))

A2(r) =
2π

V
(A21 (a2yx− a2xy)−A22 (a1yx− a1xy))

We can now put these expressions in the equation for the magnetic field

B =
2π

V
((A11a2y −A12a1y) b1y + (A21a2y −A22a1y) b2y + (A11a2x −A12a1x) b1x + (A21a2x −A22a1x) b2x) êz

B =
(2π)2

V
(A21 −A12) êz

Writing B = Bêz, this expression becomes

B =
(2π)2

V
(A21 −A12) (6.3.1)

81



Bibliography

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,
and A. A. Firsov, Electric field effect in atomically thin carbon films, Science. 306, 666, (2004)

[2] X. Yao and A. Belyanin, Nonlinear optics of graphene in a strong magnetic field, J. Phys. Condens.
Matter 25 , 054203 (2013)

[3] X. Yao and A. Belyanin, Giant optical nonlinearity of graphene in a strong magnetic field, Physical
Review Letters, 2012

[4] Cheng, J. L. Vermeulen, N. Sipe, J. E.; Third order optical nonlinearity of graphene; New Journal
of Physics; 2014

[5] M Tahir and K Sabeeh; Gap opening in the zeroth Landau level in gapped graphene: pseudo-
Zeeman splitting in an angular magnetic field; Journal of Physics: Condensed Matter; 2012

[6] Cheng, J. L. Guo, C., Nonlinear magneto-optic effects in doped graphene and in gapped graphene:
A perturbative treatment, Physical Review B, 2018

[7] Bludov, Yu V.; Vasilevskiy, M. I.; Peres, N. M.R.; Magnetic field assisted transmission of THz
waves through a graphene layer combined with a periodically perforated metallic film, Physical
Review B, 2018

[8] Crassee, Iris Levallois, Julien Walter, Andrew L. Ostler, Markus Bostwick, Aaron Rotenberg, Eli
Seyller, Thomas van der Marel, Dirk Kuzmenko, Alexey B.; Giant Faraday rotation in single- and
multilayer graphene; Nature Physics; 2010

[9] König-Otto, Jacob C.; Wang, Yongrui; Belyanin, Alexey; Berger, Claire De; Heer, Walter A.;
Orlita, Milan; Pashkin, Alexej; Schneider, Harald; Helm, Manfred; Winnerl, Stephan; Four-Wave
Mixing in Landau-Quantized Graphene, Nano Letters, 2017

[10] Yumoto, Go; Matsunaga, Ryusuke; Hibino, Hiroki; Shimano, Ryo; Ultrafast Terahertz Nonlinear
Optics of Landau Level Transitions in a Monolayer Graphene, Physical Review Letters, 2018

[11] Moradi, Afshin; Energy density and energy flow of surface waves in a strongly magnetized
graphene; Journal of Applied Physics; 2018

[12] Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe; Quantum Mechanics

[13] Neil W. Ashcroft, N. David Mermin; Solid State Physics

[14] Castro, Eduardo & Peres, Nuno & Santos, João & Guinea, Francisco & Castro Neto, Antonio.
(2007). An introduction to the physics of graphene layers. 111-143. 10.1142/9789812772206_0004.

[15] Simão Meneses João (2017), Non-Linear Optical Response with the Kernel Polynomial Method
(Master’s Thesis)



Bibliography Bibliography

[16] Gonçalves, Paulo André & Peres, Nuno. (2016). An Introduction to Graphene Plasmonics.
10.1142/9948.

[17] Gauge covariances and nonlinear optical responses, G. B. Ventura, D. J. Passos, J. M. B. Lopes
dos Santos, J. M. Viana Parente Lopes, N. M .R. Peres

[18] A. Ferreira, J. Viana-Gomes, Yu. V. Bludov, Vitor M. Pereira, N. M. R. Peres, A. H. Castro Neto;
Faraday effect in graphene enclosed in an optical cavity and the equation of motion method for
the study of magneto-optical transport in solids; Phys. Rev. B 84, 235410

[19] Peres, Nuno. (2010). The transport properties of graphene: an introduction. Rev. Mod. Phys. 82,
2673. Reviews of Modern Physics. 82. 10.1103/RevModPhys.82.2673.

83


	Slide 1
	Slide 2

