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Abstract—Motivated by the increasingly wide adoption of real-
time workload with self-suspending behaviors, and the relevance
of mechanisms to handle mutually-exclusive shared resources, this
paper takes a new look at locking protocols for self-suspending
tasks under uniprocessor fixed-priority scheduling. Pitfalls when
integrating the widely-adopted Stack Resource Policy (SRP) with
self-suspending tasks are firstly illustrated, and then a new fine-
grained SRP analysis is presented. Next, a new locking protocol,
named SRP-SS, is proposed to overcome the limitations of the
original SRP. The SRP-SS is a generalization of the SRP to cope
with the specificities of self-suspending tasks. It therefore reduces
to the SRP under some configurations and hence theoretically
dominates the SRP. It also ensures backward compatibility for
applications developed specifically for the SRP. The SRP-SS
comes with its own schedulability analysis and configuration
algorithm. The performances of the SRP and SRP-SS are finally
studied by means of large-scale schedulability experiments.

I. INTRODUCTION

Self-suspending tasks are tasks that suspend their execution
to: synchronize with other tasks running on the same or other
cores by means of semaphores or waiting barriers; wait for data
produced by other tasks, co-processors or obtained through I/O
devices; wait for timing events or external interrupts; and/or
synchronize accesses to hardware shared resources, citing but
a few examples. Clearly, self-suspending tasks model a wide
variety of execution behaviors witnessed in actual applications.
However, as evidenced by a string of misconceptions that prop-
agated in the state-of-the-art on real-time scheduling [1]–[3],
the analysis of self-suspending tasks cannot be performed with
standard techniques conceived for regular sporadic tasks. The
analysis of self-suspending tasks poses significant challenges
in the derivation of safe, yet tight, response-time bounds.

A common feature implemented in real-time embedded
systems is the protection of so-called critical sections by means
of locking protocols. Those critical sections may be segments
of code that must execute non-preemptively for performance
or safety reasons, or they may encapsulate read or write
operations on shared software or hardware resources. In the
latter case, the lock protecting the critical section prevents
other tasks to modify the same resource at the same time
in an undeterministic manner. The Stack Resource Policy
(SRP) [4] is one of the most widespread locking protocols for
uniprocessor real-time system, also used as a building block to
develop influential locking protocols for multiprocessors (e.g.,
the MSRP [5]). In this work we show that, when scheduling
a set of self-suspending tasks, the SRP may lead to large
blocking times, losing its core property that guarantees that
a task can be blocked by at most one critical section. This
strongly penalizes the system schedulability and affects the
system robustness in the presence of CPU overloads. Addition-
ally, since it was not conceived to handle self-suspending tasks,

the original SRP analysis fails to account for the extra blocking
that a self-suspending task may suffer. Therefore, there is a
need for (i) devising a new analysis for SRP that considers
self-suspensions, and (ii) developing a new resource sharing
protocol that is better suited to self-suspending tasks.

Note that studying self-suspending real-time tasks in the
presence of resource sharing has also a high industrial rele-
vance. Indeed, the AUTOSAR [6] automotive standard man-
dates the use of the SRP1 to regulate the access to mutually-
exclusive shared resources. Furthermore, it supports task self-
suspensions by means of the AUTOSAR events mechanism
that allow tasks to suspend their execution until a specific
event (be it a timing event, a data reception event, or any
external or internally defined event) is triggered. These two
standardized mechanisms are likely combined in realistic ap-
plications, e.g., [8]. For instance, automotive software de-
velopers are now facing parallel workload with precedence
constraints [9] (typically originated by data causality) that
execute on multicore platforms. Synchronization between tasks
and cores is performed by means of waiting barriers, which
force the waiting task(s) to self-suspend [10]. Local resource
accesses are themselves protected with the SRP.

Paper contributions. Motivated by the need of a better
understanding of SRP-based locking in the presence of self-
suspending tasks, this paper makes the following contributions:

• After showing that existing results related to the SRP
are not compatible with self-suspending tasks, we present
a schedulability analysis for a set of self-suspending
tasks scheduled with a task level fixed priority scheduling
policy and that share resources protected by the SRP.

• We propose a new locking protocol, named SRP-SS,
that generalizes and hence dominates the SRP. The SRP-
SS improves the schedulability of self-suspending tasks
accessing locks.

• We present a schedulability analysis for the SRP-SS.
• We propose a technique for configuring the SRP-SS with

the aim of enhancing the system schedulability.

Experimental results are also presented to assess the perfor-
mance of (i) the proposed schedulability analyses, and (ii) the
new locking protocol SRP-SS and its configuration algorithm.

II. SYSTEM MODEL

This paper considers the problem of scheduling a set
Γ = {τ1, . . . , τn} of n sporadic real-time tasks upon a
single processor. Each task τi is characterized by a worst-case

1More specifically, it mandates the use of the Immediate Priority Ceiling
protocol [7], which is equivalent to the SRP for the considered setting (i.e.,
fixed priority scheduling on a single core platform) [4].



execution time (WCET) Ci, a minimum inter-arrival time Ti,
and a relative deadline Di ≤ Ti. Tasks release an infinite
sequence of jobs. A task τi is said to be active at time t if
a job of τi started executing at or before t and did not yet
complete its execution at time t.

Tasks are scheduled according to task level fixed-priority
scheduling, where each task τi has a unique priority πi ≥ 1
(larger values indicate higher priorities). We denote the set of
tasks with higher priority than τi as hp(i) ⊂ Γ. Analogously,
lp(i) ⊂ Γ denotes be set of tasks with lower priority than
τi. For simplicity, we assume that no two tasks have the
same priority. However, the results of this paper can easily be
extended to the case where more than one task share the same
priority by adding one term in the response time equation to
account for the interference that same-priority tasks generate
on each other.

Tasks can self-suspend their execution, e.g., due to I/O
operations or to use hardware accelerators [11]. The total
suspension time a job of τi is upper-bounded by Si. No in-
formation is assumed about the actual task structure, therefore
suspensions can occur at any time during the execution of
a job. In the related literature, the model described above
is known as the dynamic self-suspending task model [12].
The only restriction we pose on the tasks’ dynamic self-
suspension behavior is that tasks cannot self-suspend within
critical sections2.

The tasks share a set of nr single-unit resources Q =
{ℓ1, . . . , ℓnr

}. Each resource must be accessed in mutual
exclusion. Each job of task τi accesses resource ℓk at most
Ni,k times by means of critical sections of a duration upper-
bounded by Li,k. If a task τi does not access a resource ℓk,
then Li,k = Ni,k = 0. This work assumes that critical sections
cannot be nested3.

This work considers two different resource sharing policies.
Section VI analyzes the case where the access to shared
resources is regulated by the popular and widely implemented
stack resource policy (SRP) [4]. Then, a new variant of
SRP (called SRP-SS) specifically designed to handle self-
suspending is proposed and detailed in Section VII.

III. BACKGROUND

A. The Stack Resource Protocol

According to the SRP, each resource ℓk is assigned a
resource ceiling π(ℓk). Whenever a task locks a resource ℓk,
a system-wide parameter Π, called system ceiling, is raised to
π(ℓk). The system ceiling Π is then restored to its previous
value when the currently executing task releases a resource.

The SRP also modifies the preemption rule of standard
fixed-priority scheduling:

SRP preemption rule – a task τj can preempt the execution
of another task τi if πj > πi and πj > Π.

2This restriction could be lifted using similar techniques than Brandenburg
in Appendix F of the extended version of [13].

3In practice, nested resources could be handled using group-locks (as
in SRP). It may be possible to consider finer-grained nesting, but further
investigation would be required to understand the impact on blocking.

Formally, when the SRP is used together with a fixed job
priority scheduling algorithm, it can be implemented using
three queues: the Ready Queue Qr, the Blocked Queue Qb and
the Suspended Queue Qss. At any time instant, the scheduler
executes the highest priority job in the ready queue Qr. The
content of Qr is updated whenever scheduling event happens
as described in Algorithm 4 reported in Appendix A.

The SRP is typically implemented as a stack (hence its
name). Whenever a resource is locked, its ceiling priority is
pushed on top of the stack (Line 27 in Algorithm 4), and
whenever a resource is freed, its ceiling priority is removed
from the top of the stack (Line 32). The system ceiling Π
is always equal to the resource ceiling priority on top of the
stack (Lines 28 and 33). The preemption rule stated above is
then implemented by updating the tasks in the ready queue at
Lines 5 to 9 and Lines 34 to 37.

SRP’s timing analysis and the configuration of resource
ceilings are briefly reviewed in Section III-B. Note that the
original analysis of the SRP assumes that tasks do not self-
suspend. We address this limitation in Section VI.

B. Original Analysis for the SRP

The analysis of blocking times introduced by the SRP
was originally derived for regular periodic/sporadic tasks (i.e.,
without self-suspensions) [4]. As it will be discussed in Sec-
tion IV, the original analysis for the SRP is not valid for self-
suspending tasks. Nevertheless, that analysis is recalled in this
section to make the paper self-sufficient.

In his seminal paper, Baker [4] showed that when single-
unit resources are protected by the SRP, a job can be blocked at
most once, and this blocking is due to a single critical section
accessed by a lower priority task. At the analysis stage, this
phenomenon is reflected as a blocking time Bi for each task
τi, which accounts for the largest critical section related to a
resource (i) accessed by a lower priority task, and (ii) whose
ceiling can prevent τi to execute, that is

Bi = max
τj∈lp(i),ℓk∈Q

{Lj,k | π(ℓk) ≥ πi}0 (1)

where max{·}0 = 0 if the set on which the max operation is
applied is empty.

For non-self-suspending tasks, the worst-case response time
(WCRT) of a task τi is then given by the smallest positive
fixed-point solution to the following recursive equation.

Ri = Bi + Ci +
∑

τj∈hp(i)

⌈

Ri

Tj

⌉

Cj . (2)

Another key property of the SRP is that blocking time is
incurred at the release of a job, and not when attempting to
lock a resource: for this reason, the blocking factor Bi is also
known as arrival blocking.

Finally, it is worth mentioning that the SRP comes with a
rule for configuring the resource ceilings, which mandates to
assign ceilings with the highest priority among the tasks that
use that resource, i.e., π(ℓk) = maxτi∈Γ{πi | Ni,k > 0}.



C. Response time analysis of self-suspending tasks

Several analyses have been developed over the years to
compute the WCRT of dynamic self-suspending tasks. We
recall three of them.

Suspension oblivious analysis. This approach [12] models
suspension time as execution time. Each task τi is replaced by
an artificial task τ ′i with WCET C ′

i = Ci +Si and suspension
time S′

i = 0. The usual response time analysis (RTA) [14] for
sequential tasks may then be used, that is,

Ri = (Ci + Si) +
∑

τj∈hp(i)

⌈

Ri

Tj

⌉

(Cj + Sj). (3)

The suspension oblivious analysis is the simplest but also the
most pessimistic analysis for self-suspending tasks.

Blocking-based analysis. In her book [15], Liu models the
extra interference suffered by tasks due to self-suspension by
introducing an artificial blocking term Gi in the RTA. More
specificaly, it was stated in [15] and [16] and then proven
in [12] that:

Lemma 1. The worst-case contribution of a self-suspending
task τj to the interference suffered by a lower priority task τi
in an interval of length t is upper-bounded by

min{Cj , Sj}+

⌈

t

Tj

⌉

Cj .

Summing the contribution of every higher priority task, the
WCRT of a task τi is then given by the smallest positive fixed
point solution to

Ri = Gi + Ci +
∑

τj∈hp(i)

⌈

Ri

Tj

⌉

Cj (4)

where Gi = Si +
∑

τj∈hp(i) min{Cj , Sj}.

Note that despite having been published in a book in
2000 [15] and used in [16] in 1988, there was no proof of
correctness for this analysis until [17] and [12] were published
in 2016.

Jitter-based analysis. This analysis models suspension related
interference as a jitter term in the RTA [3]. Specifically,

Lemma 2. The worst-case contribution of a self-suspending
task τj to the interference suffered by a lower priority task τi
in an interval of length t is upper-bounded by

⌈

t+ Jj

Tj

⌉

Cj

where Jj = Rj − Cj and Rj is a safe upper-bound on the
WCRT of τj .

Then, the WCRT of a task τi is given by the least positive
fixed point of the following equation.

Ri = (Ci + Si) +
∑

τj∈hp(i)

⌈

Ri + Jj

Tj

⌉

Cj . (5)

A hybrid approach has been presented in [12]. It combines
ideas of Liu’s work and the jitter-based analysis. It was proven

time
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τ1

τ2

Figure 1. Scheduling example of two self-suspending tasks sharing a resource
protected with the SRP. Up-arrows denote the release of a job.

that the analysis in [12] dominates the three analyses presented
above. However, we do not discuss it here as it is much more
complex than the other three and the focus of this paper is
rather on resource sharing policies than the RTA of dynamic
self-suspending tasks.

All the analyses mentioned above are compatible with
the resource sharing policies discussed in this paper. Yet, for
the sake of conciseness, the jitter-based analysis is assumed
hereafter4.

IV. MOTIVATIONAL EXAMPLE

The impact of self-suspensions on blocking time can be
easily explained with an example. Consider two tasks τ1 and
τ2, with π1 > π2, both sharing a resource ℓ with ceiling π(ℓ) =
π1. Suppose also that τ2 includes at least three critical sections
to access ℓ. Now, consider the schedule of Figure 1, where τ1
self-suspends two times for a total of Si = 2 time units. As
shown in Figure 1, contrary to what is assumed in the analysis
of the SRP for non-self-suspending tasks, a single job of τ1
can be blocked more than once by the lower-priority task τ2.
Specifically, it can be blocked (i) when it is released, which
is the only scenario considered in the original analysis of the
SRP, and (ii) at the end of each of its self-suspensions. As
seen in Figure 1, whenever τ1 self-suspends the lower-priority
task τ2 can execute, lock a resource, and contextually raise the
system ceiling to a point (in this case Π = π1) that forbids the
execution of τ1 when it completes its self-suspension.

From the example above, it becomes clear that the amount
of blocking a task can suffer is strictly dependent on the
number of times the task self-suspends. If such a number is not
available, a safe analysis must assume that the number of self-
suspensions is as large as possible (virtually infinite), with the
consequence that in the worst-case, every conflicting critical
section executed by a lower-priority task can lead to blocking
every higher priority task, i.e., a task may always self-suspend
and then resume its execution an arbitrary small amount of
time after a low-priority task locked a resource. Clearly, this
approach would be too pessimistic to be useful.

V. EXTENDING THE SELF-SUSPENDING TASK MODEL

The discussion in the previous section suggests that the
dynamic self-suspending task model lacks information for an
accurate analysis when resources are shared with the SRP.

4According to our experiments, there is almost no difference in terms of
schedulability performance between (4) and (5) when they are combined with
the resource sharing blocking analysis. The suspension oblivious analysis,
i.e., (3), always performs worse than (4) and (5), with very few task sets
detected as being schedulable.



Similar to what was recently proposed in [18] and [19], we
overcome this limitation introducing a new task parameter,
namely, the maximum number of times a task can self-suspend.
We denote that maximum number of suspensions by the
task parameter Xi. Therefore, in this new model, the self-
suspension behaviour of each task τi is characterized by its
maximum suspension time Si and the maximum number of
suspensions Xi over which suspension time may be spent.

Note that the value of Xi can easily be extracted from the
task’s source code by identifying and counting the maximum
number of events that may trigger a self-suspension (e.g.,
specific system calls) on a single execution path. In the
presence of mutually-exclusive execution paths (e.g., due to
conditional statements), the code analysis must keep track of
the paths with the largest number of suspensions. Such analysis
requires at most one pass through the code of each task.

For the sake of completeness, it is worth mentioning that
prior work already considered another self-suspending task
model that transitively included such an information. It is
the case of the (so called) segmented self-suspending task
model [1]. This model explicitly accounts for a structure where
the task alternates execution phases with suspension phases,
where each of them is characterized by a WCET or maximum
suspension time. However, the analysis of the segmented self-
suspending task model has been shown [1] to suffer of a
considerable conceptual complexity due to a number of non-
trivial scheduling phenomena. To date, a precise analysis for
such a model is only enabled by means of mixed-integer linear
programming [1] or iterative search [20]. Both techniques
have large run-time and do not scale well. Furthermore, the
derivation of a safe segmented self-suspending task model in
the presence of multi-path code is far from being obvious
as discussed in [21]. These facts led us to stick with the
dynamic self-suspending task model instead, which can benefit
of a compatibility with classical and efficient response-time
analysis techniques (provided that a careful estimation of the
interference is adopted) as reviewed in Section III-C.

VI. ANALYSIS OF SELF-SUSPENDING TASKS UNDER THE

SRP

We can infer from the observations made in Section IV that
the original SRP analysis cannot be applied to self-suspending
tasks as it would lead to optimistic response time bounds. For
instance, consider the example of Figure 1: in this case, task
τ1 is blocked three times, while the original SRP analysis (see
Section III-B) would account for a single blocking event at
the job release. Therefore, in this section, we propose a new
analysis that can cope with self-suspending tasks.

A. Simple blocking analysis

First, we formalize the property that was intuitively in-
troduced in Section V, namely, that under the SRP, a self-
suspending task can incur blocking multiple times.

Lemma 3. Under the SRP, a job of a self-suspending task τi
can be blocked at most Xi + 1 times. Each blocking can be
caused by a single critical section.

Proof. As it has been recalled in Section III-B, under the
SRP a task can be blocked only when it attempts to preempt

a lower-priority task that is holding a shared resource with
a conflicting ceiling. Since, under task level fixed priority
scheduling, a preemption may occur only when an execution
segment is released, i.e., at the beginning of a job or after
a self-suspension, and because τi comprises at most Xi self-
suspensions, the task can be blocked at most Xi + 1 times.

According to the SRP preemption rule, a task τi with a
pending preemption that is blocked by a lower-priority task
τj can proceed to execute as soon as τj releases the shared
resource that generates the blocking. Since there are no nested
critical sections, each blocking event is related to a single
critical section. The lemma follows. ✷

From Lemma 3, a blocking bound can be derived by
accounting for the largest critical section that can block τi
multiplied by the number of times the task can be blocked.

Theorem 1. Under the SRP, the maximum blocking time
incurred by a job of a self-suspending task τi is bounded by

Bi = (Xi + 1)× max
τj∈lp(i),ℓk∈Q

{Lj,k | π(ℓk) ≥ πi}. (6)

Proof. Under the SRP, a task τi can be blocked only by
critical sections of lower-priority tasks whose corresponding
resource ℓk has a conflicting ceiling with τi, i.e., π(ℓk) ≥ πi.
Consequently, maxτj∈lp(i),ℓk∈Q{Lj,k | π(ℓk) ≥ πi} upper-
bounds the length of any critical section that can block τi.
The theorem follows after recalling Lemma 3. ✷

Given the task set parameters, the blocking term provided
by the above theorem is a constant, and therefore can seam-
lessly be integrated at the stage of response-time analysis to
obtain a safe schedulability test. However, this approach can
clearly be very pessimistic. For instance, in the presence of
one low priority task τj with a single, but very large critical
section C, this approach would always consider the case where
C blocks each job Ji of τi (Xi + 1) times, even though this
may be totally impossible in practice, i.e., independently of the
actual number of jobs of τj that can overlap with the execution
of Ji. For this reason, a more accurate blocking analysis is
developed in the following section.

B. More accurate blocking analysis

The analysis proposed in this section is built upon the
following three steps: (i) explicitly identify all critical sections
that can possibly overlap with a given time interval; (ii) select
the largest (Xi + 1) critical sections within the interval of
interest; (iii) perform (i) and (ii) concurrently with the RTA of
all tasks in Γ.

As expressed by (i), we first identify all critical sections
that can execute in a time interval of length t and potentially
block the execution of task τi. Let CSi(t) be the multiset
containing all those critical sections, and ∆i(t) the multiset
containing their worst-case duration. Finally, assume a vector
R of safe response-time bounds for all tasks in Γ is given,
Lemma 4 explains how ∆i(t) may be built.

Lemma 4. The worst-case durations of the critical sections
that can block τi in an interval of length t are included into



the multiset ∆i(t,R) defined as follows5

∆i(t,R) =
⊎

τj∈lp(i)

⊎

ℓk∈Q

{Lj,k | π(ℓk) ≥ πi}⊗
(

Nj,k × ηj(t,R)
)

where

ηj(t,R) =

⌈

t+Rj

Tj

⌉

and Rj is the component of R for τj (i.e., an upper-bound on
τj’s response time).

Proof. Under the SRP, task τi can be blocked only by critical
sections of a lower-priority task τj (iterated over with the first
multiset union) related to a resource ℓk with ceiling π(ℓk) ≥ πi

(iterated over with the second multiset union). Furthermore, τj
may execute at most ηj(t,R) different jobs in any time interval
of length t [22]. By definition of Nj,k, each job of τj has at
most Nj,k critical sections related to resource ℓk. Hence, for

each pair (τj , ℓk), there are at most Nj,k × ηj(t,R) critical
sections with a worst-case duration Lj,k that can block τi. ✷

Following principle (ii) and building upon the above
lemma, it is finally possible to derive a tighter blocking
bound for self-suspending tasks under the SRP. To simplify
the presentation of the following result, the notation Σ(x,S)
is introduced to denote the sum of the x largest elements of
a multiset S . If the size of the multiset S is smaller than x,
then Σ(x,S) returns the sum of all elements in S .

Theorem 2. Consider a self-suspending task τi. Under the
SRP, the maximum blocking time incurred by a job of τi during
an interval of length t is bounded by

Bi(t,R) = Σ
(

Xi + 1,∆i(t,R)
)

.

Proof. By Lemma 3, a job of τi can be blocked by at most
Xi+1 critical sections. By Lemma 4, the worst-case duration
of all the critical sections that can block a job of τi during
an interval of length t are included into ∆i(t,R). Hence, the

sum of the largest Xi + 1 elements in ∆i(t,R) yields a safe
blocking bound for τi. ✷

The next section explains how to exploit the result of
Theorem 2 to implement a safe schedulability test for the
considered task model.

C. Analysis algorithm

We first extend the results of Section III-C to cope with
the blocking bound derived in Theorem 2.

Theorem 3. Let Ri be the least positive fixed-point of the
following recursive equation (if it exists)

Ri = (Ci + Si) +Bi(Ri,R) +
∑

τj∈hp(i)

⌈

Ri +Rj − Cj

Tj

⌉

Cj .

(7)

5The operator ⊎ represents the union between multisets, e.g., {1, 1} ⊎
{1, 2} = {1, 1, 1, 2}, and the product operator ⊗ multiplies the number
of instances of every element in the multiset to which it is applied, e.g.,
{1, 2, 3} ⊗ 3 = {1, 1, 1, 2, 2, 2, 3, 3, 3}.

If Ri ≤ Di, then Ri is a safe upper-bound on τi’s worst-case
response time and τi is schedulable .

Proof. The response time of task τi is composed of three
terms, (1) τi’s execution and suspension time, (2) the amount
of time τi may be blocked by lower priority tasks due to the
SRP, and (3) the amount of time τi’s execution is interfered
by a higher-priority task.

1) If τi’s response time is upper-bounded by Di (i.e., Ri ≤
Di), then term (1) is upper-bounded by the sum of τi’s
WCET and worst-case suspension time, i.e., Ci + Si.

2) Theorem 2 bounds term (2), i.e., during an interval of length
Ri, τi can be blocked for at most Bi(Ri,R) time units.

3) Finally, it was proven in [3] that Lemma 2 yields a safe
bound on the higher priority interference incurred by τi
during an interval of length Ri.

Therefore, summing the three bounds discussed above, we
get Equation 7, and the existence of a fixed-point Ri ≤ Di

(remember the assumption at point 1)) for Equation (7) implies
that Ri is a safe response-time bound for τi. ✷

With the above theorem in place, it is possible to derive an
algorithm that allows checking the system schedulability. The
major issue with Theorem 3 is that it takes as input the vector
R of safe response-time bounds for all tasks, which clearly
introduces a sort of circular dependency in Equation (7), i.e., it
requires the response-time of all tasks to obtain the response-
time of each task. This issue can be solved by adopting a
simple iterative scheme, as reported in Algorithm 1.

The idea is to construct a non-increasing sequence of
safe response-time bounds by starting from initializing R

with the tasks’ deadlines, i.e., ∀τi ∈ Γ, Ri = Di (line 2
of Algorithm 1). This choice is supported by the following
rationale. Suppose to dispose of a run-time mechanism M
that aborts a job that did not complete by its deadline: in
this way, each job of each task τi is guaranteed to terminate
within Di time units, and hence the latter constitutes a valid
response-time bound to configure R. Then, if Theorem 3 yields
a response-time bound for each task that is lower than or
equal to the corresponding deadlines (line 13), then it means
that no deadlines is ever violated. Consequently, the run-
time mechanism M is never triggered, which implies that the
system schedulability is not affected if M is not deployed.

If only some of the response-time bounds provided by The-
orem 3 are lower than the corresponding deadlines, the system
cannot be deemed schedulable, but such bounds can in turn be
used to further reduce the response-time bounds of the other
tasks. Note that, since the right-hand-side of Equation (7) is
monotone in Rj , by reducing at least one component of R, the
response-time bound provided by Theorem 3 cannot increase.
When no response-time bounds can be further reduced during
the iterative loop, the algorithm terminates by signaling that
the task set cannot be deemed schedulable.

VII. THE SRP-SS PROTOCOL

As seen in Section IV and analyzed in Section VI, a job
of a self-suspending task may be blocked multiple times by
lower priority tasks when the SRP is used. In fact, the number



Algorithm 1 Algorithm for checking the schedulability of a
set Γ of self-suspending tasks under the SRP.

1: procedure ISSCHEDULABLE(Γ)
2: ∀τi ∈ Γ, Ri ← Di

3: atLeastOneUpdate ← TRUE
4: while (atLeastOneUpdate=TRUE) do
5: atLeastOneUpdate ← FALSE
6: for all τi ∈ Γ do
7: Ri ← Theorem 3
8: if Ri < Ri then
9: Ri ← Ri

10: atLeastOneUpdate ← TRUE
11: end if
12: end for
13: if ∀τi ∈ Γ, Ri ≤ Di then
14: return TRUE
15: end if
16: end while
17: return FALSE
18: end procedure

of times a job of a self-suspending task τi may be blocked by
lower priority tasks is dependent on the number of times τi
suspends. This defeats the original goal of the SRP, namely, to
ensure that each job of a task τi may be blocked at most once
by a lower priority task, and that this blocking may happen
only at the job release.

We propose an extension of the SRP to support self-
suspending tasks. This new locking protocol is referred to as
the stack resource policy for self-suspending tasks or SRP-
SS in short. The SRP-SS can be configured to trade blocking
suffered by higher priority tasks against interference suffered
by lower priority ones. On one end of the configuration
spectrum, the SRP-SS ensures that tasks will not suffer more
than a single blocking by lower priority tasks (see Corollary 2
in Section VII-C), thereby bringing back the desirable property
initially sought by the SRP. This configuration however, may
drastically increase the interference suffered by the lowest
priority tasks and therefore negatively impact the schedula-
bility of the system. On the other end of the configuration
spectrum, the SRP-SS behaves exactly as the SRP (Corollary 1
in Section VII-C). In such a configuration, higher priority
self-suspending tasks suffer more blocking (see Theorem 2)
but their interference on lower priority tasks is reduced (see
Equation (7) for the WCRT analysis). This flexibility in the
protocol configuration ensures retro-compatibility of the SRP-
SS with systems developed for the SRP. Any configuration of
the protocol that falls between those two extremes balances
the effect of blocking and interference.

A. Main idea

We introduce the main idea behind the SRP-SS with an
example.

Consider three tasks τ1, τ2 and τ3 with π1 > π2 > π3.
Assume that τ1 and τ3 share a resource ℓ1 with ceiling π(ℓ1) =
π1, and that τ2 does not access any shared resource. Now,
consider the schedule depicted in Fig. 2. Task τ1 suspends two
times. If the SRP is used for synchronising resource accesses,
τ1 may be blocked up to three times by τ3 (see Fig. 2(a)).

To prevent this to happen, the SRP-SS introduces a new
system parameter called system priority and denoted by Πss.
A task can execute only if its priority is larger than Πss.

Coming back to our example, assume that, when task τ1
starts executing, it raises the system priority Πss to π3, and
later reduces it to 0 when it completes. As seen on Fig. 2(b),
τ1 can still be blocked by τ3 upon arrival, but τ3 cannot
resume its execution when τ1 self-suspends. It results that τ1
cannot be blocked anymore when its suspension ends. The
reduction of τ1’s blocking time has however been at the cost
of increasing the interference suffered by τ3. Task τ3 cannot
execute during τ1’s self-suspension time and its response time
is thus increased by as much. Note also that despite having a
lower priority than τ1, the response time of τ2 is not impacted
since its priority is still larger than Πss.

The system priority Πss may recall the notion of preemp-
tion threshold introduced in [23]–[25]. However, the technique
introduced in this paper and the preemption threshold mecha-
nism are quite different in nature as discussed in Section X.

B. The protocol

The SRP-SS introduces a system priority Πss and defines
a new parameter πss

i for each task τi (see Cor. 1 and 2 or
Section VIII for a discussion on how to assign a value to πss

i ).
At any time instant t, it holds that

Πss = max
τj∈Act(t)

{πss
j }, (8)

where Act(t) is defined as the set of active tasks (i.e., those
that started executing and did not yet complete) at time t.

The SRP-SS changes SRP’s scheduling invariant to rely on
the new system priority:

The SRP-SS scheduling invariant – At any time t, a task τi
is eligible to execute if πi > Πss.
The scheduler always executes the highest priority eligible task
in the ready queue.

Algorithm 2 summarizes how a scheduling algorithm based
on the SRP-SS can be implemented. Algorithm 2 only shows
the differences with Algorithm 4. A new scheduling event
is considered in Algorithm 2 in comparison to Algorithm 4,
namely, the start of a job execution. Whenever a job starts
executing, the set of active tasks Act is updated, and so is the
system priority Πss. Similarly, Act and Πss are updated when
a job completes its execution. All other scheduling events are
treated as in Algorithm 4 and are not repeated here.

Note that the preemption rule is kept identical to that of
the SRP. Therefore, with the above scheduling invariant, the
SRP-SS reduces to the SRP if Πss is always equal to 0 (i.e.,
if πss

i = 0 for all tasks). In that particular case, all ready tasks
are always eligible for execution and the highest priority ready
task is always picked by the scheduler, same as the SRP.

The schedulability analysis under the SRP-SS is presented
next. There are two effects that must be analyzed and in-
corporated into the schedulability analysis, the more explicit
blocking in which a high-priority job is waiting for a lower-
priority job to complete a critical section, and a more implicit
blocking, also referred to as interference, that is caused by the
system priority ceiling preventing an otherwise ready job from
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Figure 2. Scheduling example of three self-suspending tasks under (a) the SRP and (b) the SRP-SS. Up-arrows denote the release of a job.

Algorithm 2 Scheduling under the SRP-SS (only the changes
w.r.t. Algorithm 4 are shown)

1: Init: Qr ← IdleTask; Qb ← ∅; Qss ← ∅; L ← 0; Π ← 0;
Πss ← 0;

2: Schedule invariant: RunTask ← argmax
τi∈Qr

{πi |πi > Πss};

3:

4: procedure STARTEXECUTE(τj)
5: Add τj to Act
6: Πss ← maxτj∈Act(t){π

ss
j }

7: end procedure
8:

9: procedure COMPLETE(τj)
10: Remove τj from Qr

11: Remove τj from Act
12: Πss ← maxτj∈Act(t){π

ss
j }

13: end procedure

executing. The former is discussed in Section VII-C, whilst the
latter is treated in Section VII-D.

C. Blocking analysis

To analyze the the worst-case blocking time that a task
τi may suffer under the SRP-SS, we first determine the set
of tasks with lower priority than τi that can block τi after it
self-suspended.

Lemma 5. Under the SRP-SS, only tasks in the set mp(i)
def
=

{τj ∈ Γ |πi > πj > πss
i } may block τi after it self-suspended.

Proof. Only tasks with lower priorities than τi may block the
execution of τi with a critical section. Therefore, as for the
SRP, only a task τj such that πi > πj may block τi.

Moreover, because τi raises the system priority Πss to at
least πss

i as soon as it starts executing, a task τj with priority
πj ≤ πss

i cannot execute anymore after τi started to execute.
Therefore, it cannot execute during τi’s suspension and cannot
block τi when it resumes its execution. We conclude that a
task τj may block τi after it suspended only if πj > πss

i . ✷

Similar to the approach adopted for the analysis of the
SRP, Lemma 6 explicitly identifies the set of critical sections
that may block a task τi when it resumes after one of its
suspensions.

Lemma 6. The worst-case durations of the critical sections
that can block τi after a self-suspension in an interval of length

t, are included into the multiset ∆ss
i (t,R) defined as follows

∆SS
i (t,R) =

⊎

τj∈mp(i)

⊎

ℓk∈Q

{Lj,k | π(ℓk) ≥ πi}⊗
(

Nj,k × ηj(t,R)
)

where ηj(t,R) =
⌈

t+Rj

Tj

⌉

.

Proof. By Lemma 5, only tasks within mp(i) may block
τi after one of its self-suspensions. Hence the first multiset
union is restricted to tasks within mp(i). Further, only the
critical sections with a ceiling priority π(ℓk) ≥ πi may block
τi for a maximum duration of Lj,k time units, and it was
already proven in Lemma 4 that each such critical section may
be executed at most (Nj,k × ηj(t,R)) times by τj within an
interval of length t. The lemma follows. ✷

We can now derive an upper-bound on the blocking time
suffered by a task τi under the SRP-SS.

Theorem 4. Under the SRP-SS, the maximum blocking time
incurred by a job of τi during an interval of length t is bounded
by

BSS
i (t,R) = max{ Σ

(

Xi + 1, ∆SS
i (t,R)

)

;

B
lp
i +Σ

(

Xi, ∆
SS
i (t,R)

)

} (9)

where B
lp
i = max

τj∈lp(i)\mp(i)
ℓk∈Q

{Lj,k | π(ℓk) ≥ πi}0.

Proof. Two execution scenarios may happen:

1) All critical sections blocking τi are from tasks in mp(i).
Since ∆SS

i (t,R) contains the worst-case duration of all
critical sections accessed by tasks in mp(i) in an interval
of length t (Lemma 6), and because τi may be blocked at
most (Xi+1) times (Lemma 3), the sum of the (Xi+1)
largest elements in ∆SS

i (t,R) yields an upper-bound on

BSS
i (t,R) for that case.

2) Not all critical sections blocking τi are from tasks in
mp(i). In that case, at least one critical section of a task
τj ∈ lp(i) \ mp(i) blocks τi. According to Lemma 5,
tasks in lp(i) \mp(i) may only block τi’s first execution
segment (i.e., it cannot block τi after one of its suspen-
sions). Further, each execution segment of τi may be
blocked by a single critical section (Lemma 3). There-
fore, at most one critical section of all the tasks within
lp(i)\mp(i) may block τi’s first execution segment. This

single blocking is thus upper-bounded by B
lp
i . Since the

tasks in lp(i) \ mp(i) block τi at most once, all the



Xi other blockings (remember that a job of τi may be
blocked at most (Xi+1) times) must be caused by tasks
in mp(i). This blocking is maximized by summing the

Xi largest elements in ∆SS
i (t,R). The sum of B

lp
i and

Σ
(

Xi + 1, ∆SS
i (t,R)

)

therefore yields an upper-bound

on BSS
i (t,R) for that case.

Taking the maximum blocking among those two scenarios
yields an upper-bound on BSS

i (t,R). ✷

Using the blocking bound proven in Theorem 4, we derive
two properties of the SRP-SS w.r.t. the value of the parameter
πss
i of each task τi.

Corollary 1. If πss
i = 0, then BSS

i (t,R) = Bi(t,R).

Proof. If πss
i = 0, then mp(i) = lp(i). Therefore,

∆SS
i (t,R) = ∆i(t,R). Further, lp(i) \ mp(i) = ∅ im-

plying that B
lp
i = 0. From Theorem 4, it must there-

fore hold that BSS
i (t,R) = Σ

(

Xi + 1, ∆SS
i (t,R)

)

=
Σ
(

Xi + 1, ∆i(t,R)
)

= Bi(t,R). ✷

Corollary 2. If πss
i ≥ max

τj∈lp(i)
{πj | ∃ℓk, Nj,k > 0 ∧ π(ℓk) ≥

πi}, then τi may be blocked at most once by a lower-priority

task, i.e., BSS
i (t,R) = B

lp
i .

Proof. If πss
i ≥ max

τj∈lp(i)
{πj | ∃ℓk, Nj,k > 0 ∧ π(ℓk) ≥ πi},

then none of the tasks in mp(i) accesses a resource ℓk with
a ceiling π(ℓk) ≥ πi (i.e., for all tasks τj ∈ mp(i) and all
resource ℓk ∈ Q such that π(ℓk) ≥ πi, there is Nj,k = 0).

Therefore, according to Lemma 6, we have ∆SS
i (t,R) = ∅ and

Σ
(

Xi + 1, ∆SS
i (t,R)

)

= Σ
(

Xi, ∆
SS
i (t,R)

)

= 0. It results

that BSS
i (t,R) = B

lp
i . ✷

Corollaries 1 and 2 prove two key properties of the SRP-
SS, namely, that it reduces to the SRP if πss

i = 0 for all tasks in
Γ, and that each task τi may be blocked by at most one critical
section if πss

i = max
τj∈lp(i)

{πj | ∃ℓk, Lj,k > 0∧π(ℓk) ≥ πi}. The

former property proves that the SRP-SS dominates the SRP,
and the latter proves that the SRP-SS may be configured to
bring back the initial property of the SRP, that is that lower
priority tasks may block higher priority tasks at most once.

D. Schedulability analysis

Theorem 4 upper-bounds the maximum blocking time
incurred by a task τi under the SRP-SS. We use that result to
derive a bound on the WCRT of τi that can then be injected
in Algorithm 1 to check the schedulability of task set Γ.

We first decompose the set of higher priority tasks into
two subsets hpob(i) and hpaw(i) such that hp(i) = hpob(i) ∪
hpaw(i). The set hpob(i) is composed of all tasks with higher
priority than τi that have their parameter πss

j greater than or

equal to τi’s priority. Formally, hpob(i) = {τj ∈ hp(i) |πss
j ≥

πi}. The set hpaw(i) is then defined as hp(i)\hpob(i). In other
words, hpob(i) is the set of tasks with higher priority than τi
that prevent τi to execute during their suspension time, while
hpaw(i) is composed of the higher priority tasks that do not
prevent τi to execute during their suspension time.

In Lem. 7 and 8, we derive an upper-bound on the
interference caused by each task in each of those two subsets,
and then integrate those results in τi’s response time in Th. 5.

Lemma 7. The worst-case contribution of a task τj ∈ hpob(i)
to the interference suffered by a lower priority task τi in an

interval of length t is upper-bounded by
⌈

t
Tj

⌉

(Cj + Sj).

Proof. Since τj prevents τi to execute during its suspension
time, task τj is seen as a task with execution time (Cj +
Sj) and zero suspension time by τi. According to Lemma 1,
the contribution of τj to τi’s interference is then bounded by

min{Cj + Sj , 0}+
⌈

t
Tj

⌉

(Cj + Sj), proving the lemma. ✷

Lemma 8. The worst-case contribution of a task τj ∈ hpaw(i)
to the interference suffered by a lower priority task τi in an
interval of length t is upper-bounded by

⌈

t+Rj − Cj

Tj

⌉

Cj .

Proof. This directly follows from Lemma 2. ✷

Theorem 5. Let Ri be the least positive fixed-point of the
following recursive equation (if it exists)

Ri = (Ci + Si) +BSS
i (Ri,R) +

∑

τj∈hpob(i)

⌈

Ri

Tj

⌉

(Cj + Sj)

+
∑

τj∈hpaw(i)

⌈

Ri +Rj − Cj

Tj

⌉

Cj . (10)

If Ri ≤ Di, then the worst-case response time of τi is upper-
bounded by Ri and τi is schedulable.

Proof. The lemma directly follows from the summation of
the bounds proven in Theorem 4 and Lemmas 7 and 8. ✷

The schedulabilty of a task set Γ under the SRP-SS can
therefore be implemented using Algorithm 1 and replacing the
call to Theorem 3 at Line 7 by a call to Theorem 5 instead.

VIII. CONFIGURING THE SRP-SS

The new protocol presented in the previous section requires
to specify a new parameter πss

i for each task τi. Corollary 1
indicates a limit-case configuration for parameters πss

i such
that the SRP-SS behaves as the SRP, that is, a task can
be blocked every time it is resumed from a self-suspension.
Corollary 2 instead corresponds to the other extreme of the
configuration spectrum in which each task can be blocked at
most once. All other configurations of the parameters πss

i allow
trading low-priority blocking with high-priority interference.

Unfortunately, due to circular dependencies between tasks
introduced by the response-time analysis proposed in Sec-
tion VII-D, the computation of an optimal configuration for the
SRP-SS is far from obvious. Nevertheless, this section presents
a simple greedy algorithm to configure parameters πss

i with the
aim of maximizing the system schedulability.



Algorithm 3 Algorithm for configuring the SRP-SS.

1: procedure ISSCHEDULABLEWITHCONFIG(Γ)
2: πss

i = 0, ∀τi ∈ Γ.
3: while (TRUE) do
4: if isSchedulable(Γ) then
5: return TRUE
6: else
7: τu ← argmaxτi∈Γ{πi | Ri > Di}
8: pSet← {πl | τl ∈ mp(u)}
9: if pSet==∅ then

10: return FALSE
11: else
12: πss

u = min{pSet}
13: end if
14: end if
15: end while
16: end procedure

The proposed solution is reported in Algorithm 3. As
a first step, all parameters πss

i are initialized to zero, i.e.,
the SRP-SS behaves as the SRP. Subsequently, the algorithm
comprises a loop in which the schedulability of a task set
Γ is tested by means of Algorithm 1 modified to handle the
SRP-SS as indicated in the previous section. If the task set is
schedulable, then the algorithm terminates by returning TRUE;
otherwise, it tries to improve the task set schedulability by
increasing the parameter πss

i of a task. The idea is to reduce the
blocking incurred by a unschedulable task, hopefully making
it schedulable. To this end, the algorithm identifies the highest-
priority6 task τu that is not schedulable (line 7). Then, it
computes the set pSet of priorities of low-priority tasks (with
respect to τu) that can block τu, i.e., tasks τl ∈ mp(u) (line 8).
If such a set is empty, then no possible improvements are
possible and the task set is deemed unschedulable by returning
FALSE. Otherwise, πss

u is increased to the minimum priority
in pSet, i.e., to the priority of the lowest priority task τl that
may block τu. After this update, τl cannot block τu anymore.
This action may reduce the response time of τu at the cost of
an increase of the response time of τl.

IX. EXPERIMENTAL RESULTS

The analyses and configuration techniques proposed in this
paper were evaluated with an experimental study based on
synthetic workload. This section reports and discusses the
results obtained during our study.

Five different analyses/configuration techniques have been
evaluated: (i) SRP, which corresponds to the fine-grained anal-
ysis for the SRP provided by Algorithm 1; (ii) SRP-coarse,
which corresponds to a coarse-grained analysis for the SRP
where Theorem 1 is used to bound the blocking time of each
task; (iii) SRP-optimistic, which denotes an incorrect
analysis for the SRP where the original SRP blocking analysis
is used (Eq. (1)); (iv) SRP-SS-cor2, which denotes the
analysis for the SRP-SS configured by applying Corollary 2 to
all tasks; (v) SRP-SS-config, which denotes the analysis
for the SRP-SS configured with Algorithm 3.

6Choosing the highest-priority unschedulable task is arbitrary but simplifies
the configuration algorithm.

1) Workload generation: Given a target utilization U , task
sets Γ composed of n tasks have been generated using the
Emberson et al.’s generator [26]. Periods are randomly picked
in the range [1, 1000]ms with log-uniform distribution. For
each task τi, the relative deadline Di, the number of sus-
pensions xi and the total suspension time Si have been ran-
domly generated with uniform distributions from the intervals
[Ci+β(Ti−Ci), Ti], [X

min, Xmax], and [σminDi, σ
maxDi],

respectively, where β, Xmin, Xmax, σmin and σmax are
generation parameters. Given a target number of shared re-
sources nr, critical sections have been generated as follows.
First, for each resource ℓq , n∗ tasks have been randomly
selected to share ℓq , where n∗ is randomly selected in the
range [2, ⌊rsf · n⌋] with uniform distribution. The parameter
rsf denotes the resource sharing factor and allows controlling
the “amount” of resource sharing. Second, for each task τi
selected to access ℓq , Ni,q and Li,q have been randomly
selected from the ranges [Nmin, Nmax] and [Lmin, Lmax],
respectively, both with uniform distribution. Nmin, Nmax,
Lmin, and Lmax are other generation parameters. To avoid
generating unrealistic task sets, the generation enforces that
all critical sections must fit within the task’s WCET, i.e.,
∑

ℓq
Ni,q · Li,q ≤ Ci, ∀τi ∈ Γ: critical sections that violate

this constraints are discarded and re-generated from scratch
up to 106 times. If no proper configuration could be generated
after 106 attempts the task set is skipped. During the reported
experiments, we ensured that no more than 1% of the generated
task sets were skipped.

2) Experiment 1: The first experiment tries to be represen-
tative of applications managed by AUTOSAR/OSEK operating
systems [6] in which the RES_SCHEDULER resource is used.
RES_SCHEDULER is a virtual resource implicitly shared by all
tasks that is essentially used to lock the scheduler, i.e., once
such a resource is locked, no tasks can preempt the lock holder.
This feature is commonly used to implement non-preemptable
execution sections or to integrate legacy software and third-
party software whose accessed resources are unknown when
the operating system is configured. The major issue in using
RES_SCHEDULER is that all tasks (except the one with
lowest priority) can incur blocking. Clearly, this may be harm-
ful for high-priority latency sensitive tasks, especially when
self-suspensions are present. This experiment mainly aims
at assessing whether the schedulability of AUTOSAR/OSEK
applications can be improved by replacing the SRP with the
SRP-SS. Task sets using RES_SCHEDULER are generated
by first adopting the workload generation presented earlier,
and then enforcing that each task τi accesses one particular
resource ℓq for max{1, Ni,q} times.

A multidimensional exploration of the generation parame-
ters has been performed whose results are partially reported in
Fig. 3. Three major trends emerged: (i) the SRP-SS definitively
allows improving the system schedulability in comparison to
the SRP, especially in the presence of large critical sections
(> 300µs) and tasks with constrained deadlines (β = 0.75);
(ii) configuring the SRP-SS such that each task can be blocked
by at most one critical section using Corollary 2, is convenient
only for task sets with low utilization, while it generally leads
to very low schedulability in the presence of a high utilization;
(iii) our new fine-grained schedulability analysis for the SRP
is quite accurate, since the gain in schedulabilty in comparison
to the coarse analysis is very large (between 10 and 30%), and
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(a) n = 10, nr = 4, Nmax = 3,Lmin = 10, Lmax = 500,
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(b) n = 10, nr = 6, Nmax = 1,Lmin = 10, Lmax = 500,
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(c) n = 10, nr = 4, Nmax = 3,Lmin = 10, Lmax = 500,

σmin = 0, σmax = 0.1, Xmin = 2, Xmax = 5
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(c) n = 15, nr = 8, Nmax = 1,Lmin = 10, Lmax = 200,

σmin = 0, σmax = 0.1, Xmin = 4, Xmax = 8

SRP SRP-coarse SRP-optimistic SRP-SS-cor2 SRP-SS-config

Figure 3. Experimental results for Experiment 1 (insets (a) and (b)) and Experiment 2 (insets (c) and (d)). All the graphs are related to configurations with
β = 0.75. The other configuration parameters are reported in the captions above the graphs.

the distance from the optimistic, hence unsafe analysis is very
limited (from 2 to 10%) for many configurations.

Figures 3(a) and (b) report the results of two representative
configurations (generation parameters are reported above each
graph), which have been obtained by varying the utilization
U from 0.5 to 0.975 and testing 1000 task sets for each
utilization value. As it can be observed from Figure 3(a),
the SRP-SS-config shows a considerable improvement in
comparison to the fine-grained analysis for the SRP, exhibiting
a performance gap of up to 12% for U = 0.7. Furthermore,
note that the fine-grained analysis for the SRP also shows a
consistent improvement over SRP-coarse, with a perfor-
mance gap of 14%. The SRP-SS-cor2 approach is beneficial
up to U = 0.7, and then tends to show very low schedulability
performance as the system utilization increases. Figure 3(b)
reports the results when the maximum suspension time is
doubled, the number of resources is increased, and the number
of critical sections per task is decreased. In this configuration,
the performance gap between SRP-SS-config and SRP is
reduced to about 4%, while the improvement of SRP upon
SRP-coarse is more than doubled. The reduction in the ef-
fectiveness of the SRP-SS was expected since due to the larger
task suspension times, the increased interference generated by
suspension regions when πss

i increases, dominates the gain in
terms of blocking time. In most cases, Algorithm 3 will not
find a better configuration than the SRP.

Finally, it is worth observing that the SRP-optimistic
curve also corresponds to the ideal case in which each task
is blocked by at most one critical section and there is no
extra-interference generated by self-suspension regions. The
experimental results show that the schedulability performance
of SRP-SS-config are not that far from the one of
SRP-optimistic (about 3% of difference), hence quan-
tifying the quality of the solution provided by Algorithm 3.

3) Experiment 2: This experiment considered the same
generation scheme assumed for Experiment 1 but without the
presence of RES_SCHEDULER, and therefore aims at being
representative of task sets with typical shared resources. The
results of two configurations are reported in Figures 3(c)
and 3(d). The graphs show similar trends to those emerged
in Experiment 1, with a slight reduction on the performance
gap between SRP and SRP-optimistic and a consequent
reduction of the gap between SRP and SRP-SS-config.
Such a gap further reduces with shorter critical sections and
larger number of tasks (Figure 3(d)). Furthermore, such graphs
confirm that the SRP-SS-cor2 approach tends to degrade its
performance as the number of resources and the suspension
times increase. Finally, Figure 3(d) shows the benefits of
adopting the proposed fine-grained analysis for the SRP, in
comparison to the coarse blocking bound, specially in presence
of a larger number of tasks and resources (n = 15 and nr = 8),
achieving a schedulability gain of up to 30%.

X. RELATED WORK

This work is not about the RTA of self-suspending tasks
but rather on resource sharing protocols. Therefore, we do not
discuss this topic in this section: the interested reader can refer
to the survey in [2] and Section III already provides several
references to relevant work on that topic.

Despite the fundamental relevance of classical real-time
locking protocols, such as the SRP [4], and the priority
ceiling and priority inheritance protocols [7], to the best of
our knowledge efforts spent on their integration with self-
suspending tasks were limited at best. In [16], Rajkumar
et al. modelled blocking due to resources globally shared
in multi-processor platforms as self-suspensions. One of the
terms in their blocking bound is similar to the coarse-grained



analysis proposed in this paper. Similarly, Brandenburg derives
a coarse-grained analysis of blocking dues to self-suspension
for the FLMP+ resource sharing protocol [19]. We propose
a tighter response time analysis, tailored to self-suspending
tasks.

State-of-the-art analyses for multiprocessor locking proto-
cols have adopted a similar technique to our more accurate
blocking analysis of the SRP, to characterize the set of critical
sections that can effectively block higher priority tasks [22],
[27]: this approach is typically referred to as inflation-free
analysis, and was first proposed by Brandenburg in [13].

Works on semaphore-based multiprocessor locking proto-
cols [13], [28] also considered the integration of blocking with
self-suspensions, but under the case in which suspensions are
originated by waiting times for resources locked on a remote
processor or when suspensions happen within a critical section
(e.g., due to I/O accesses). To the best of our records, there
is no work that attempts to mitigate the additional blocking
originating from self-suspension, other then by using spin-
locks [22], effectively replacing suspension by computation.

The FMLP+ family of algorithms [19], [29] uses priority
boosting to limit blocking time and avoid starvation for self-
suspending tasks running on multicore platforms. However,
priority boosting in FLMP+ works only for lock-related sus-
pensions. It was not designed and does not help in the
occurrence of suspensions that are not the result of waiting
for a lock. On the other hand, the SRP-SS provides a fine-
grained control of the blocking originated by locking-unrelated
suspensions. Furthermore, FMLP+ enforces a suspension when
a lock is busy, while the SRP-SS does not introduce additional
suspensions.

The new system priority Πss introduced by the SRP-SS
resembles the preemption threshold mechanism first proposed
in [23] and then extended in [24], [25] to improve the
schedulability of non-self-suspending tasks under task level
fixed priority scheduling. Beside relying on a system priority in
both cases, this work and those on preemption thresholds have
drastically different goals. Preemption threshold aims at reduc-
ing the higher priority interference by deferring preemptions,
while the SRP-SS reduces the lower priority interference by
preventing blocking. The task parameter πss

i is thus assigned
to suspension regions and is set to a smaller value than πi,
where a preemption threshold parameter would be assigned to
execution segments and would be set to a higher value than
πi. Those works are thus incomparable but mixing the two
mechanisms may be worth investigating in the future.

XI. CONCLUSION

In this work, we have presented two schedulability analyses
for the SRP when tasks are allowed to self-suspend. The
most accurate of the two has shown very good results during
the experimental evaluation with up to 30% increase in the
task set schedulability ratio in comparison to the second
(coarse-grained) one. Additionally, we proposed the SRP-SS, a
generalization of the SRP, together with its own schedulability
analysis and a greedy configuration algorithm, to cope with
the specificities of self-suspending tasks. Beside the theoretical
dominance over the SRP, the experimental results showed that
the SRP-SS may increase the schedulability (+10 to 12%)

of task sets with large critical sections (> 300µs) as it may
happen in real applications, specially in the presence of non-
preemptive or partially non-preemptive workload. Further, we
expect the SRP-SS protocol to be sufficiently close to the SRP
to allow for an easy integration in existing operating systems,
with limited overheads.

APPENDIX A

Algorithm 4 Pseudo-code of a scheduler using the SRP

1: Init: Qr ← IdleTask; Qb ← ∅; Qss ← ∅; L← 0; Π← 0;
2: Schedule invariant: RunningTask ← argmaxτi∈Qr

{πi};
3:

4: procedure RELEASE(τj)
5: if πj > Π then
6: Add τj to Qr

7: else
8: Add τj to Qb

9: end if
10: end procedure
11:

12: procedure COMPLETE(τj)
13: Remove τj from Qr

14: end procedure
15:

16: procedure SUSPEND(τj)
17: Remove τj from Qr

18: Add τj to Qss

19: end procedure
20:

21: procedure RESUME(τj)
22: Remove τj from Qss

23: Add τj to Qr

24: end procedure
25:

26: procedure LOCK(τj , ℓk)
27: Push π(ℓk) on L
28: Π← π(ℓk)
29: end procedure
30:

31: procedure UNLOCK(τj , ℓk)
32: Pop π(ℓk) from L
33: Π← L.top
34: for all τj ∈ Qb s.th. πj > Π do
35: Remove τj from Qb

36: Add τj to Qr

37: end for
38: end procedure
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