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vorgelegt von
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Tag der mündlichen Prüfung: 4. Februar 2019
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Preface

When I first started to study logic, the idea of validity as preservation of truth
from premisses to conclusion always baffled me. How is it possible to explain
validity in terms of preservation of truth when there are valid arguments where
all sentences, premisses and conclusion, are false? What is being preserved
in this case? “Well, you see”, somebody would try to explain, “in this case,
if the premisses were true, then the conclusion would be true.” “This is just
a roundabout way of assuming that the argument is valid,” I would usually
reply. “More precisely, how could I ever evaluate that criterion without already
presuposing that the argument is (in)valid?” It seemed to me that the truth
preservation effect was a consequence of validity, not an explanation of it.

Later I learned that this idea of truth preservation is in fact a somewhat
misleading oversimplification of the classical theory of validity. Still, I was
not completely satisfied. In the classical explanation of validity, the meaning
of the propositional logical constants, as explained through their truth tables,
is based on the doctrine that the pertinent trait of sentences, their semantic
value, consists in being either true or false (bivalence).

Although bivalence is arguably a compelling and unproblematic doctrine in
many contexts, our deductive practice does not seem to be at all restricted to
those contexts. For instance, we usually perform refutations in contexts where
we do not care whether premisses and conclusion are true: we merely try to
show our interlocutor that, if one rejects the conclusion, one must reject at
least one of the premisses. Deductive arguments also appear in fiction (de-
tective novels, fantasy novels, philosophical novels and what have you). The
sentences therein are meant to be neither true nor false in the technical sense
of logical theory. What unfolds in those contexts are deductions nonetheless
and a satisfactory notion of validity should account for them.

From what I can gather, the orthodoxy would have us believe that the valid-
ity of arguments in these contexts are subordinate to the validity of the same
argumentative forms in truth preservation, or, to be more exact, bivalent scen-
arios. I still contend however that ambivalent deduction, that is, deduction
indifferent to alethic repercussions, is deduction enough.

Despite its astounding prominence, the classical theory of validity places
itself somewhat removed from practice. Now, idealization in itself is not a bad
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Preface

thing, but too much of it can leave us with a stagnant and dogmatic theory.
The question is, of course, can we do better?

Any alternative must strike a better balance between adequacy to practice
and theoretical simplicity and robustness. In terms of adequacy to practice,
the classical theory sure leaves a lot to be desired. For evidence of its inad-
equacy, one need look no further than to the infamous paradoxes of material
implication. Furthermore, because of its prominence, the perceived simplicity
and robustness of the classical theory can be easily overestimated.

A logician, especially if she is not terribly concerned with understanding and
explanation (either in general or for the purpose of some task at hand), may be
perfectly content with a coarse extensional match between theory and practice,
as long as it enables her to pursue formal and theoretical objectives. Nothing
wrong with that. In fact, it explains why homophonic clausal definitions—for
instance, “A → B is true if, and only if, if A is true, then B is true”, where
“→” is supposed to stand for “if. . . then. . . ”—are often used despite being
poor explanations, since they presuppose understanding of the classical logical
constants on the metalevel (an actual explanation would need to resort to the
truth tables at some point).

Expressing discontent and advancing critiques to the classical theory is all
well and good. Proposing satisfactory fixes and alternatives is much harder.
Particularly, finding a better working balance between theory and practice. As
a philosopher, I would gladly accept some loss in simplicity for more explan-
atory power and perspicuity. But as a logician, I would certainly rejoice in a
systematic theory that enables formal pursuits and rigorous development.

A surprising outlet for my frustrations appeared when I read Dummett’s The
Logical Basis of Metaphysics as an undergraduate student. The book outlined
the rudiments of a far reaching philosophical programme. The programme
resonated strongly with me. The project of explaining meaning in terms of
language use seemed particularly refreshing and undogmatic. I found, how-
ever, many things with which I didn’t agree; I found many arguments wanting.
In particular, I felt that the focus on knowledge, assertion and verification was
misplaced. Nevertheless, while reading the book, the mixture of enthusiastic-
ally shared prospects and subtle philosophical disagreement provided some of
the most enjoyable moments I had with a philosophical work.

I would like this text to be considered as a contribution to Dummett’s Pro-
gramme. It concerns the small, but, I believe, fundamental aspect of the pro-
gramme dealing with logical validity.
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1 Meaning and Use

The idea that meaning relates to use is simple. Yet, its success is highly
dependent on unravelling the details and achieving an adequate understanding
of its consequences. A straightforward, but ultimately misguided, approach
to explore the connection between meaning and use would be to identify the
meaning of an expression with its use, any use. This naive approach faces two
challenges: first, it is not able to systematically distinguish between correct and
incorrect use; second, it does not distinguish between essential (or canonical)
and inessential (or derivative) uses.

Instead of identifying meaning with an amalgam of particular uses, a soph-
isticated approach would associate meaning with general rules governing the
use of expressions in the language. For natural languages, the formulation
of these rules may seem to be a very daunting endeavour since, for the most
part, they cannot be easily extracted from explicit usage patterns. Nonethe-
less, intersubjective standards for the correct use of expressions suggest that
their use is indeed regimented by rules. These rules implicitly permeates our
linguistic practices and are an important component in our ability to speak our
languages.

Although correct and incorrect uses can be reliably recognised as such by
competent speakers, it is not a straightforward task to make explicit what ex-
actly are the general rules governing the use of many expressions in natural
languages. But, the complexities and subtleties of natural language notwith-
standing, the question seems to be more palatable when restricted to the logical
constants. The syncategorematicity, universality and neutrality commonly at-
tributed to the logical constants mean that they represent an especially circum-
scribed paradigmatic case. In particular, the logical constants lend themselves
very well to a compositional treatment.

Compositionality is important because it enables a recursive explanation of
the meaning of complex sentences on the basis of the meaning of their compon-
ents. The recursive explanation is usually formulated in terms of some central
semantic notion like truth or assertability. Whether based on truth or assert-
ability, the generally accepted recipe is to describe how each logical constant
behaves with respect to this central semantic value: how the semantic value
of complex sentences are determined in terms of the semantic value of their
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1 Meaning and Use

constituents. Once the meaning of the logical constants are specified, validity
can be easily defined in agreement to the idea of transmission, or preservation,
of a designated semantic value.

Naturally, such an explanation of validity rests upon background philosoph-
ical doctrines regarding meaning and language. In classical theories, for in-
stance, there are often doctrines relating meaning and truth (for example,
bivalance), as well as doctrines about predication and denotation (in the case
of predicate logic), among others. Dummett (1991) called these background
philosophical doctrines, when systematically arranged, a theory of meaning.

Like many of his contemporaries who were heavily influenced by Frege,
Dummett maintained that theories of meaning provided a bridge between logic
and the philosophy of language. He further believed that this connection could
be exploited in order to strategically approach the solution to a broad class of
metaphysical disputes.

Persuaded by Wittgenstein ([1953] 2003), Dummett favoured theories of
meaning more susceptible to linguistic practices and to the social character
of language use. This led to the rejection of core doctrines of classical theor-
ies. Walking the bridge from the theory of meaning to logic, and from logic
to metaphysics, Dummett sided with the intuitionist in matters of logic and
mathematics, and appeared generally resistant to realism in other metaphysical
disputes.

In this work, however, I am only concerned with the viability of a relatively
small development of Dummett’s journey: an explanation of validity on the
basis of inference rules taken as expressing the deductive use of the logical
constants. This endeavour ideally culminates in an inferentialist definition of
validity. The approach that I favour is developed in agreement as well as in
opposition to Dummett. Before focusing on the issue of validity in the next
chapters, I discuss the philosophical background, arguments and doctrines that
originate from the idea of “meaning as use” and revisit some of the challenges
it poses to classical theories of meaning.

1.1 The social character of meaning

1.1.1 Manifestability

Theories of meaning are concerned with general questions about meaning and
language. They are the philosophical background to the semantics of partic-
ular, natural or artificial, languages. For instance, they can prescribe what a
meaning explanation should look like. They can give an account of how mean-
ing relates to linguistic practice and of what constitutes our ability to speak the
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1.1 The social character of meaning

language. The breadth and reach of a theory of meaning, of course, depends
on characteristics of the target language and the range of linguistic phenomena
the semantics purports to explain.

For instance, if interested solely in mathematical sentences, the main ques-
tion for a theory of meaning could be “What is the meaning of a mathematical
sentence?”.

There can be many answers. Two general approaches are particularly prom-
inent in the philosophy of mathematics. First, the meaning of a mathematical
sentence can be explained along the lines commonly associated with the lo-
gicists: a mathematical sentence is a description of certain immaterial and
atemporal objects. These objects have a reality all of themselves, independent
of human cognition, practice or existence.

Another approach, which is in clear opposition to the first one, holds that the
meaning of a mathematical sentence has to be explained in terms of its use.
And, although they can be used in many different contexts and situations,
the chief use of mathematical sentences are in mathematical calculations and
proofs. This approach can be loosely ascribed to the early intuitionists, as long
as mathematical calculations and proofs are considered to be primiraly mental
constructions.

Dummett (1975a) indeed suggested a more linguistic interpretation of the in-
tuitionistic position, one that renounces the mentalism and solipsism associated
with Brouwer. Under this new linguistic guise, the intuitionist can challenge
the logicist on, at least, two grounds. First, from the perspective of the theory
of meaning, the logicists allow for the possibility of a widespread and, worst of
all, undetectable communicative failure. Second, the intuitionistic position can
give a more clear account of the social character of the language, particularly
of the practices of teaching and learning the language.

More precisely, suppose that the meaning of a mathematical sentence is
indeed somehow tributary to the mathematical reality that it describes. Gran-
ted that the mathematical reality is objective and immaterial (not given to the
senses), our grasp of the meaning of a particular mathematical sentence should
consist in some private mental content, possibly obtained through intellectual
intuition (or something of the sort). Now, the problem is how can we be sure
that we associate the same content, that is, the same meaning, to the same
sentence? In other words, how can a speaker of the language be sure that
she associates to a given mathematical term, say “23”, the same meaning that
some other speaker? It seems that, if all there is to the meaning of a mathem-
atical sentence is a correspondence to an immaterial mathematical reality, one
speaker can never be sure to understand such a sentence the same way another
speaker does.

3



1 Meaning and Use

For very much the same reasons, a teacher of the language cannot be sure
to have teached it correctly. The learner also cannot be sure to have learned it
correctly. It is very difficult for any theory of meaning completely indifferent to
linguistic practices to give a satisfactory account of the teaching and learning
of mathematics.

Yet why should the teaching and learning of mathematics be of any concern
to a theory of meaning for mathematical sentences? What does it mean for the
logiscist to hold that there are immaterial and atempotal mathematical objects
inhabiting a reality independent of ourselves? What are the consequences of an
insistence on incorporating use as an essential element of meaning? How would
the intuitionistic theory of meaning differ from the logicist theory of meaning?

Similar to his approach to the intuitionistic metaphysics of mental construc-
tions, Dummett reinterprets the logicist metaphysics of mathematical objects
in terms of the theory of meaning. According to him, the core of the dispute
can be rendered as a dispute around the legitimacy of the principle of bivalence
when applied to mathematical sentences. The rejection of the principle of bi-
valence is believed to follow from a commitment to language use. That is, a
theory of meaning based on use cannot admit the principle of bivalence as an
universally legitimate principle. Thus, the intuitionistic deference to linguistic
practice can be seen in the form of a general requirement placed on the theory
of meaning: the requirement of manifestability. This requirement is designed to
challenge any conceptions of meaning that are based upon some transcendent
notion of truth which is independent from human knowledge and practices.

Manifestability In a theory of meaning, the explanation of the meaning of
an expression must be formulated exclusively in terms of notions and
distinctions which are completely manifestable in the linguistic practices
of speakers.

The principle of bivalance is incompatible with the requirement of manifest-
ability. There are some features of our language that enable the construction
of sentences for which bivalance is arguably not manifestable. Some of them
are (Dummett 1991, p. 315):

– our use of unbounded quantification over infinite totalities

– our use of the subjunctive conditional

– our capacity to refer to inaccessible regions of space-time, such as the
past and the spatially remote

These features enable the composition of sentences whose truth is potentially
transcendent, that is, sentences for which ascertaining their truth or falsity is
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1.1 The social character of meaning

either accidentally or, perhaps unbeknownst to us, necessarily out of reach. For
instance, it may be impossible to appraise the truth of the sentence

An odd number of people attended Hypatia’s lectures in 392 AD.

The sentence is meaningful, and any theory of meaning that purports to re-
spect the requirement of manifestability must reject the principle of bivalance
for these types of sentences. In other words, depending on the domain, the re-
quirement of manifestability casts the principle of bivalance as a highly objec-
tionable doctrine. Now, the salient questions are: Why should manifestability
be a requirement at all? Why should a theory of meaning be susceptible to
linguistic practice, give an account of the teaching and learning of the language,
be concerned with verification instead of truth?

These are methodological questions. The answers are informed by what
objectives a theory of meaning is called to fulfil. A classical logician may
be perfectly content with a somewhat idealised theory of meaning and, con-
sequently, an idealised concept of validity. She may concede the points of her
opponents about the shortcomings of classical theories when measured against
certain linguistic practices. She may even abstain from the realist metaphys-
ics of immaterial realities and transcendent truth. She can still contend that
classical theories are as good as they come, and that, through idealisation, one
attains generality and simplicity which, in the wider scheme, are worthwhile
trade-offs.

Indeed, critiques are certainly more powerful when paired with strong al-
ternatives. The particular alternative pursued by Dummett (1975a) revolves
around the “replacement of the notion of truth, as the central notion of the
theory of meaning, by that of verification.” In this context, the notion of veri-
fication is understood in a broad sense. In mathematical scenarios, for instance,
proofs would count as verifications. In contingent scenarios, verifications could
be empiric observations. In argumentative scenarios generally, we would con-
sider justifications. The overall strategy is to move from a framework based on
transcendental truth to one based on knowledge and the justifications we offer
each other for establishing knowledge.

1.1.2 Assertion

Among the speech acts we use, assertions are the ones most relevant when
it comes to knowledge in general and logic in particular. In verificationist
theories of meaning, assertability is brought to the foreground. Thus, instead
of the concept of truth, familiar from classical theories of meaning, a theory
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1 Meaning and Use

of meaning committed to use would take assertability as its central semantic
concept.

In contrast with the abstract concept of proposition, assertions, as speech
acts, carry with them an implicit commitment, by the person making the asser-
tion, to stand for its correctness. In other words, this person can be challenged
to offer justifications for the assertion and thus to make explicit the grounds
upon which her or his knowledge of its correctness rests.

Notice that the conditions to correctly assert a sentence and the conditions
for it to be true (in a classical sense) may be different. For instance, it is expec-
ted that, if a mathematician asserts, as opposed to merely states, Goldbach’s
conjecture, then she should be able to provide a proof. On the other hand, the
truth of Goldbach’s conjecture, supposing it is indeed true, does not depend on
any particular mathematician being able to provide a proof. Actually, being a
conjecture of elementary number theory, the intuition is that the correctness
of the conjecture is settled even if no mathematician is able to come up with
either a proof or a refutation. A verificationist can very well concede the point
whilst denying that the meaning of the conjecture hangs on this bivalent state
of affairs. According to the verificationist, the meaning of Goldbach’s conjec-
ture does not rely on a proof or refutation ever being found, but rather consists
in our capacity to recognise either one of them once they are presented to us.

While a speech act of assertion itself is performed by an individual speaker in
face of interlocutors, the assertability conditions invoked by the verificationist
are considered to be the intersubjective product of our practice of offering,
recognising and committing to justifications. It is thought to be the common
denominator exchanged during the teaching and learning of the language which
enables us to understand sentences like Goldbach’s conjecture even though its
correctness may lie outside our capacity to ascertain.

The verificationist framework for the theory of meaning is thus heavily epi-
stemic in nature. The change from truth to knowledge, however, comes with
its own complications. For instance, it requires great care not to confuse verifi-
ability with actual verification (Prawitz 1998, § 4), a problem already familiar
to the logical positivists (Creath 2017, § 4.1). Another challenge for the veri-
ficationist is to give an account of the content of sentences that can be shared
between distinct speech acts (for example, supposition and denial) without
falling back into a realist abstract notion of proposition.

Furthermore, in contrast with bare sentence content, assertion and knowledge
relate, first and foremost, to individuals. We can say that a person knows
something, but another does not; a person asserts something, but another
denies it. It could be argued that this feature is at odds with the task of
supporting an intersubjective theory of meaning.

6



1.2 Logic and mathematics

1.2 Logic and mathematics

Together with a semantics for logic based on the “meaning as use” approach
to the theory of meaning, another motivation of Dummett’s Programme is to
advance an argument for the adoption of intuitionistic over classical logic. This
motivation stems from constructivist views on the philosophy of mathematics
and seeks to gain support for constructive mathematics by replacing classical
logic with constructive logic. The novelty, in comparison with early intuition-
ists and constructivists, is to approach these matters through the theory of
meaning.

In outline, Dummett’s Programme begins at the level of the philosophy of
language by advancing arguments against classical theories of meaning. Then,
an alternative conception of meaning based on use is proposed. The programme
culminates in the development of a semantics for logic. Furthermore, the ex-
pectation is that the semantics will avail intuitionistic logic over classical logic
and, finally, through logic, will settle the controversy in the philosophy of math-
ematics.

Dummett ([1963] 1978) maintains that the metaphysical dispute between
classical and intuitionistic mathematics is part of a wide range of metaphysical
disputes between two general opposing camps: realism and anti-realism. In
his interpretation of this class of metaphysical disputes, the difference between
the opposing camps boils down to the question of what is the correct theory
of meaning for the relevant class of sentences and, in particular, whether the
principle of bivalence applies.

The connection between the theory of meaning and metaphysics has often
been criticized on general grounds, for instance, by Pagin (1998) and De-
vitt (1983). Notwithstanding, the constructive aspirations of Dummett’s Pro-
gramme can still fail on their own terms if inferentialist notions of validity fail
to single out intuitionistic logic.

Indeed, many aspects of Dummett’s Programme depend on the success of
its inferentialist notions of validity. As Dummett (1991, chapter 10) himself
observes, not only the mere possibility of a theory of meaning based on use,
but also its capacity to criticise and maybe reform accepted linguistic usage
faces important threats, for example, from semantic holism. Therefore, as a
paradigmatic case, a successful try out of the “meaning as use” idea in the form
of an inferentialist notion of validity would dispel doubts about its tenability
and provide a mature competitor to classical theories of validity.

While my primary concern is this logical core of Dummett’s Programme, the
influence of intuitionism and its constructive heritage warrants an examination
of some conceptual issues therein.
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1 Meaning and Use

1.2.1 Intuitionism

The early twentieth century witnessed a vigorous debate around the founda-
tions of mathematics. As the logicism of Frege, Russell and Whitehead fell prey
to paradoxes, two distinct philosophies came out as alternatives to logicism:
Hilbert’s formalism and Brouwer’s intuitionism.

On the one hand, Hilbert’s foundational program aimed to show the consist-
ency of mathematics by means of finitistic methods. If carried out, Hilbert’s
consistency proof was believed to provide an indirect foundation for classical
mathematics where the more direct approach of the logicists have failed. On
the other hand, Brouwer’s philosophy rejected any need for foundations: he
characterized mathematics as a free product of the mathematician’s mental
constructions.

At that time, the intuitionistic critique of classical mathematics resonated
well in the uneasy context of the paradoxes. Their philosophies remained
quite distinct, despite the fact that, on a practical level, formalists (in their
metamathematics) as well as intuitionists tried to restrict the principles of
reasoning used (if compared to logicists). As Dummett (2000) observes:

Intuitionism took the fact that classical mathematics appeared to
stand in need of justification, not as a challenge to construct such
a justification, direct or indirect, but as a sign that something was
amiss with classical mathematics. From an intuitionistic stand-
point, mathematics, when correctly carried on, would not need any
justification from without, a buttress from the side or a foundation
from below: it would wear its own justification on its face.

As it turned out, Brouwer’s view of mathematics as mentally constructed
would have drastic consequences if imposed on the mathematical practice of his
day. One consequence would be the rejection of actual infinity, a concept that
has become widely accepted, especially after Cantor’s work on set theory. In
this respect, Brouwer was expressing mathematical intuitions which go back, at
least, to Gauss (1900, Letter to Heinrich Christian Schumacher, 18 July 1831).
However, many mathematicians, including Hilbert (1926), were not pleased
with the possibility of being expelled from “Cantor’s paradise”.

In addition to the foundational investigations into mathematics, Brouwer
(1908) was also suspicious of logic. He understood clearly that, if the tradition-
ally accepted principles of logic were indeed universally applicable, his views on
how mathematics ought to be carried out could not stand unharmed. Thus, he
believed that the most elementary constructions of mathematics are not in need
of any foundation, logical or otherwise. Rather, he maintained that the logical
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1.2 Logic and mathematics

theories advanced by the logicists as a purported foundation for mathemat-
ics in fact presupposed elementary mathematical techniques. Brouwer (1908)
wrote about the principles of logic as being “unreliable”. He was undoubtedly
attacking the canons of reasoning associated with the predominant classical
logic. But he was generally supportive of Heyting’s efforts to propose a formal
system capturing the intuitionistic canons of reasoning (van Atten 2017, § 2).

1.2.2 The principle of excluded middle

As already remarked, my main concern is logic rather than mathematics.
Brouwer’s philosophy of mathematics is nonetheless relevant because his re-
flections on the nature of mathematics led to the rejection of what seems to be
a purely logical principle: the principle of excluded middle. Indeed, he blamed
the paradoxes on the careless use of the the principle of excluded middle by
mathematicians, especially when reasoning about potentially infinite mathem-
atical series.

It was Brouwer who first discovered an object which actually re-
quires a different form of logic, namely the mental mathematical
construction. The reason is that in mathematics from the very be-
ginning we deal with the infinite, whereas ordinary logic is made
for reasoning about finite collections. (Heyting 1956, chapter 1)

But why should the validity of a logical principle depend on whether the uni-
verse of discourse is finite or infinite? In his renowned dialogue, Heyting (1956,
chapter 1) expressed the view that perhaps the principle of the excluded middle
should not be considered a logical principle at all since it embodies an unjusti-
fied metaphysical assumption: that mathematical objects exist independently
of our knowledge of them, i. e. independently of being constructed. In other
words, the classical canons of reasoning incorporate extraneous methodological
doctrines which, although legitimate and useful in certain domains, do not en-
joy the universality required of logical principles. Therefore, the intuitionistic
objection can be seen not only as a contribution to the debate in the philo-
sophy of mathematics but also to the philosophy of logic. This interpretation
informs, to a large extent, Dummett’s Programme discussed before.

Realist metaphysical doctrines notwithstanding, the intuitionistic contention
can also be placed on the “no ignorabimus” claim for the general solvabil-
ity of mathematical problems (Hilbert 1900). In fact, Brouwer’s method of
weak counterexamples rests on the possibility that meaningful mathematical
problems could remain unsolved (Troelstra and van Dalen 1988, § 1.3). These
counterexamples point out applications of the principle of excluded middle

9
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which, under an intuitionistic interpretation, would lead to the conclusion that
we either possess, or would certainly one day possess, proofs for any mathem-
atical conjecture.

But, however (un)successful in challenging the classic metaphysical assump-
tions about mathematics, the intuitionist seems to advance a metaphysical
picture of his own: that of mathematics as a product of mental constructions.
The early intuitionistic notion of a mental mathematical construction was in
desperate need of more careful and detailed explanation. Not at all by chance,
there emerged different proposals for how mathematics should be developed
intuitionistically. One interesting example thereof is the negationless mathem-
atics of Griss (1946).

A related issue is whether an intuitionist should accept as justification con-
structions that are possible to effect in principle but were not actually carried
out, and, perhaps cannot be actually carried out. For instance, consider the
sentence

The sequence of digits “49027365293754” occurs in the decimal expansion of
π somewhere before the 101010 decimal place.

Could we, from an intuitionistic point of view, correctly assert that it is either
provable or refutable? The intuitionist would probably agree that to tie math-
ematics up to completely effected constructions made by actual persons, even
the entire human race (past, present and future), is to make mathematics de-
pend too much on casual contingent facts. In this case, the availability of a
general method, say Archimedes method for calculating the decimal expansion
of π, should suffice for the intuitionist.

Yet, the intuitionist seems to be vulnerable now to the same kind of critique
that he or she has been directing against the classical mathematician (Dummett
1975b). So, why stop at intuitionism? Why not embrace some sort of finitism?
After all, finitism seems to agree perfectly with the general constructive position
that mathematical sentences express the realization of a mental construction
(Bernays 1935). Even barring those critiques, given that the notion of mental
mathematical construction is so open to interpretation, why not embrace the
negationless mathematics of Griss (1946)?

These are important philosophical questions concerning the objectivity and
nature of mathematics. They reveal the metaphysical nature of early intuition-
istic positions and that, despite very reasonable claims to its significance for
the philosophy of logic, its contributions are not easy to sort out.
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1.2.3 The BHK interpretation

Heyting (1930) codified the principles of reasoning acceptable to the intuition-
ists. His first formulation was an axiomatic system. There were also attempts
by Kolmogoroff (1932) to interpret the intuitionistic understanding of the lo-
gical constants in terms of solutions for problems. Finally, Heyting (1956,
§ 7.1.1) gave what is widely recognised as the definitive formulation, known as
the BHK interpretation of the logical constants.1

p ∧ q can be asserted if and only if both p and q can be asserted.

p ∨ q can be asserted if and only if at least one of the propositions p and q
can be asserted.

p→ q can be asserted, if and only if we possess a construction r, which, joined
to any construction proving p (supposing that the latter be effected),
would automatically effect a construction proving q.

¬p can be asserted if and only if we possess a construction which from the
supposition that a construction that proves p were carried out, leads to
a contradiction.

Heyting’s clauses are sometimes adapted. Troelstra and van Dalen (1988,
§ 1.3.1), for example, define negation (section 2.2.4) in terms of implication
and contradiction, also called absurdity (⊥), and then add a clause to the
effect that there is no proof of absurdity. They also replace Heyting’s notion
of assertion by a notion of proof, thus tacitly assuming the thesis that we can
correctly assert a proposition, if, and only if, we have a proof of it.

There is no doubt that the BHK interpretation indeed offers some insight
into the intuitionistic meaning of the logical constants. For instance, using
BHK and some intuitive notion of proof, we could argue for the validity of
some logical laws, like double negation introduction.

A→ ¬¬A There is no proof of ⊥. So, once in possesion of a proof of A, it is
impossible to have a proof of ¬A, that is of A→ ⊥, since that would in
fact yield a proof of ⊥ by modus ponens.

1. Heyting (1956, § 7.1.1) insists that the clauses apply to actual propositions and he uses
gothic letters to distingish between propositions and propositional variables. In this context,
generality is achieved by an additional clause: “A logical formula with propositional vari-
ables, say U(p, q, . . .), can be asserted, if and only if U(p, q, . . .) can be asserted for arbritary
propositions p, q, . . .; that is, if we possess a method of construction which by specialization
yields the construction demanded by U(p, q, . . .)”.
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Early inferentialist notions of validity have been tightly associated with con-
structive logic and mathematics. Thus, in order to fulfil the mission of provid-
ing a constructively acceptable semantics for intutionistic logic, inferentialist
conceptions of validity have usually been developed under the shadow of the
BHK interpretation (chapter 3). Dummett (2000, § 7.2) is no exception:

There is no doubt, however, that the standard intuitive explana-
tions of the logical constants [BHK] determine their intended intu-
itionistic meanings, so that anything which can be accepted as the
correct semantics for intuitionistic logic must be shown either to
incorporate them or, at least, to yield them under suitable supple-
mentary assumptions.

In contrast, I favour a perspective which is largely derived from Dummett’s,
but rests instead on inference rules in natural deduction, giving no primacy to
BHK whatsoever (chapter 4). Admittedly, there are some similarities between
the BHK clauses and the introduction rules of natural deduction (chapter 2).
These similarities, however, are deceptive. The differences are significant enough
to advise that natural deduction and BHK be kept safely apart. At least two
differences between the BHK interpretation and natural deduction are:

– the BHK clauses are formulated in terms of proofs (assertions) while
natural deduction rules expresses the conditions for infering sentences on
the basis of assumptions, i. e. hypotheses

– the BHK clause for implication is substantially different from its intro-
duction rule in natural deduction2

Notwithstanding its plausibility as an explanation of the meaning attributed
to the logical constants by intuitionists, the BHK clauses face many problems,
both technical and conceptual, if called to act as semantic clauses for a sys-
tematic theory of meaning. Certainly, in mathematical contexts, is very hard
to deny that we are only entitled to assert a sentence when we have a proof for
it. Still, proof cannot be all there is to the meaning of mathematical sentences.
Otherwise, what is the meaning of a mathematical conjecture?3 In contrast, an

2. Prawitz (1971, § 2.1.1) also notes that the meaning of the introduction rule for implica-
tion is more strict than that of the corresponding BHK clause and concludes: “There is thus
not a complete agreement but a close correspondence between the constructive meaning of
the constants and the introduction rules.”

3. Some mathematicians might say that the wisest thing to do with a conjecture is to
remain silent about it until we have something relevant to say, that is, until we have a proof.
Historically, then, it seems that mathematical practice has not always been on the wisest
path.
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approach based on deductions from assumptions does not face the same prob-
lem: conjectures, whilst not established, can still be used in our deductions as
assumptions in order to extract consequences.

Yet another problem relates to the meaning of the absurdity constant: as
long as meaning is defined in terms of proof, or conditional proof, what is
the meaning of the absurdity constant which, by definition, has no proof?
Indeed, it was because of this problem that Griss (1946) abandoned negation
altogether. In natural deduction, on the other hand, the absurdity constant is
only expected to be used in subordinate deductions from assumptions. In this
regard, an approach based on natural deduction also seems to indicate a way
out of the dilemma.

The BHK interpretation is primarily concerned with proofs as mental math-
ematical constructions. Gentzen (1934), on the other hand, had a very different
motivation:4

My motivation was: The formalization of logical deduction, par-
ticularly as developed by Frege, Russell and Hilbert, is somewhat
removed from deductive practices as they are carried out in math-
ematical proofs. Considerable formal advantages are gained in re-
turn. Now, I intended to finally devise a formalism that comes as
near as possible to actual deduction. In this way, a “calculus of
natural deduction” was obtained.

Besides the BHK interpretation, early inferentialist notions of validity also
incorporated elements from proof theory, particularly Gentzen’s work. They
are usually formulated in a natural deduction framework and draw inspiration
for their notions of canonicity and harmony from normalization and similar
results on the proof theory of natural deduction. Because of their connection
with proof theory and their strong association with the BHK proof interpret-
ation, these inferentialist notions of validity are currently investigated under
the name “proof-theoretic semantics” (Schroeder-Heister 2018).

4. The origin of Gentzen’s formulation of natural deduction from a historical and concep-
tual perspective was investigated by von Plato (2012, § 5). He explored the possibility that
Gentzen was inspired, not from the BHK interpretation directly, but from the axiomatic sys-
tems of Hilbert and Bernays (1934) and Heyting (1930). According to him, these axiomatic
systems were coupled with Gentzen’s intuition that “actual mathematical reasoning proceeds
by hypotheses or assumptions, rather than instances of axioms.”
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1.3 Meaning, rules and validity

Even in purely deductive contexts, validity is not sufficient for successful argu-
mentation. There is no doubt, however, that validity is a necessary condition
of correct reasoning and cogent argumentation. Therefore, the study of valid-
ity is significant, although not exhaustive, for the study of our argumentation
practices.

Validity is a semantic concept. In order to show validity of an argument, the
meaning of the logical constants must be taken into account. It is by appeal to
the meanings of the logical expressions that we can argue for the correctness of
an inference from assumptions to conclusion in a valid argument. Therefore,
the theory of meaning has a fundamental impact on the corresponding concept
of validity.

Currently, the prevalent meaning theory is denotational : it explains mean-
ing on the basis of reference and denotation. As a result, most students of lo-
gic are acquainted with the concepts of interpretation, valuation, satisfaction,
truth value (understood as the denotation of propositions) and others notions
associated with model-theoretic semantics, a particular kind of denotational
semantics that borrows much of its technical notions from model theory.

The development of model-theoretic semantics represented a notable change
of attitude in logical investigations. This may be hard to see because many
logic textbooks, following a common trend in the field, present model-theoretic
semantics as a natural extension of the early developments of modern symbolic
logic. But there was indeed a drastic change of approach to the explanation
of logical validity. The distinction between syntax and semantics, for instance,
was absent in the early days of modern symbolic logic. Thus, although Frege
and Russell made heavy use of symbolic notation, the symbols in their sym-
bolic languages were never intended to be dissociated from their meanings: the
formal languages were presented as a notation for expressing logical notions
and relations. They were very careful, when introducing logical notions and
relations, to explain their meaning by means of examples and by describing
their general behavior.

Hilbert (1922) was the first to take important steps towards the separation of
syntax from semantics when he proposed, for the sake of pursuing his consist-
ency proof, that the symbolic systems of Russell and Frege be viewed purely as
syntactical systems. Since then, symbolic logic started to change from logical
investigations made more precise with the use of symbols to investigations
about the symbolic systems themselves. For some time, Carnap (1934, § 1)
subscribed to an interesting variant of this kind of formalism:
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The common view is that syntax and logic, despite their connec-
tions, are fundamentally theories of very different kinds. [. . . ] It
has been established through its development in the last decades,
however, that logic can be rigorously handled only when it does not
relate to judgements (thoughts or thought contents), but instead to
the linguistic expressions, particullarly the sentences.

Carnap (1934) attempted to answer traditional logical problems by devel-
oping a theory of pure logical syntax. Later, Tarski (1936) introduced the
notion of model5 in order to overcome what he saw as shortcomings of the syn-
tactic approach to logical consequence. After Tarski’s work, model-theoretic
semantics joined the (syntactic) proof theory of the Hilbert school and became
an indispensable part in modern logical theories. Logic became twofold: syntax
and semantics.

With model theory taking care of the semantics, the common conception is
that the syntax ought to be understood as the pure combinatorics of symbols.
The familiar recursive definition of the well-formed formulas, for example, is
a known part of the syntax. But in modern logical theories, the syntax does
not concern itself merely with the construction (or specification) of formal
languages. The formal proofs of a deductive system, especially axiomatic de-
ductive systems, are understood as transformations and operations on strings
of symbols completely devoid of meaning and are thus also a part of syntax.
However, just as the grammars of formal languages are based on the semantic
role of their syntactic units6, the formulation of the logical rules and axioms
in formal systems is not arbitrary, but instead guided by reflections on the
meaning of the logical expressions.

Most expositions of model-theoretic semantics encourage a formalist stance
towards syntax and proceed as if it was independent from the semantics, which
is why so much emphasis is put on results that bring them together, such
as completeness and soundness. As a result, there is an implicit dichotomy
between syntax and semantics and a general belief that syntax is somehow
opposed to meaning. But is formalism the only approach to syntax? Are rules
and the practice of following rules essentially opposed to meaning?

5. The notion of model as originally used by Tarski (1936) differs substantially from the
notion of model currently used in model theory. There is no doubt, however, that Tarski’s
work was the most important inspiration.

6. For instance, in a formal grammar, the symbols of the formal language are classified
into classes that indicate their general semantic role—individual constants are used to denote
objects of the domain, monadic predicate letters denote subsets of the domain whose elements
are objects that have a certain property and so on.
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As remarked above, some important pioneers of modern symbolic logic did
not assume a formalist stance towards their symbolic systems. Moreover,
judging from some passages in his work, even Hilbert (1928), who some con-
sider to be the father of formalism, viewed formal proofs as an expression, or
representation, of meaningful thought:

The game of formulas, one that Brouwer judges so harshly, has a
general philosophical significance, besides its mathematical value.
This formal game is devised according to certain rules that express
the technique of our thinking.

He seems to have believed that the syntactic rules used to construct formal
proofs are not mere symbolic manipulation but an expression of our deductive
practices.

Besides encouraging a formalist approach to syntax, model-theoretic se-
mantics also changed significantly the way validity is established. In ancient
Greece, Aristotle (Prior Analytics, 29b) argued intuitively for the validity of
some deductive relations and later established the validity of a group of other
deductive forms by reducing them to the first ones. In contrast, model-theoretic
semantics explains validity in terms of quantification over models and, con-
sequently, all valid forms are, conceptually, on the same level.7 The pervas-
iveness of model-theoretic semantics and its dichotomy between syntax and
semantics has shifted the attention of the logician away from inferences and
deductions and has placed it instead into valuations and models. This has gone
to such an extent that one needs to write a handful of paragraphs just to explain
how inferences, as steps in a deductive proof or argument, can ascribe meaning
to logical expressions and how proof theory, as the study of such deductive
practice, can be a base for semantics.

Proof-theoretic semantics [. . . ] uses ideas from proof theory as
a mathematical discipline, similar to the way truth-condition se-
mantics relies on model theory. However, just this is the basis
of a fundamental misunderstanding of proof-theoretic semantics.
To a great extent, the development of mathematical proof theory
has been dominated by the formalist reading of Hilbert’s program
as dealing with formal proofs exclusively, in contradistinction to
model theory as concerned with the (denotational) meaning of ex-
pressions. This dichotomy has entered many textbooks of logic in

7. For example, there is no conceptual difference between the validity of modus ponens
and that of an argument form with an infinite class of assumptions: both are predicated on
models of the assumptions being models of the conclusion.
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which semantics means model-theoretic semantics and proof the-
ory denotes the proof theory of formal systems. The result is that
proof-theoretic semantics sounds like a contradiction in terms even
today. (Schroeder-Heister 2006, § 1)

I do not use the term “proof-theoretic semantics” to refer to a semantics of
proof, or to a semantics where truth is replaced by proof. Instead, I use it to
designate a family of semantics for logic that, although indeed inspired from
results in proof theory, are based on the idea that meaning should be explained
not in terms of denotation but in terms of use. To explain meaning in terms
of use in the context of a semantics for logic is to adopt the view that certain
deductive rules implicit in our linguistic practice determine the meaning of the
logical constants. Thus, in my view, proof-theoretic semantics is to a meaning
theory based on use what model-theoretic semantics is to a meaning theory
based on denotation.

Perhaps it would be useful to illustrate the proof-theoretic approach to mean-
ing, as examined in detail in following chapters, by means of an example with a
single logical constant: implication. Since I am concerned with a semantics for
logic, the relevant practice is deductive practice; the relevant use is deductive
use. In contrast with strictly formalist views commonly associated with axio-
matic systems, where purely formal concerns like economy of axioms and rules
are prominent, natural deduction enables a more reflective strategy to capture
the deductive behaviour of the logical constants. There are two aspects to the
use of implications in natural deductions: they can appear as consequences or
as premisses of inferences.

There are many ways that implications can appear as either premiss or con-
sequence in inferences, but not all of them are essential to the meaning of
implication. There are essential, or canonical, uses of implication either as
premiss or as consequence of an inference, and there are also inessential, deriv-
ative uses.

In the role of consequence, we can express the canonical uses by especifying
the necessary and sufficient conditions for inferring a sentence with implication
as the main logical connective. The introduction rule for implication in natural
deduction can be seen as expressing exactly these necessary and sufficient con-
ditions. Thus, a necessary and sufficient condition for making an inference to
consequence A→ B, where A and B are arbitrary sentences, is that there is a
deduction of B from assumption A. Of course, there are other situations where
A → B may appear as consequence of an inference. But these other uses are
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inessential and can be explained by reference to the canonical use (section 2.3).

[A]
....
B

A→ B

Similarly, in the role of premiss, the elimination rule for implication can
be seem as the canonical way to extract consequences from sentences with
implication as their main logical connective. The elimination rule expresses
what must be accepted on the strength of A → B and the auxilliary premiss
A. Again, there are other situations where A→ B may be used as premiss in
inferences, besides those depicted by the corresponding elimination rule. They
are inessential.

A A→ B
B

By carrying the considerations just sketched to the other logical constants,
we can show that any valid deductions can be accounted for by reference only
to canonical inferences. In other words, any deductive relatioship between
sentences can be established using the introduction and eliminations rules of
the logical constants involved. Furthermore, there is a striking relationship
between both aspects of the use of implication: what was required for the
introduction of A → B, namely, a derivarion of B (based on assumption A)
can be restored by applying the elimination rule. To put it in another way, what
is obtained by elimination of A→ B was already at hand if we assume A→ B
to have been derived by the introduction rule. The relationship between the
deductive behavior of introduction and elimination rules for a logical constant
can be studied in order to uncover important semantic properties. A general
study of this kind constitutes the core of the proof-theoretic approach to the
semantics of logic.

Traditionally, however, proof-theoretic semantics has often been called to
fulfil also other objectives and to answer to other intuitions. Verificationism
in the theory of meaning and intuitionism in the philosophy of mathematics
are the most notable among them. In contrast, this text was written under
the background conviction that these matters are completely orthogonal to
the issue of validity and the meaning of the logical constants. In particular, I
am not sure whether the conflict in the philosophy of mathematics does not
involve strictly mathematical (non-logical) considerations but instead solely re-
volves around what is the correct underlying logic, as Dummett believed.8 In

8. Philosophical views associated with mathematical constructivism can be very diverse
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addition, I think that an analysis of the concept of proof, which is admittedly
an important part, is not sufficient to account for deductive practice (in math-
ematics and other areas of discourse). The doctrine of verificationism, with
its focus on assertion and assertability, is also too narrow to account for the
richness of our deductive practices. More precisely, the following theses are not
endorsed:

Assertability The thesis that assertions are the central linguistic concept of a
meaning theory based on use and, consequently, the view that inferences
are transitions from assertions to assertions. This is often expressed in
the slogan that a meaning theory based on use substitutes, in the gen-
eral framework of a denotational meaning theory, the concept of truth
conditions for assertability conditions.

BHK interpretation The thesis that the BHK interpretation of the logical con-
stants should be considered the starting point for a complete and coherent
semantic explanation of the meaning of the logical constants and, in par-
ticular, the view that the BHK interpretation corresponds somehow to
the introduction rules of natural deduction.

My primary motivation in the next chapters is to pursue a proof-theoretic
explanation of validity which is still faithful to the idea of “meaning as use”
but does not subscribe to the theses above.

and rich. They sometimes involve positions with regard to some strictly mathematical con-
cepts. Troelstra and van Dalen (1988, § 1.4) offer a concise survey of the most important
philosophical positions associated with constructivism in mathematics.
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2 The Deductive Use of the Logical
Constants

As already remarked, the syncategorematicity and universality of logic makes
it particularly suitable as a test case to evaluate the tenability of a systematic
approach to the idea of “meaning as use”. Deductive argumentation patterns
can be more easily formulated in terms of rules expressing the deductive use of
the logical constants than the usage patterns of most other natural language
expressions. Inevitably, these rules would not capture every subtle aspect of the
use of the natural language expressions corresponding to the logical constants.
How tight must usage patterns and rules match is a question of balance between
theoretical idealisation and pragmatic robustness.

This chapter examines the meaning of the logical constants as expressed by
the inference rules of natural deduction and briefly assess these rules in light of
our deductive practices. The discussion is confined to the propositional logical
constants (no quantifiers). The deductive harmony between introduction and
eliminations rules is also addressed, since this is a fundamental feature behind
proof-theoretic definitions of validity.

2.1 Preliminaries

This section can be skipped and subsequently consulted on demand for clari-
fications around notation and terminology.

The language. I cover propositional languages with infinitely many proposi-
tional variables (atomic sentences) and the propositional logical constants: →
(implication), ∨ (disjunction), ∧ (conjunction) and ⊥ (absurdity). The com-
plex sentences of the language are formed from atomic sentences by means of
composition with the logical constants in the usual way. Latin letters (A, B,
C etc.) are used to stand for arbitrary sentences of the language (small letters
indicate atomic sentences) and capital Greek letters (Γ and ∆) to stand for
finite collections of sentences.1 Subscripts are used whenever it is necessary or

1. I use the more ambiguous term “collection” because I want to leave open whether
sentences are collected into sets or, perhaps, multisets (section 8.3). No discussion or result
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convenient. The degree of a sentence is the number of logical constants that
occur in it.

Arguments Formally, arguments can be considered as trees of sentence oc-
currences (designated with Π, possibly with subscripts). They are constructed
from top to bottom, from the leaves to the root, by inferences. These infer-
ences lead from one or more sentences, the premisses, to a single sentence, the
consequence (usually separated by an inference line). In an argument, each
premiss of an inference is either a leaf of the tree or the consequence of a previ-
ous inference. Thus, argument trees are formal representations of the process of
argumentation, or reasoning, with some leaves acting as assumptions and the
root acting as the conclusion of the argument. Any occurrence of a sentence in
an argument determine, in the obvious way, a subargument with that sentence
as conclusion.2 A path in an argument is a sequence of sentence occurrences
such that each sentence in the path is an immediate inferential consequence
of the previous one.3 Every leaf in an argument is initially an assumption,
albeit assumptions can be discharged by inferences.4 After an assumption is
discharged by an inference, the argument, starting from the consequence of
that inference, does not depend any more on the assumption. The discharge
of assumptions are indicated using square brackets with numeric indices used
to pinpoint the particular inference discharging the assumption. Whenever it
is clear from context, the numeric indices are left implicit. As a convention,
sentences occurring, without an inference line, immediately above (below) Π
indicate leaves (the root) of Π. I write 〈Γ, A〉 to denote an argument from
assumptions Γ (those that remained undischarged throughout the argument)
to conclusion A without paying attention to the argumentation process that
goes from Γ to A. Also, for the sake of simplicity, I often talk about sentences
when I actually mean occurrences of sentences in an argument, and similarly
with respect to inference rules and the particular inferences resulting from their
application.

Derivations Propositional intuitionistic logic is characterised by the standard
system of natural deduction (Gentzen 1934; Prawitz 1965). The inference

is affected by the choice.
2. As a limiting case, a single sentence occurrence is an argument with that sentence acting

as both assumption and conclusion.
3. Again, as a limiting case, a single sentence occurrence measures an empty path from

that sentence occurrence to itself.
4. An axiom or logical theorem A can be considered the result of an inference from leaf A

to conclusion A that discards the leaf occurrence of A.
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rules for the propositional connectives are symmetrically distributed between
introduction (I) and elimination (E) rules.

[A]
....
B

A→ B
→I

A A→ B
B

→E

A B
A ∧B ∧I

A ∧B
A

∧E
A ∧B
B

∧E

A
A ∨B ∨I

B
A ∨B ∨I

A ∨B

[A]
....
C

[B]
....
C

C
∨E

Negation (¬) can be defined as usual in terms of implication and absurdity.
The rule for the absurdity logical constant ⊥ can be considered an elimination
rule.

⊥
A
⊥E

Natural deduction derivations are a particular subclass of arguments where
every inference is in accordance with one of the inference rules above.

Systems A collection of inference rules determine a deductive system S. The
main deductive system N is the natural deduction system for propositional
intuitionistic logic. A subscripted list of constants indicate fragments thereof
(for example, N→ for the implication fragment). These deductive systems can
be supplemented with a basic system B: a collection of rules for the derivation
of atomic sentences from atomic sentences. A basic rule b has the form

a1 · · · an
b

where a1 · · · an and b are atomic sentences. Except for some odd remarks
(exceptions always explicitly stated), all the bases considered are production
systems, i. e. its basic rules do not discharge assumptions.5

5. Exception is made to basic axioms, since my interpretation of axioms involve discharge
(footnote 4).

23



2 The Deductive Use of the Logical Constants

2.2 The theory and practice of deduction

A natural deduction system consists of a collection of inference rules designed
to capture the concept of deduction. The most interesting feature of natural
deduction compared to other deductive systems is the classification of its in-
ference rules between introduction rules and elimination rules (at least one
of each kind for each one of the logical constants). Natural deduction rules
for a certain logical constant always figure a sentence with that constant as
the main operator and also its subsentences. Moreover, as a general pattern,
the subsentences occur as premisses in the introduction rules whereas in the
elimination rules it is usually the other way around.6

The complementary pattern between introductions and eliminations natur-
ally gives rise to the interpretation that the introduction rules for a logical
constant γ express the necessary and sufficient conditions under which we can
infer a sentence containing γ as the main logical connective. Analogously, the
elimination rule for γ express what are the consequences that can be extrac-
ted from a sentence containing γ as the main logical connective, together with
other, minor, premisses when necessary. This feature lends plausibility to the
idea of introduction and elimination rules as semantic explanations, something
that could hardly be claimed of some arbitrary syntactic system. That is not
to say, however, that the standard introduction and elimination rules for the
logical constants are entirely in agreement with practice.

2.2.1 Implication

This connective is perhaps the most complicated and controversial of all the
logical constants. In an implication A → B, the component sentences are
asymmetrically connected, with A the antecedent and B the consequent, in
contrast with other connectives like conjunction where it makes no difference
which conjunct occurs first. Its most common English reading is “if A then
B”. In general, when we use this expression, we claim a certain relation of
entailment between antecedent and consequent: one follows from the other by
causality, deduction or other kind of chain of plausible reasons. However, the
meaning attached to implication by the introduction rule is somewhat weaker

6. In fact, the situation with the elimination rules is a little more complicated. The sentence
containing the logical constant as main operator occur as a major premiss with subsentences
sometimes also figuring as minor premisses. A subsentence may (as in inference rules) or may
not (as in deduction rules) occur as conclusion of the rule (Prawitz 1965, § I.2.B).
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2.2 The theory and practice of deduction

than the meaning usually associated with the “if A then B” expression.

[A]
....
B

A→ B
→ I

A A→ B
B

→ E

As a matter of fact, the introduction rule for implication does not require that
an assumption of the form A be actually discharged. Thus, the rule permits
the inference of A → B on conditions under which A is irrelevant. On the
other hand, the elimination rule for implication does require a premiss of the
form A for its application. From the point of view of the introduction rule,
the stronger requirement for elimination is natural since, even assuming the
major premiss to have been obtained by →I, we cannot tell in advance if an
assumption was discharged by its application. However, from the point of view
of the elimination rule, a stronger meaning can be assigned to implication since
A is always available but would go unused in a deduction of B not depending
on A.

The unbalance between the introduction and elimination rules for implication
and the disagreement between those rules and the expressions said to be its
equivalent in natural languages has led some authors, notably Tennant (1987,
chapter 17), to favour a relevant reading of implication.

2.2.2 Conjunction

Especially in contrast with implication, the rules for conjunction are perhaps
the most straightforward and uncontroversial. This is no surprise, since the
meaning that the introduction and elimination rules assign to conjunction is
very narrow.

A B
A ∧B ∧I

A ∧B
A

∧E
A ∧B
B

∧E

A simple, although not entirely exact, intuitive explanation of the rules is to say
that a conjunction allows us to convey, in a single sentence of the form A∧B,
the exact same information conveyed by both sentences, A and B. This narrow
meaning is seldom, if ever, intended in ordinary speech where expressions like
“and” and “but” are more often used to convey more information than mere
logical conjunction: temporal sequence, surprise, disbelief and so on.
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2 The Deductive Use of the Logical Constants

2.2.3 Disjunction

In English, disjunction is usually associated with the meaning of the expression
“or”. In ordinary conversations, we often use “or” to express an exclusive (or,
sometimes, inclusive) choice or option as in “you must sing the tune either in D
major or F major, otherwise it is not good” or “the bank allows you to transfer
money in person or via the internet”. Thus, it is common to use “or” in contexts
involving agents and actions. Yet, disjunction also appears in more declarative
contexts, especially in situations when we do not have enough information to
determine which one of the disjuncts holds. Even in these situations, we can
still extract consequences from the disjunction by showing them to be derivable
from each one of the disjuncts, as is expressed by the elimination rule.

A
A ∨B ∨I

B
A ∨B ∨I

A ∨B

[A]
....
C

[B]
....
C

C
∨E

On the other hand, at least from an epistemological point of view, the intro-
duction rule for disjunction is somewhat pointless. The conclusion A∨B does
not say which one of the disjuncts holds. So, epistemologically, there seems
to be more information on the premiss of the rule than on its consequence.
Arguably, this can also be said of ∧E. But, given that ∧E is an elimination
rule and its purpose is to extract consequences from its premiss, it is expected
that those consequences may have less information.

2.2.4 Negation

In most of the modern texts that employ natural deduction, negation is a
defined symbol. It is defined in terms of the constant ⊥, usually called “ab-
surdity” or “falsum”, and implication: ¬A ≡ A→ ⊥. A noteworthy exception
is Gentzen (1934, § 2.21), who gives introduction and elimination rules directly
for negation. I follow the current practice and give rules for the absurdity
constant, letting negation stand defined.

⊥
A
⊥E

Negation is a very interesting and controversial logical constant. Its classical
understanding goes back to Aristotle (On Interpretation, VI) who believed
that every meaningful sentence had a meaningful contradictory negation which
could, in principle, be asserted.
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2.3 Deductive Harmony

Logical negations are notably very narrow in comparison with natural lan-
guage negative expressions like “not” or “no” in English. Negative expressions
in natural languages can be used for a very wide range of functions, most of
which do not correspond entirely with a single logical conception of negation
(Horn and Wansing 2017, § 1). For instance, “not” can be used to express
contrariness instead of contradictoriness. It can also be used to deny, a speech
act arguably distinct from asserting the contradictory.

Over the years, the richness of negative expressions in natural languages
drove the development of a plurality of logical systems. Those that purport
to capture contradictory negation mostly adhere to the core principle of non-
contradiction. This principle is often itself understood in negative form, as a
prohibition of maintaining both A and ¬A at the same time. With negation
defined, ⊥E could be interpreted as punishment for violating the prohibition
against contradiction: by →E and ⊥E, arbitrary sentences become deducible
and we have deductive triviality. In actual argumentative contexts, however,
the absurdity constant would preferably never be eliminated (staying only as a
kind of threat). Usually, when facing contradictions, after obtaining absurdity
as consequence, →I would be applied in order to provide a refutation of a
hypothesis (under the remaining assumptions).

A troublesome issue with this account of negation is that ⊥ does not follow
the same pattern of introduction and elimination rules as the other logical
constants. In order to remedy the situation, Dummett (1991, chapter 13) has
proposed the following introduction rule for ⊥, where ai ranges through all
atomic sentences of the language:

a1 a2 a3 · · ·
⊥ ⊥I

With ⊥E considered as an elimination rule, Dummett believes that ⊥I above
is the more harmonious (section 2.3) introduction rule. If we assume, without
loss of generality, the consequence of ⊥E to be atomic, an application of the
rule would allow us to obtain any atomic sentence. Therefore, it is plausible
that an introduction rule in harmony with ⊥E should require no less than all
atomic sentences as premisses. Still, given the potentially infinite number of
premisses, it is hard to maintain that ⊥I is, in any intuitive sense, a legitimate
inference rule that could be employed in actual deductive practice.

2.3 Deductive Harmony

As already remarked, the introduction rules for a constant γ can be viewed as
an expression of the necessary and sufficient conditions for inferring its conclu-
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2 The Deductive Use of the Logical Constants

sion A γ B (assuming the paradigmatic case where γ is a binary connective).
Now, there is a very plausible requirement that can placed on the correspond-
ing elimination rules: the consequences extracted from its major premiss AγB
can never extrapolate what was necessary for its inference by means of the in-
troduction rules. A similar requirement can be placed on the introduction rules
from the point of view of the elimination rules: given the context, whatever can
be deduced from the conclusion by means of the elimination rule could already
be deduced from the premisses. When both these requirements are fulfilled,
the introduction and elimination rules for a logical constant are in harmony
with each other.

The concept of harmony between logical rules goes back to a much quoted
passage from Gentzen (1934, II. § 5.13) to the effect that “the introduction
rules are definitions and the eliminations are only their consequences thereof”.
Adopting ideas and terminology from Lorenzen (1955, § 4), Prawitz (1965,
chapter II) attempted to make Gentzen’s remarks more precise by formulating
an inversion principle, the cornerstone for his normalisation procedures for
natural deduction systems.

Normalization procedures rely on reductions. They enable the removal of
roundabouts in a natural deduction derivation. More precisely, in a derivation
Π of G from Γ, when an application of an introduction rule have as consequence
the major premiss of an application of an elimination rule, there is a reduction
which results in a derivation Π′ of G from, at most, the same assumptions
Γ without going through those steps. There is a reduction for each pair of
introductions and eliminations.

(→)

Π1
A

[A]
Π2
B

A→ B
B
Π3

Π1
A
Π2
B
Π3

(∧)

Π1
A

Π2
B

A ∧B
A
Π3

Π1
A
Π3
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2.3 Deductive Harmony

Π1
A

Π2
B

A ∧B
B
Π3

Π2
B
Π3

(∨)

Π1
A

A ∨B

[A]
Π2
C

[B]
Π3
C

C
Π4

Π1
A
Π2
C
Π4

Π1
B

A ∨B

[A]
Π2
C

[B]
Π3
C

C
Π4

Π1
B
Π3
C
Π4

On the left, there is a derivation containing a roundabout: a logical constant
is introduced just to be, immediately after, eliminated. Since the elimination
rules are in harmony with the introduction rules, their application just restored
what was already required of the premisses for the respective introduction rule.
As a result, both inferences can be avoided by rearranging the derivation as
shown on the right.

Under certain conditions, harmony between the introduction and elimina-
tion rules for a logical constant guarantees that its addition to a deductive
system yields a conservative extension. In conservative extensions, the ad-
dition of new expressions to the language—in this context, logical constants
with their pairs of introduction and elimination rules—leaves the meaning of
the other expression unharmed. In particular, the extended system does not
enable new derivations where the added expression does not occur that were
not already available before: the new expressions extended the system con-
servatively without revising the meaning of old expressions. Now, harmonious
inference rules would generally provide for conservative extensions. For, sup-
pose the conditions for the application of the introduction rule for the newly
added constant were fulfilled. Then, if harmony obtains, the elimination rule
does not enable the derivation of new consequences besides those that were
already derivable in the original system.

The fact that the addition of the inference rules to a deductive system,
or, for that matter, to any comprehensive and coherent linguistic practice,
yields a conservative extension provides evidence for the logicality of these
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2 The Deductive Use of the Logical Constants

rules. Otherwise, if the addition of rules for the use of a logical constant γ
change the original system in such a way that a sentence A, not containing
γ, now becomes derivable, then there is strong evidence that γ incorporates
some extralogical content. Consider, for instance, an original system composed
solely of descriptive expressions. In such a case, the rules for γ could license
the derivation of a descriptive (since it does not contain γ) sentence that was
not previously derivable.

Moreover, seen as a requirement, harmony can avert problematic connectives
like the infamous tonk (Prior 1960). In contemporary discussions, tonk is
usually specified as a connective with the introduction rules of disjunction and
the elimination rules of conjunction.

A
AtonkB

tonkI
B

AtonkB
tonkI

AtonkB
A

tonkE
AtonkB

B
tonkE

The possibility of defining tonk through inference rules is sometimes weighted
against inferentialist approaches to the meaning of logical constants. Naturally,
just as with approaches based on truth (think, for instance, of bivalence),
background assumptions must come into play (Belnap 1962). Thus, it is easy
to show that admission of tonk into the language trivialises the deductive
practice. But it is also easy to show that the inference rules for tonk are not
harmonious: the elimination rules for tonk enable the derivation of more than
what is required to obtain their major premiss by an introduction rule.

The requirement of harmony protects inferentialism against overpermissive
introduction and elimination rules. A protection against overstringent ones
(what is sometimes called “weak disharmony”) can also be altogether desirable.
The dual connective knot, with the introduction rules for conjunction and the
elimination rules for disjunction, can be used to illustrate this predicament
(Došen and Schroeder-Heister 1985, § 2).

A B
AknotB

AknotB

[A]
....
C

[B]
....
C

C

Although the elimination rule for knot enables inferences only of sentences
already required by the introduction rule, it does not enable inferences of all of
those sentences: the elimination rule for knot is more stringent than it needs
to be. The further requirement that introduction and elimination rules must
explore their full potential (of course, under harmony restrictions) is often
called stability (Dummett 1991, chapter 13). It imposes a stricter balance
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2.3 Deductive Harmony

between the introduction and elimination rules. Intuitively, harmony ensures
soundness while stability ensures completeness.

As already remarked, the reductions employed in normalization procedures
are based on the idea that there is nothing to be gained by introducing and
then, immediately after, eliminating a sentence. Their existence show that the
elimination rules do not extrapolate the necessary conditions for the introduc-
tion rules. Now, the reverse side of reductions are expansions.

(→)

Π1
A→ B

Π2

Π1
A→ B [A]

B
A→ B

Π2

(∧)

Π1
A ∧B

Π2

Π1
A ∧B
A

Π1
A ∧B
B

A ∧B
Π2

(∨)

Π1
A ∨B

Π2

Π1
A ∨B

[A]

A ∨B
[B]

A ∨B
A ∨B

Π2

The expansions, on the other hand, show that the elimination rules supply the
sufficient conditions for regaining the major premiss through the introduction
rules. They ensure that it is possible to eliminate a sentence and subsequently
introduce it without any loss. Consequently, unstable connectives like knot are
unable to produce satisfactory expansions.

Π1
AknotB

[A] B

AknotB

A [B]

AknotB
AknotB

Π2

For instance, notice that the purported expansion above introduces further
assumptions A and B which may not be assumptions of Π1.

31



2 The Deductive Use of the Logical Constants

The notions of harmony and stability are often informally discussed. Their
underlying idea of “no more, no less” is thus open to interpretation. Moreover,
even inference rules usually considered to be harmonious and stable can ar-
guably display some unbalance, for example, the mismatch mentioned in sec-
tion 2.2.1 between the introduction and elimination rules for implication. In-
ferentialist definitions of validity offer an excellent opportunity to cash out the
notions of harmony and stability in a more precise manner.
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3 Early Notions of Proof-Theoretic
Validity

The BHK interpretation does not lend itself easily to the recursive treatment
required for a definition of validity. The clause for implication, for instance,
seems to be strongly impredicative. It refers to any construction of the ante-
cedent, and that might involve a construction of the implication itself, for
example, in a roundabout proof (Dummett 2000, § 7.2).

Nevertheless, relying on a notion of canonicity made viable by the deductive
harmony of the rules in natural deduction, Prawitz (1971, 1973, 1974, 2006)
proposed proof-theoretic inductive definitions of validity intended for justifying
predicate intuitionistic logic. His definitions were advanced from a constructive
standpoint, with the BHK interpretation regarded as the authoritative explan-
ation of meaning of the logical constants. The following discussion of the
evolution of these notions of validity is limited to the propositional case.

3.1 Atomic bases and monotonic extensions

The BHK clause for implication refers to proof constructions of the antecedent
and consequent. A fully recursive clause, going all the way down to atomic
components, seems to require a base system to provide proof constructions
for atomic sentences. In his first proposal, Prawitz (1971, § IV.1.1) considered
atomic production systems (or Post systems, as he called them) for the task.
As it turned out, relying on atomic bases for the proof constructions of atomic
sentences required some adjustments (quote superficially altered for notation):

I shall thus speak of a construction k of a sentence A relative or
over a Post system S. When A is atomic such a construction k
will simply be a derivation of A in S. [. . . ] when relativised to
S, a construction k of A → B over S where A and B are atomic
will be a constructive (or with Church’s thesis: recursive) function
that transforms every derivation of A in S to a derivation of B in
S. However, a consequence of such a definition would be that if
A is not constructible over S (i. e. not derivable in S), A → B is
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3 Early Notions of Proof-Theoretic Validity

automatically constructible over S since any constructive function
would vacuously satisfy the condition [. . . ]. In particular, provided
⊥ is not constructible over S and ¬A is a shorthand for A→ ⊥ as
usual, it follows that there is no system S over which ¬¬A→ A is
not constructible (hence, classically, ¬¬A → A is constructible in
every S), which is clearly contrary to the constructive interpretation
of implication and negation.

Prawitz’s adjustment was to consider extensions S′ of the base system S. As
a result, antecedents occasionally not constructible over S become construct-
ible over some extension S′ of S. The intuitive interpretation behind this ap-
proach to atomic systems is to regard them as evolving knowledge bases. The
paradigmatic model is mathematical knowledge. Consequently, the extensions
are required to be monotonic: any atomic sentence constructible over S stays
constructible over extensions S′. This corresponds to the intuition that a the-
orem, once proved, remains proved.

3.2 Validity for derivations

There were many attempts to put intuitionism into a constructively acceptable
formal footing. They range from realizability (Kleene 1945), developed in the
context of the study of general recursive functions, to attempts directly inspired
by the BHK interpretation, like the theory of constructions (Kreisel 1962).

Among the difficulties encountered by formal approaches based on BHK are
the interpretation of the notion of construction, the specification of construc-
tions for the atomic sentences and the potential impredicative characther of
the clause for implication. Early proof-theoretic notions of validity attempted
to answer these challenges with reduction procedures, atomic bases and norm-
alisation results. The atomic basis B provide the constructions for the atomic
sentences, the constructive transformations are provided by reduction proced-
ures and the charge of impredicativity is neutralised by normalisation (slightly
adapted from the source):

Definition 3.2.1 (Prawitz 1971, §A.1.2). A closed derivation Π for conclusion
A is valid in B if, and only if

– A is atomic and Π reduces to a derivation in B; or

– A is of the form B ∧ C and Π reduces to a derivation of the form

Π1 Π2

B ∧ C
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3.3 From derivations to arguments

where Π1 is a derivation of B and Π2 is a derivation of C and they are
valid in B; or

– A is of the form B ∨ C and Π reduces to a derivation of the form

Π∗
B ∨ C

where Π∗ is a derivation of B or C and it is valid in B; or

– A is of the form B → C and Π reduces to a derivation of the form

Π2
B

A→ B

such that for each extension B′ of B and for each closed derivation

Π1
A

that is valid in B′, it holds that

Π1

[A]
Π2

is a derivation of B and it is valid in B′.

Definition 3.2.2 (Prawitz 1971, §A.1.2). A derivation Π is valid in B if, for
each extension B′ of B, where Π′ is the result of replacing every assumption A
in Π by a valid closed derivation in B′, Π′ is valid in B′.

A notion of validity is thus defined relative to an atomic basis B. Logical
validity is then obtained, through generalisation, as validity in every atomic
basis.

3.3 From derivations to arguments

Roughly, the problem with definitions 3.2.1 and 3.2.2 is that they apply solely to
derivations, but not to arbitrary arguments (section 2.1). A genuine semantic
notion of validity, on the other hand, must account for arbitrary arguments,
whereby valid arguments can unfold through whatever valid means are available
and not only by the neat introductions and eliminations of natural deduction

35



3 Early Notions of Proof-Theoretic Validity

derivations. In other words, a notion of validity must determine whether a con-
clusion can be logically deduced, or follows logically, from certain assumptions
(or, even, perhaps, from no assumptions) irrespective of the form of inferences
that lead from assumptions to conclusion.

Nevertheless, for arguments that are already derivations, the definitions in-
deed work as expected: validity emerges as a consequence of the definitions and
not from whatever status any inferences in the argument may have as applica-
tions of introduction or elimination rules. For example, consider the argument
below.

A→ (B ∧ C) [A]

B ∧ C
B

A→ B

A→ (B ∧ C) [A]

B ∧ C
C

A→ C
(A→ B) ∧ (A→ C)

By definition 3.2.2, it is valid in a basis B if, for any extension B′, the closed
derivation

Π1

A→ (B ∧ C) [A]

B ∧ C
B

A→ B

Π2

A→ (B ∧ C) [A]

B ∧ C
C

A→ C
(A→ B) ∧ (A→ C)

is valid in B′, where Π1 and Π2 are closed derivations valid in B′. By defin-
ition 3.2.1, the subderivations for A → B and A → C must be valid in B′.
Therefore for any closed derivations Π3 and Π4 of A valid in an extension B′′,
the subderivation for B and C are valid in B′′. Now, provided that Π1 and Π2

are indeed valid in B′, that is, that they reduce to the forms below, the subde-
rivations for B and C do indeed reduce to valid derivations in B′ by means of
the reductions in section 2.3.

[A]
.... valid in B′

B

[A]
.... valid in B′

C
B ∧ C

A→ (B ∧ C)

B ∧ C
Π3
A

B reduces to

[A]
.... valid in B′

B
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[A]
.... valid in B′

B

[A]
.... valid in B′

C
B ∧ C

A→ (B ∧ C)

B ∧ C
Π4
A

C reduces to

[A]
.... valid in B′

C

The closed derivations Π3 and Π4 valid in B′′, but perhaps not valid in B′, are
discarded. This shows that the example is valid in an arbitrary basis B and is,
therefore, logically valid.

Although the validity of the introduction rules are, in a sense, presumed
in the clauses of definition 3.2.1, notice that the notion of validity affords, at
the very least, a justification for the elimination rules. However, through the
restriction to derivations, the elimination rules are, in an important sense, taken
for granted. Furthermore, a notion of validity is supposed to sort out invalid
arguments from valid arguments, but the restriction to derivations exclude
potentially invalid arguments already at the outset.

In order to counteract these objections, Prawitz (1973, § 2) expanded his
definitions to cover arbitrary arguments. Now, the difficulty is that the stand-
ard reductions do not work for arbitrary arguments but only for derivations.

3.4 From reductions to justifications

Even very simple arguments, for instance,

A ∧ (B ∧ C)

A ∧ C

are not properly handled, because, after replacing derivations for the assump-
tion A ∧ (B ∧ C), the result cannot be reduced to a derivation ending with an
introduction as required by the respective clause of definition 3.2.1 (the valid
inference from A ∧ (B ∧ C) to A ∧ C at the end cannot be unfolded through
the standard reductions). In general, the same holds for arbitrary arguments
containing valid inferences not spelled out in terms of introductions and elim-
inations (Schroeder-Heister 2006, § 5).

The solution proposed by Prawitz (1973, § 4) is to evaluate arguments coupled
with justifications. In this context, the concept of justification is a generalisa-
tion of the standard reductions meant to apply more extensively to arbitrary
arguments instead of being restricted to derivations. The justifications can
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3 Early Notions of Proof-Theoretic Validity

then account for the intuition that, although no standard reduction is applic-
able, closed arguments for A ∧ (B ∧ C) in the example above already contain,
in a sense, valid arguments for A ∧ C as required by the respective clause in
definition 3.2.1.

For example, justifications can be considered to include uniform substitu-
tions and compositions, beside reductions and expansions. Consequently, the
validation of many arbitrary arguments that are not derivations can now be
achieved.

Π1
A

Π2
B

Π3
C

B ∧ C
A ∧ (B ∧ C)

A ∧ C justifiably transforms into

Π1
A

Π3
C

A ∧ C

There can be also particular justifications associated with basic derivations. As
the basis is extended, the justifications may have to be extended accordingly.
For instance, particular transformations may be considered for the intuitionistic
theory of iterated inductive definitions (Martin-Löf 1971, § 4).

Consequently, the definition of validity for arbitrary arguments must be for-
mulated relative to bases and justifications. However, when the concern is
logical validity, instead of particular mathematical or empirical applications,
the justifications can mostly be left implicit. They would naturally include
any constructively acceptable manipulation of arguments. For the exclusively
logical material, general uniform substitutions and compositions probably suf-
fice.
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4 A Critique of Early Proof-Theoretic
Notions of Validity

Prawitz proposed many formulations for his proof-theoretic definitions of valid-
ity. They were mostly minor variations and improvements on the definitions
discussed in chapter 3. Prawitz’s proposals became the standard reference for
proof-theoretic semantics, and the literature on the subject usually gravitates
around them. Although I do think of these proposals as standard in a histor-
ical sense, I believe they are unsatisfactory in many respects. My objections
are both conceptual and technical. They are advanced from the standpoint of
proof-theoretic validity as a notion of validity faithful to the idea of “meaning
as use”. While this standpoint is undoubtedly an important element of the
standard proposals, it may well not be the only or even the prevalent one.

4.1 The placeholder view of assumptions

Schroeder-Heister (2008, § 3) pointed out some dogmas of proof-theoretic se-
mantics. One of the dogmas was the the primacy of the categorical over the
hypothetical, or, as it was latter called, the placeholder view of assumptions.
According to this dogma, hypothetical arguments, or arguments from assump-
tions, should be reduced to closed arguments, or closed proofs (proofs from
no assumptions). In other words, assumptions are considered to be placehold-
ers for closed proofs. The proof-theoretic definitions of validity for arguments
proposed by Prawitz (1971, 1973, 1974, 2006) are prominent examples of the
placeholder view of assumptions.

4.1.1 The problem with refutations

In intuitionistic logic, reductio ad absurdum can be used to obtain negative
sentences, or refutations. In such arguments, a contradiction (which in natural
deduction systems is usually represented by an absurdity constant) is deduced
from a collection of assumptions which are thereby shown to be jointly contra-
dictory, or incompatible.
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The task of explaining the validity of refutations becomes problematic when
assumptions are considered placeholders for closed proofs and validity is ex-
plained as a constructive function from closed proofs of the assumptions to
closed proofs of the conclusion, because the explanation then needs to appeal
to proofs of contradictions. These proofs do not need to be actual proofs, but
must be at least possible or conceivable if the explanation is to be at all com-
prehensible. Whether proofs of contradictions can be conceived, or what does
it mean to conceive such things, is one of the questions that the advocates of
the placeholder view have to deal with.

In some sense, the conundrum with reductio ad absurdum is reminiscent of
a problem that Prawitz (1971, § IV.1.1) already dealt with in his first attempt
at defining a proof-theoretic notion of validity. There, the problem was the
vacuous validation of implications with an unprovable antecedent. Prawitz’s
solution was to reformulate the semantic clause for implication so as to consider
extensions of the underlying atomic system where the antecedent would be
provable.1 However, the problem becomes much more prominent when dealing
with contradictions, because our intuition is that they are not supposed to be
provable under any circumstances whatsoever.

Moreover, for approaches based on the meaning of the logical constants
as determined by their introduction rules, the clause for the absurdity con-
stant becomes problematic, with suggestions ranging from infinitary rules (sec-
tion 2.2.4) to the admission of inconsistent or trivial bases. The placeholder
view of assumptions, especially in the case of subordinate hypothetical argu-
ments for absurd conclusions, only accentuate these problems.

4.1.2 The primacy of assertion

Walking side by side with the placeholder view of assumptions is what I call the
primacy of assertion over other speech acts. The rationale is that the speech
act of assertion comes with a commitment on the part of the speaker to offer
justifications for the asserted sentence and thus, in order to correctly assert the
sentence, the speaker must be in possession of such justifications, or be able
to produce them. In other words, in order to correctly assert a sentence, one
needs to have a proof of the sentence.

From this picture emerges an approach to proof-theoretic semantics based
on assertability conditions, with proofs acting as justifications associated with
assertions. Here, another dogma discussed by Schroeder-Heister (2008, § 3)
comes into play: the transmission view of consequence. But, in contrast with

1. Unfortunately, the amendment was still insufficient to avoid validation of classical infer-
ences in the implication fragment (Sanz, Piecha and Schroeder-Heister 2014, § 4).
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semantics based on truth conditions, instead of truth, it is correct assertability
which is transmitted from premisses to conclusion in valid arguments. Or, if
one prefers to talk about what makes an assertion correct, or justified, one can
say that logical consequence transmits proof instead of truth. As a result, the
approach assumes a distinctively epistemological character.

However, more complications related to hypothetical reasoning surface: it
seems counterintuitive, to say the least, to hold that a speaker engaged in a
hypothetical argument is committed to the assertion of either the assumptions
or the conclusion of the argument. As a matter of fact, the speaker may
even reject them and, provided the argument is indeed valid, her reasoning
remains unassailable. In particular, the point reappears with renewed force
when considered in the context of arguments that use reductio ad absurdum,
since it would commit us to the possibility of correctly asserting absurdities.

One can appeal to a concept of conditional assertion to try and salvage the
approach from such objections while preserving an unified explanatory model
based primarily on assertion and proof. Thus, the conclusions of hypothet-
ical arguments are taken not to be asserted outright but only under certain
conditions. That is, the conclusions of hypothetical arguments are condition-
ally asserted. In terms of speech acts, however, it is not at all clear whether
conditional assertion constitutes any assertion at all.

In particular, it is hard to defend that there is a commitment on the part
of the speaker, explicit or implicit, to stand behind the assertion when it is a
conditional one. Thus, the undogmatic and lively explanatory connection with
our practices of offering and accepting reasons is significantly diminished and I
wonder if it is worth to talk about assertions with little or no assertoric force in
the first place. It could be argued that, in conditional assertions, the assertoric
force does not apply to the conclusion but instead to the deductive relation
between conclusion and the conditions (or assumptions). But, if transmission
of assertability conditions is supposed to be the bedrock of deductive validity,
are we not now presupposing what we set out to explain?

Furthermore, deductive validity interacts with other speech acts besides as-
sertion. For instance, denial of the conclusion leads to denial of at least one of
the assumptions. What makes assertion so special among the speech acts?

It seems to me that trying to explain deductive validity in terms of asser-
tions and proofs is misguided. I am not trying to deny that deductive reasoning
has epistemic importance or that deductive reasoning transmits evidence, or
justification, from the assumptions to the conclusion. If there is a deductive
relation between assumptions and conclusion, then, of course, the correct as-
sertion of the assumptions would lead to the correct assertion of the conclusion
and, similarly, if proof for the assumptions are provided then a proof for the
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4 A Critique of Early Notions of Validity

conclusion is obtained. Rather, I contend that to explain deductive validity by
reducing it to this transmission effect is to put the cart before the horse and
confuse the cause with its effects, the disease with its symptoms.

4.2 Inadequacy to intuitionistic logic

Besides the conceptual difficulties already discussed, the correctness of standard
proof-theoretic definitions can be questioned also on more technical grounds.
Prawitz (1971, 2014) and Dummett (1975a, 1991) conjectured that proof-
theoretic approaches to logical semantics would result in an intuitionistic, or
constructive, notion of validity. It is relatively easy to show that intuition-
istic logic is sound with respect to standard proof-theoretic semantics. On the
other hand, since Prawitz’s early proposals, completeness of intuitionistic logic
remained a conjecture. However, many recent results indicate that this con-
jecture does not hold in the expected sense. Sandqvist (2009), for instance,
have stated that some proof-theoretic approaches would in fact yield a con-
structive justification of classical logic. Sanz, Piecha and Schroeder-Heister
(2014), in particular, argued that Prawitz’s proposal results in a conflation of
admissibility2 and derivability, at least for a fragment of propositional logic. In
this fragment, they have shown that Peirce’s rule is admissible and thus valid
according to Prawitz’s definition.

Other counterexamples to completeness also appeared (Piecha, Sanz and
Schroeder-Heister 2015). Some of them can be avoided by tinkering with the
definitions. But I believe that the overall scenario (Piecha 2016) supports the
conclusion that intuitionistic logic is not complete with respect to standard
proof-theoretic semantics.

As I see it, the fact that standard proof-theoretic notions of validity validate
classical or intermediary logics stronger than intuitionistic logic, even when
only entrusted with strictly intuitionistic canons of reasoning, is a symptom of
their conceptual inadequacy. The path to adequacy lies, first and foremost, in
addressing the conceptual difficulties.

2. A rule r is admissible in a formal system S if, for every sentence A, whenever there is a
closed proof of A in the system S extended by the rule r, then there is a closed proof of A in
the system S without the rule r (assuming that r did not initially belonged to S).
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5 Dummett’s Justification Procedures
and the Rejection of the Placeholder
View of Assumptions

Dummett believed that the formal way of writing commonly employed in
mathematics (with detached sequences of numbered definitions, theorems and
proofs) was bad style in philosophy (Prawitz 2013).1 Perhaps as a result of
his writing style, his proof-theoretic definitions of validity are often viewed as
imprecise and rudimentary.2 They are, indeed, tentative, as are the various
definitions proposed by Prawitz over the years. But if one takes the time to
piece together precise formulations from the definitions scattered throughout
the prose, what emerges is actually surprisingly rigorous and robust. In partic-
ular, one discovers notions of validity that are much more inspired by natural
deduction and harmony than by the BHK interpretation.

5.1 BHK vs Gentzen

Proof-theoretic notions of validity have often been inspired by a mixture of
ideas involving the BHK interpretation of the logical constants and Gentzen’s
informal remarks on the rules of natural deduction. In particular, the con-
ception of validity underlying the placeholder view of assumptions is largely
informed by the BHK interpretation of implication: an argument from A to
B is valid if, and only if, every proof of A can be transformed into a proof
of B. Yet, with its unqualified reference to proofs, this view is not immedi-
ately amenable to the recursive treatment required of semantic clauses and
definitions (Prawitz 2007, § 2.1). In this context, Gentzen’s ideas are often
developed into a notion of canonical proof in order to achieve recursiveness for
an approach primarily based on the BHK interpretation.

1. As can be seen from this text, I do not share Dummett’s opinion on this issue, although
I do try to keep formalisms to a minimum.

2. I sometimes see this view expressed in published materials and often hear it expressed
in conversation.
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On the other hand, the core of Gentzen’s ideas are independent of the BHK
interpretation. They are best represented by what became known as proof-
theoretic harmony (section 2.3). Harmony, as a fundamental principle of nor-
malisable natural deduction systems, applies equally well to deductions from
assumptions as to the particular case of proofs (deductions from no assump-
tions). By appealing to harmony while at the same time avoiding the BHK
interpretation and the placeholder view of assumptions, we can develop a more
appropriate proof-theoretic notion of validity.

5.1.1 A more Gentzenian approach to validity

The introduction rules for a logical constant γ can be seen as an explanation
of the canonical use of a sentence as a conclusion in a deductive argument
(where, of course, γ is the sentence’s main connective). This is achieved by
exhibiting the conditions for obtaining a sentence A γ B as a conclusion of an
argument (where γ is a binary connective). In the paradigmatic case, these
conditions are expressed in terms of the component sentences A and B.3

In an analogous manner, the elimination rules for a logical constant can be
seen as an explanation of the canonical use of a sentence as an assumption in a
deductive argument. This is accomplished by exhibiting the consequences that
can be extracted from the sentence (as a major premiss of an elimination rule,
possibly in the context of some minor premisses).

Thus, introduction and elimination rules stand for two distinct aspects of
the deductive use of the logical constants. Harmony arises as a requirement
of balance between those two aspects such that there is a equilibrium between
what is required by the introduction rules and what consequences are extracted
by the elimination rules. As a result, among other things, harmony guarantees
that there is nothing to be gained by performing roundabout derivations where
sentences are obtained by an introduction rule to be immediately after analysed
by the corresponding elimination rule. Therefore, for a proper understanding of
the deductive practice, it suffices to look at the collection of direct derivations,
also known as normal derivations.

The normal derivations have a very perspicuous form (Prawitz 1965, § IV.2,
Theorem 2). They are composed of (can be divided into) two parts: an analytic
part, where the assumptions are analysed (destructed), and a synthetic part,
where the conclusion is synthesized (constructed) from the components resulted

3. Notice that the conditions do not necessarily need to be expressed in terms of closed
proofs of A and B, but can be expressed in terms of assumptions A and B or of arguments
for A and B which may depend on other assumptions.
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from the analysis.4

assumptions

5}
analysis

(eliminations)

basic

components

4}
synthesis

(introductions)

conclusion

The equilibrium between introductions and eliminations suggest that, if we
were to supplement the assumptions on top through a process of inversion by
backward application of introductions, we would arrive at the basic components
required for the synthetic part. And, similarly, if we were to complement the
conclusion by forward application of eliminations, we would arrive at the basic
components resulted from the analysis of the assumptions. Accordingly, the
harmonious inferential behaviour of the logical constants has sometimes been
expressed by pointing out that introductions and eliminations can be, in some
sense, obtained from one another by inversion principles (section 2.3).

Gentzen’s investigations into logical deduction can thus supply the funda-
mental pieces for a proof-theoretical notion of logical validity for arguments
based on the inferential meaning conferred on the logical constants by either
their introduction rules or their elimination rules. In particular with respect to
the problems discussed in the previous section, the Gentzenian approach has
the advantage of giving proper heed to assumptions and being fairly independ-
ent from specific speech acts.5

Gentzen’s ideas suggest that, although a persistent dogma in much of the
discussion around proof-theoretic semantics, the placeholder view of assump-
tions can be challenged from an authentic proof-theoretic perspective. In the
next section, I revisit Dummett’s justification procedures. I argue that, as a
development of the Gentzenian approach just sketched, they afford a notion of
proof-theoretic validity that incorporates assumptions in an essential way.6

4. In the general case, each of these parts can, of course, be empty (section 7.1.2, in
particular theorem 7.1.1, contains a more rigorous statement).

5. For instance, deductive arguments can be used to show someone who denies the conclu-
sion that she has to deny at least one of the assumptions. They can also be used to explore
the consequences of a conjecture. These applications of deductive arguments align very well
with the Gentzenian approach, but none of them necessarily involves anyone making any
assertions.

6. It is important to notice that, although the Dummettian approach that I advocate rejects
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I stay at the level of the core concepts, without going into rigorous definitions.
Nonetheless, I hope that my explanations would be sufficient to give an overall
idea of the relationship between the justification procedures (how they can
be understood as emerging from a shared framework). This should provide a
conceptual foundation for the detailed formal accounts in chapters 6 and 7.

5.2 An overview of Dummett’s approach

Dummett (1991, Chapter 11–13) proposed two proof-theoretic justification pro-
cedures for logical laws which amount to definitions of logical validity for ar-
guments. The “verificationist” procedure defines validity of arguments on the
basis of introduction rules for logical constants and the “pragmatist” proced-
ure defines validity of arguments on the basis of elimination rules for logical
constants.7

These proof-theoretic justification procedures play an important role in Dum-
mett’s philosophical anti-realist programme. They are central pieces of his very
detailed and elaborate argument for rejection of classical logic in favour of in-
tuitionistic logic.8 In particular, Dummett (1991, 1975a) has conjectured that
proof-theoretic notions of validity would justify exactly intuitionistic logic.

Dummett’s definitions of validity are based on canonical inference rules for
the logical constants. These inference rules are thought to fix the meaning of
the logical constants by displaying their canonical deductive use. They are, in
Dummett’s terminology, “self-justifying”.

In contrast with some definitions found in the literature, Dummett’s defini-
tions are not based on semantic clauses for particular logical constants. Instead,
he assumes that self-justifying rules are given. These self-justifying rules are

the placeholder view of assumptions, other dogmatic characteristics, like the unidirectional
and global character of the semantics, remain unchallenged (Schroeder-Heister 2016, § 2.3 and
2.4).

7. I adopt the characterizations “verificationist” and “pragmatist” from Dummett. How-
ever, without denying their existence, I do not imply with the adoption of the terminology
any connections outside the domain of logical validity. Therefore, I refer to verification-
ism and pragmatism just as markers to distinguish between approaches to validity based on
introduction rules and elimination rules, respectively.

8. At the end of this argument, Dummett (1991, p. 300) writes: “We took notice of the
problem what metalanguage is to be used in giving a semantic explanation of a logic to one
whose logic is different. A metalanguage whose underlying logic is intuitionistic now appears
a good candidate for the role, since its logical constants can be understood, and its logical
laws acknowledged, without appeal to any semantic theory and with only a very general
meaning-theoretical background. If that is not the right logic, at least it may serve as a
medium by means of which to discuss other logics.”
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introduction rules in the context of the verificationist procedure, and elimina-
tion rules in the context of the pragmatist procedure. In both procedures, the
definitions are stated irrespective of the particular constants or rules provided.
Therefore, Dummett’s definitions can, at least in principle, be applied without
modification to different logics by providing the appropriate self-justifying rules
for the logical constants.9

5.2.1 Core concepts

Both the verificationist and the pragmatist procedures can be seen as products
of a basic common framework. The core notions of validity behind the justific-
ation procedures can be informally outlined as follows:

verificationism whenever the assumptions can be obtained in a canonical man-
ner, the conclusion can also be obtained in a canonical manner.

pragmatism any consequence that can be drawn in a canonical manner from
the conclusion can also be drawn in a canonical manner from the assump-
tions.

The expression “canonical manner” is an allusion to canonical arguments. As
usual in proof-theoretic notions of validity, canonical arguments are the main
ingredients of the justification procedures. An important feature, however, is
that Dummett’s canonical arguments are not closed proofs, but instead may
depend on assumptions. Consequently, when precisely formulated, the defini-
tions of validity must take into account the assumptions on which the canonical
arguments depend.

The canonical arguments are composed primarily of canonical inferences.
However, they cannot be required to be entirely composed of canonical in-
ferences. They must allow for the possibility of subordinate subarguments,
that is, subarguments cultivated under the support of additional assumptions
(Dummett 1991, p. 260). These subordinate subarguments, when not already
canonical arguments themselves, are critical subarguments. They are critical
in the sense that the validity of the original canonical argument would recurs-
ively depend on their validity. This means, of course, that much care should
be dispensed to guarantee that critical subarguments are of lower complexity
than the original canonical argument.

9. For technical reasons, the procedures would certainly be restricted at the outset to logics
with nice proof-theoretic properties (normalisation, subformula property and etc.), however
there is no intrinsic technical limitation that confines it to intuitionistic logic or some specific
formulation thereof.
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5 Dummett’s Procedures and the Placeholder View of Assumptions

In a verificationist context, critical subarguments are detected through the
presence of assumption discharge. In a pragmatist context, they are detec-
ted through the presence of minor premisses. These signs indicate, in their
respective contexts, when assumptions are being added.

Now, returning to the informal notions of validity, in the verificationist pro-
cedure, the means to evaluate the conditions under which the assumptions may
be obtained in a canonical manner are provided by supplementations. They
result from substitution of the assumptions with canonical arguments. In the
pragmatist procedure, the means to evaluate what consequences can be drawn
from the conclusion are provided by complementations. They result from sub-
stitution of the conclusion with canonical arguments.

verificationism pragmatism

canonical arguments canonical arguments
(primarily introductions) (primarily eliminations)
critical subarguments critical subarguments
(revealed by assumption discharges) (revealed by minor premises)
supplementation complementation
(assumptions canonically unfolded) (conclusion canonically unfolded)

Instead of as substitution operations, one can see the processes of supple-
mentation and complementation more dynamically. The process of supple-
mentation can be seen as the repeated backward application of introduction
rules from the assumptions, thus growing the argument upwards, which is why
Dummett also refers to the verificationist procedure as the upwards justifica-
tion procedure. Similarly, the process of complementation can be seen as the
repeated forward application of elimination rules to the conclusion of the argu-
ment as a major premiss, thus growing the argument downwards, which is why
Dummett also refers to the pragmatist procedure as the downwards justification
procedure.

In order to appraise the validity of an argument from Γ to G, the verific-
ationist procedure examines its supplementations and investigates whether a
canonical argument for G can be attained under the same conditions. Since
supplementations result from canonical arguments for Γ, they may depend
on assumptions ∆ (remember that canonical arguments may depend on as-
sumptions). Then, the canonical argument for G may not depend on other
assumptions besides ∆.

In an analogous manner, in order to appraise the validity of an argument
from Γ to G, the pragmatist procedure examines the complementations and
investigates whether a canonical argument for the conclusion of the comple-
mentation, say Z, can be attained under the same conditions Γ,∆. Because
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complementations result from canonical arguments from G (as assumption and
major premiss of elimination), they may depend on additional assumptions ∆
required by minor premisses. Therefore, the canonical argument for Z may not
depend on assumptions besides Γ,∆.

Supplementation Complementation

∆, [A]
.... critical
B

A→ B....
Γ
G

Γ
G ,∆

....
A→ B

.... critical
A

B....
Z

The canonical arguments used to supplement or complement may have crit-
ical subarguments. In the figures above, I indicate the form of possible sup-
plementations and complementations of an illustrative argument from Γ to G.
In the supplementation, the subargument from ∆, A to B may be critical. In
the complementation, the subargument for the minor premiss A of→E may be
critical (for instance, if validly, but not canonically, obtained from assumptions
in Γ,∆).
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6 Proof-Theoretic Validity Based on
Introductions

For his notion of validity based on introductions rules, Dummett (1991) incor-
porates Prawitz’s notion of basic systems (section 3.1) by means of what he
called “boundary rules”, that is, in my terminology, basic rules. Unfortunately,
Dummett’s imprecision on the matter of basic rules leaves some of his defin-
itions open to interpretation. The original definitions affected are treated as
informal characterisations which are latter turned into precise definitions.

6.1 Original definitions and characterisations

The characterisations and definitions are cosmetically rephrased, and adapted
to the propositional case. It is perhaps useful to remind you that I adhere to
the conventions, notation and terminology set out in section 2.1.

Definition 6.1.1. A sentence occurrence A is in the main stem of an argument
Π if every sentence in the path fromA to the conclusion of Π (inclusive) depends
only on the assumptions of Π.1

The purpose of the concept of main stem is to keep track of discharged
assumptions. Whether a sentence occurrence belongs to the main stem is
perhaps best ascertained by climbing up from the root towards the leaves and
examining the inferences for assumption discharge. Thus, subarguments whose
conclusion depend on additional assumptions are identified. Notice that an
application of→I might not discharge any assumptions. Hence, whether or not
the occurrence of B immediately above A → B is in the main stem depends
on whether or not assumptions were actually discharged by the application of
→I.

Definition 6.1.2. A critical subargument of an argument Π is determined by
a premiss outside the main stem of Π whose immediate consequence belongs
to the main stem of Π.

1. Notice that the main stem of an argument may be composed of various distinct paths
or branches.
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The critical subarguments are, in other words, the largest subarguments
that depend on more assumptions than the original argument. Consequently,
when there are critical subarguments, some assumptions were discharged by
the inference from the conclusion of the critical subargument to the immediate
consequence belonging to the main stem. Perhaps the best way to identify
critical subarguments is to climb the argument tree from the root conclusion
towards the leaves, examining each path (branch): any sentence occurrence
that depends on more assumptions than the conclusion (that is, any sentence
occurrence that is a consequence of an inference discharging an assumption)
determines a critical subargument.

Example 6.1.3. In the argument below, only the conclusion (B∧C)→ (A∧B)
is in the main stem. The subargument for A ∧B is critical.2

A

[B ∧ C]

B
A ∧B

(B ∧ C)→ (A ∧B)

The next characterisations involve the notion of canonical argument and are
essential to the definition of validity. As remarked (section 5.2), the verifica-
tionist procedure aims to define validity on the basis of a given collection of
introduction rules. Besides the introduction rules, Dummett’s notion of canon-
ical argument also resort to basic rules. However, he is not sufficiently explicit
about the general form of the basic rules and how they interact with the notion
of canonical argument. As a result, Dummett’s characterisations are not pre-
cise enough and should be regarded as provisional, although they do supply a
general framework for the verificationist justification procedure. In section 6.2,
I discuss the role played by basic rules and provide two possible interpretations
for the reference to basic rules in the characterisation of canonical arguments.

Characterisation 6.1.4. An argument is canonical if the following three con-
ditions hold:

(i) all its assumptions are atomic sentences

(ii) every atomic sentence in the main stem is either an assumption or is the
consequence of a basic rule

2. When discussing this example, Dummett (1991, p. 263) doesn’t follow his own definition.
He claims that both the assumption A and the conclusion (B∧C) → (A∧B) are in the main
stem. However, since the sentence A ∧B (which depends on B ∧C) occurs in the path from
A to the conclusion, A is not, after all, in the main stem. I am sure this is nothing but a
small lapse rather than an indication of any subtlety in his definitions.
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(iii) every complex sentence (not only the last one) in the main stem is ob-
tained by means of an introduction rule

Characterisation 6.1.5. A supplementation of an argument is the result of
replacing a valid canonical argument for each assumption. The replacing valid
canonical arguments are called supplements.3

Example 6.1.6. Consider the argument

B ∨ C
(A→ B) ∨ (A→ C)

Any supplementations will take one of the forms below, where a1 · · · an and
b1 · · · bm are atomic assumptions.

a1 · · · an
Π1
B

B ∨ C
(A→ B) ∨ (A→ C)

b1 · · · bm
Π2
C

B ∨ C
(A→ B) ∨ (A→ C)

Characterisation 6.1.7. A canonical argument is valid if all its critical sub-
arguments are valid.

Characterisation 6.1.8. An argument is valid if any supplementation can be
effectively transformed into a valid canonical argument for the same conclusion
from, at most, the same assumptions.

Example 6.1.9. Consider the argument

A ∧ (B ∨ C)

(A ∧B) ∨ (A ∧ C)

By characterisation 6.1.8, it is valid provided any supplementation can be trans-
formed into a valid canonical argument for (A∧B)∨(A ∧ C) from, at most, the
same assumptions. Now, consider supplements for the assumption A∧ (B ∨ C)

a1 · · · an
Π1
A

b1 · · · bm
Π2
B

B ∨ C
A ∧ (B ∨ C)

3. Originally, Dummett restricted the replacement only to complex assumptions. This
restriction, although conceptually helpful, is formally dispensable because, by characterisa-
tion 6.1.4, atomic assumptions are themselves canonical arguments.
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From the arguments Π1 for A and Π2 for B, a valid canonical argument for
(A ∧B) ∨ (A ∧ C) can be obtained by applications of introduction rules.

a1 · · · an
Π1
A

b1 · · · bm
Π2
B

A ∧B
(A ∧B) ∨ (A ∧ C)

Transformations of supplementations are the main elements in the verifica-
tionist justification procedure. The fact that supplementations are obtained
by replacing valid canonical arguments for the assumptions betrays an, at
least partial, adherence to the placeholder view of assumptions. However,
Dummett’s commitment to the placeholder view is not exactly unwavering,
because he allows canonical arguments to depend on atomic assumptions. As
an immediate consequence, for every sentence A, there is a canonical argument
for A, built from atomic subsentences of A by a series of introduction rules.4

6.2 Verificationist validity and basic rules

Characterisation 6.1.4 is the only place where explicit reference to basic rules
is made. However, because of their interconnection, the characterisations that
follow also depend on bases. As a result, the concept of verificationist validity
can not be properly and unambiguously understood without a careful examina-
tion of the role played by basic rules. Dummett himself does not offer a detailed
discussion of basic rules. His book contains what seem to be conflicting ideas
and intuitions on the matter.

6.2.1 Bases and canonical arguments

The characterisations in section 6.1 may be regarded as relative to a previously
fixed basis B. In this case, the phrase “in a given basis B” should be added to
clause (ii) of characterisation 6.1.4. Consequently, any reference to canonicity
should be understood with respect to such a given basis B. Notice, in particular,
that supplementations should be given in B because supplements are canonical
arguments.

This interpretation makes the concept of validity dependent on the basis B
under consideration. For this reason, I call it the dependent interpretation. In

4. As a limiting case, there are canonical arguments for atomic sentences by an empty
series of introduction rules.
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a discussion of justification procedures of the second grade, Dummett (1991,
p. 254) seems to assume the dependent interpretation:

We assume that we are given certain rules of inference, which we
recognize as valid, for deriving atomic sentences from one or more
other atomic sentences; we may call these ‘boundary rules’. We now
define a ‘canonical argument’ to be one in which no initial premiss
is a complex sentence (no complex sentence stands at a topmost
node) and in which all the transitions are in accordance either with
one of the boundary rules [. . . ]

Of course, Dummett’s primary concern is with the justification of logical
laws and it is reasonable to expect that the validity of logical laws should not
depend on particular features of bases. Dummett (1991, p. 273, my emphasis)
says:

We originally admitted, as occurring within deductive proofs of
the kind with which we are concerned, boundary rules allowing
the inference of an atomic conclusion from atomic premisses: these
were, of necessity, left unspecified. Our original intention was that
the boundary rules should be deductively valid. If we now include
among them principles of non-deductive (and therefore fallible) in-
ference, this will have the effect that a ‘valid’ argument, even if
canonical, may have true initial premisses but a false final conclu-
sion. It will obviously not affect the justification procedure, however,
as a means of determining the validity of logical laws.5

In order to define logical validity under the dependent interpretation, some
kind of generalization with respect to bases is required. The issue is going to
be explored in section 6.4.

On the other hand, a basic rule is not recognized as such because it belongs
to a basis. It is recognized as basic because it has a certain general form.
Hence, the reference to basic rules in item (ii) of characterisation 6.1.4 could
be interpreted as standing for a generic formulation for inferences of basic
form. The characterisation could thus become independent of any particular
basis. I call this approach the independent interpretation. In section 6.3, the
independent interpretation is developed into a notion of validability which is
then straightforwardly used to define logical validity. Logical principles justified
in accordance with it do not depend on any specific bases.

5. This quotation is extracted from a later chapter, after Dummett had already presented
his verificationist justification procedure.
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6.2.2 The general form of basic rules

An important question regarding the general form of basic rules is whether
or not they should be allowed to discharge hypotheses. In his first attempt
to define a proof-theoretic notion of validity, Prawitz (1971) considered the
validity of atomic sentences by means of production rules, i. e. basic rules that
do not discharge hypotheses. Since then, the standard proof-theoretic approach
is to use a system of production rules in order to give the assertability conditions
for atomic sentences.

On the other hand, Sanz, Piecha and Schroeder-Heister (2014, §,5.1) ob-
served that a framework where basic rules discharge assumptions could avoid
the validation of classical laws in the implication fragment. Moreover, Sandqv-
ist (2015) proposed a proof-theoretic semantics where basic rules discharge
assumptions and proved completeness of propositional intuitionistic logic with
respect to it. However, as remarked by Piecha, Sanz and Schroeder-Heister
(2015, §,7), the legitimacy of basic rules that discharge assumptions is very
problematic because they amount to the admission of implication into the
premisses of basic rules. The contention is that this effectively enables logical
content to be smuggled into the basis. In principle, Dummett (1991, p. 255)
does not seem to be opposed to the idea:

The need to allow for the application of boundary rules is not as
yet apparent but evidently can do no harm: they might be rules
governing either non-logical expressions or logical constants not in
the given set.

From the quotation, it is not clear if discharge of assumptions in basic rules is
permissible, but, since basic rules could conceivably cover logical constants, the
way for this kind of basic rules seems to be open. Nevertheless, Dummett (1991,
p. 261) seems to tacitly assume that basic rules are production rules. While
discussing the danger of circularity in the definition of validity, he presupposes
that critical subarguments only occur in arguments for complex conclusions:

It is important to notice that a sentence A standing immediately
below the conclusion C of a critical subargument of a canonical
argument must be of higher logical complexity than either the con-
clusion or the premisses of that subargument. This holds good of
C because A, being a closed sentence in the main stem, must be
derived by an application of one of the introduction rules, of which
C must accordingly be one of the premisses; by the complexity
condition on the introduction rules, A must be of higher logical
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complexity than any of its premisses. The premisses of the sub-
argument must either be initial premisses of the entire argument,
in which case they are atomic, or be hypotheses discharged by the
introduction rule, in which case they must again be of lower logical
complexity than A.

Notice that, if basic rules are allowed to discharge assumptions, basic argu-
ments (that is, arguments containing only basic rules) may have critical sub-
arguments (definitions 6.1.1 and 6.1.2). Therefore, when basic rules discharge
assumptions, circularity could become a serious problem. I do not examine
this problem because, for my purposes, it suffices to consider bases without
discharge. Nonetheless, some results below do not depend on the issue of
whether or not to allow discharge in basic rules. These cases are explicitly
mentioned.

6.3 Independent interpretation

In the independent interpretation, basic rules are recognized by their general
form. However, a restriction must be imposed on the transformations de-
scribed in characterisation 6.1.8: they cannot appeal to new basic rules. The
rationale is that, whatever basic rules appear in the supplements, a transform-
ation should not use more than those rules in order to construct the canonical
argument for the conclusion. The restriction is similar to the one Dummett
already imposes on assumptions. By adopting the independent interpretation,
validity of basic arguments may be left unspecified. The notion characterised
under the independent interpretation is called validability, instead of validity,
in order to call attention to the fact that its applicability to basic arguments
is purely formal and do not attest to the legitimacy of its basic rules as co-
herent principles of reasoning (something that may be expected of reasonable
atomic systems). The characterisations of section 6.1 can now be made into
precise definitions. The definitions of the notions of main stem and critical
subargument are reproduced without changes.

Definition 6.3.1. A sentence occurrence A is in the main stem of an argument
Π if every sentence in the path fromA to the conclusion of Π (inclusive) depends
only on the assumptions of Π.6

6. Notice that the main stem of an argument may be composed of various distinct paths
or branches.
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Definition 6.3.2. A critical subargument of an argument Π is determined by
a premiss outside the main stem of Π whose immediate consequence belongs
to the main stem of Π.

Definition 6.3.3. An argument is I-canonical (canonical in the context of the
independent interpretation), if the following three conditions hold:

(i) all its assumptions are atomic sentences

(ii) every atomic sentence in the main stem is either an assumption or is the
consequence of a basic rule

a1 · · · an
b

where a1 · · · an and b are atomic sentences

(iii) every complex sentence in the main stem is obtained by means of an
introduction rule

Definition 6.3.4. An I-supplementation of an argument is the result of re-
placing validable I-canonical arguments for each assumption. The validable
I-canonical arguments are called I-supplements.

Definition 6.3.5. An I-canonical argument is validable if all its critical sub-
arguments are validable.

Definition 6.3.6. An argument is validable if any I-supplementation can be
effectively transformed into a validable I-canonical argument for the same con-
clusion containing no additional assumptions and no additional basic rules.

The definitions are interconnected. In particular, definitions 6.3.4 to 6.3.6
simultaneously define the concepts of I-supplementation, validable I-canonical
argument and validable argument. The definitions are better understood recurs-
ively, where validable arguments are defined in terms of validable I-canonical
arguments which in turn are defined in terms of validable critical subarguments.
This may raise concerns about circularity in the definition of validability. In
particular, the complexity must decrease from validable arguments to validable
critical subarguments in order for the recursion to be well-founded.

Definition 6.3.7. The degree of an argument 〈Γ, G〉 is the maximum among
the degrees of the sentences in Γ and the conclusion G.

Theorem 6.3.1 (Dummett 1991). The definition of validable argument is well-
founded.
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6.3 Independent interpretation

Proof. Let 〈Γ, G〉 be an argument of degree n. Suppose that 〈Γ, G〉 is in canon-
ical form. Then, its validability depends only on the validability of its critical
subarguments, which, by definitions 6.3.1 to 6.3.3, are all of lower degree.7

Now, suppose that 〈Γ, G〉 is not in canonical form. Then, by definition 6.3.6,
in order to evaluate its validability, we have to consider transformations from
I-supplements for the assumptions Γ into validable I-canonical arguments for
G. By definition 6.3.3, these I-canonical arguments are of degree n, at most,
and their critical subarguments are, consequently, of strictly lower degree.

Definition 6.3.8. An argument is LI-valid (logically valid under the inde-
pendent interpretation) when it is validable and it contains no applications of
basic rules.

Definition 6.3.9. An argument is valid in a basis B under the independent
interpretation when it is validable and all the basic rules used in the argument
belong to B.

Theorem 6.3.2. Let a and b be atomic sentences. Then atomic Peirce’s rule

(a→ b)→ a
a

is LI-valid.

Proof. I show that any I-supplementation can be effectively transformed into
a validable I-canonical argument for the conclusion depending on the same
assumptions and no additional basic rule. Suppose Π1 is an I-supplementation
depending on assumptions x1 · · ·xn, as specified by definition 6.3.4. Thus,
by definition 6.3.3, the conclusion of the I-supplement was obtained by an
application of →I as shown below.

x1 · · ·xn
Π2
a

(a→ b)→ a
a (Π1)

There are two possibilities: either (1) the conclusion a of Π2 is in the main
stem and we already have a validable I-canonical argument for a from the same
assumptions and no additional basic rule, by item (ii) of definition 6.3.3, or (2)
a is not in the main stem and Π2 is a critical subargument, by definition 6.3.2.

7. Of course, under the assumption that the introduction rules comply with a complexity
condition, as formulated by Dummett (1991, p. 258). In particular, premisses of introduction
rules must be subsentences of their consequence.
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6 Proof-Theoretic Validity Based on Introductions

In the second case, by definition 6.3.2, a depends on additional assumptions
besides x1 · · ·xn. These assumptions were discharged by an application of →I
whose conclusion is (a → b) → a. Therefore, they can only be of the form
a→ b.

a→ b, x1 · · ·xn
Π2
a

By definition 6.3.6, the critical subargument Π2 is validable. From the val-
idability of Π2, I show how to obtain a validable I-canonical argument for a
from atomic assumptions x1 · · ·xn and no additional basic rules. Because Π2 is
validable, we have a procedure to effectively transform any I-supplementation
Π3 into a validable I-canonical argument for a from assumptions x1 · · ·xn and,
possibly, other assumptions y1 · · · ym.

y1 · · · ym
Π4
b

a→ b, x1 · · ·xn
Π2
a (Π3)

In particular, consider the following I-supplementation obtained by substitution
of I-supplements for assumptions of Π2.

[a]

b
a→ b, x1 · · ·xn

Π2
a (Π3ϕ/ψ)

This I-supplementation (containing an additional basic rule from a to b) is
then transformed into a validable I-canonical argument Π7 from assumptions
x1 · · ·xn only. By definition 6.3.3, this validable I-canonical argument proceeds
solely by basic rules. Examining Π7, if the additional rule is not used, then we
already have a validable I-canonical argument from assumptions α1 · · ·αn and
no additional rules. Otherwise, if the additional rule is used, we take its first
application as depicted below.

α1 · · ·αn
Π5
ϕ

ψ
Π6
ϕ (Π7)
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6.3 Independent interpretation

Since the rule does not occur in the subargument Π5, we obtain the required
valid I-canonical argument for a from assumptions x1 · · ·xn and no additional
basic rules.8

Corollary 6.3.3. Propositional intuitionistic logic is incomplete under the in-
dependent interpretation.

Once all atomic instances of Peirce’s rule are shown to be valid, it is possible
to generalize the result for a fragment of the language without disjunction.
This fragment is powerful enough to account for all valid propositional classical
reasonings (with the other constants being defined in terms of implication,
conjunction, and negation).

Theorem 6.3.4. Let A and B be any sentences. Assuming soundness of
N→,∧,⊥, Peirce’s rule

(A→ B)→ A

A

is LI-valid for the respective fragment.

Proof. By recursion on the degree of B and A, with theorem 6.3.2 as the base
case. For the recursion on B, I only show the case for ∧, where B = D ∧ E.
The case for → is analogous.

(A→ (D ∧ E))→ A

[A→ D](2) [A](3)

D

[A→ E](1) [A](3)

E
D ∧ E

A→ (D ∧ E)
(3)

A
(A→ D)→ A

(2)

A
Peirce’s rule

(A→ E)→ A
(1)

A
Peirce’s rule

Now, for the recursion on A, I show the case for→, where A = D → E. Again,

8. The proof depends on the restriction to basic rules without discharge. In particular, it
depends on the absence of discharges among the rules in Π6.
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6 Proof-Theoretic Validity Based on Introductions

the other cases are similar.

((D → E)→ B)→ (D → E)

[E → B](2)

[D → E](3) [D](1)

E

B
(D → E)→ B

(3)

D → E [D](1)

E
(E → B)→ E

(2)

E
Peirce’s rule

D → E
(1)

It is reasonable that proof-theoretic definitions could validate classical logic
with respect to a suitable, classically designed, collection of introduction rules.
Notice, however, that the introduction rules for N→,∧,⊥ incorporate no classical
principles of reasoning. Hence, theorem 6.3.4 reveals a strong inadequacy of
the definitions under the independent interpretation.

6.4 Dependent interpretation

Under the dependent interpretation, the primary notion of validity becomes
relative to a fixed basis B. In other words, the supplementation of arguments
and the valid canonical arguments are all given in a fixed basis B. I formulate
definitions that correspond to the characterisations in section 6.1, making ex-
plicit reference to a basis B. The definitions of the notions of main stem and
critical subargument are again reproduced without changes.

Definition 6.4.1. A sentence occurrence A is in the main stem of an argument
Π if every sentence in the path fromA to the conclusion of Π (inclusive) depends
only on the assumptions of Π.9

Definition 6.4.2. A critical subargument of an argument Π is determined by
a premiss outside the main stem of Π whose immediate consequence belongs
to the main stem of Π.

Definition 6.4.3. An argument is canonical in B if the following three condi-
tions hold:

9. Notice that the main stem of an argument may be composed of various distinct paths
or branches.
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(i) all its assumptions are atomic sentences

(ii) every atomic sentence in the main stem is either an assumption or is
obtained by a rule in B

(iii) every complex sentence in the main stem is obtained by means of an
introduction rule

Definition 6.4.4. A supplementation in B of an argument is the result of repla-
cing valid canonical arguments in B for each assumption. The valid canonical
arguments added are called supplements.

Definition 6.4.5. A canonical argument is valid in B if all its critical subar-
guments are valid in B.

Definition 6.4.6. An argument is valid in a basis B if any supplementation in
B can be effectively transformed into a valid canonical argument in B for the
same conclusion from, at most, the same assumptions.

The notion of validity in definition 6.4.6 is relative to a fixed basis B. The
notion of logical validity, on the other hand, must maintain a certain inde-
pendence of bases and basic rules. It could be presumed that logical validity is
captured by the case of the empty basis. As it turns out, however, the empty
basis is not adequate for the task.

Theorem 6.4.1 (Goldfarb (1998) 2016). Let a and b be distinct atomic sen-
tences. The argument

a→ b
b

is valid in the empty basis.

Proof. By definition 6.4.6, the argument is valid if any supplementation of
a→ b can be transformed into a valid canonical argument for b from, at most,
the same assumptions. There are no means of obtaining atomic sentences
from other atomic sentences in the empty basis. Therefore, every possible
supplementation involves the assumption of b. Among them, the simplest one
is:

b
a→ b
b

By definition 6.4.3, the assumption b alone is a valid canonical argument for b
in any base.
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Corollary 6.4.2 (Goldfarb (1998) 2016). Validity of arguments is not pre-
served through monotonic extensions of the basis.

Proof. By theorem 6.4.1, the argument from a → b to conclusion b is valid in
the empty basis, when a and b are distinct atomic sentences. However, it is not
valid in the immediate extension of the empty basis containing a rule enabling
the inference of b from a.

Consequently, bases cannot be correctly interpreted as knowledge bases mono-
tonically extended, at least for the dependent interpretation. In particular, the
empty basis is better understood as representing knowledge of the absence of
any valid inferences among atomic sentences rather than the absence of know-
ledge about the valid inferences among atomic sentences. This makes the empty
basis a particular basis, not a general one, as is expected in Prawitz’s frame-
work of monotonic extensions (chapter 3), where the empty basis can act as a
surrogate for an arbitrary basis. The remainder alternative is to define logical
validity for the dependent interpretation as validity in all bases.

Definition 6.4.7. An argument is LD-valid (logically valid under the depend-
ent interpretation) if it is valid in all bases.

The dependent notion of logical validity avoids validation of classical logic
through the same means available under the independent interpretation. In
this sense, the dependent interpretation can be considered more robust than
the independent interpretation.

Example 6.4.8. I show that atomic Peirce’s rule is not valid in some basis.
Consider a basis B with a single rule

b
a

The argument from a → b to b is valid in B (theorem 6.4.1). It is impossible
to transform the following valid canonical argument in B from no assumptions
into a valid canonical argument for a in B from no assumptions.

[a→ b]

b
valid in B

a
(a→ b)→ a

Notwithstanding its success in avoiding validation of Peirce’s rule, the de-
pendent interpretation is still not an adequate semantics for propositional in-
tuitionistic logic.
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Theorem 6.4.3 (Goldfarb (1998) 2016). For any atomic a, the argument

a→ (B ∨ C)

(a→ B) ∨ (a→ C)

is LD-valid.

Proof. Consider an arbitrary basis. In a supplement for a → (B ∨ C) from
assumptions x1 · · ·xn, with B ∨ C not in the main stem,10 the critical subar-
gument Π1 must be valid, by definition 6.4.4.

a, x1 · · ·xn
Π1

B ∨ C

By definition 6.4.3, since a is atomic, it can be its own supplement. Therefore,
by definition 6.4.6, any supplementations of Π1 can be transformed into a valid
canonical argument for B ∨ C depending solely on a and x1 · · ·xn. The last
step on this canonical argument is ∨I from either B or C. In both cases, we
obtain a canonical argument for (a→ B) ∨ (a→ C) from x1 · · ·xn by →I and
∨I.

Corollary 6.4.4. Propositional intuitionistic logic is incomplete under the de-
pendent interpretation.

6.5 Discussion

The definition of validity based on introduction rules proposed by Dummett
(1991) has noteworthy differences from other proof-theoretic definitions in the
literature. In particular, Dummett’s verificationist procedure admits assump-
tions in valid canonical arguments and, consequently, do not explicitly rely on
bases being monotonically extended. His characterisations, however, are not
precise enough when it comes to the role played by basic rules.

Based on some passages from his work, I proposed two interpretations of the
verificationist justification procedure with respect to bases. In both interpret-
ations, however, the verificationist justification procedure is not adequate as a
semantics for propositional intuitionistic logic, when the standard introduction
rules are considered.

In the independent interpretation of Dummett’s procedure, atomic Peirce’s
rule is valid. For a suitable fragment, the validity of Peirce’s rule can be

10. The case with B ∨ C in the main stem is trivial.
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6 Proof-Theoretic Validity Based on Introductions

generalized for complex sentences. In contrast with the results for standard
proof-theoretic semantics (Sanz, Piecha and Schroeder-Heister 2014; Piecha,
Sanz and Schroeder-Heister 2015), this result does not explicitly rely on bases
being monotonically extended. If the independent interpretation is accepted,
theorem 6.3.4 frustrates the expectation, expressed by Dummett (1991, p. 270)
himself, that proof-theoretic validity provides justification only for constructive
reasonings.

On the other hand, the dependent notion of validity has the interesting
and surprising property that it is not conservative over monotonic extensions
of bases (corollary 6.4.2). It avoids validation of Peirce’s rule. Nonetheless,
theorem 6.4.3 indicates that there are still problems to be solved.

6.5.1 A deceptive amendment

The counterexamples of theorems 6.3.2 and 6.4.3 are restricted to at least
some of the sentences in the argument being atomic. They are not effective
for arbitrary complex sentences. Thus, the counterexamples could be easily
blocked if schematicity is imposed, for instance, by superposing the original
notion of logical validity with a schematic substitution requirement (Goldfarb
[1998] 2016, § 3).

I agree with Goldfarb ([1998] 2016, § 4) that such purported solutions are
conceptually unsatisfactory. First, schematicity should be an inherent and
immanent property of the semantics, not a feature to be imposed from the
outside. Second, on the conceptual level, such an amendment amounts to en-
abling atomic sentences to emulate arbitrary complex sentences and basic rules
to emulate elimination rules. Although this could grant extensional adequacy
with respect to intuitionistic logic, it is conceptually ad hoc and hardly defens-
ible philosophically.

66
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Eliminations

The elimination rules express the canonical deductive use of sentences as as-
sumptions in an argument (section 5.1.1). Therefore, they are particularly
favourable as foundation for a notion of validity where hypothetical reasoning
(reasoning from assumptions) is taken as primary, in contrast with the place-
holder view of assumptions that informs standard proof-theoretic notions based
on the introduction rules (section 4.1).

Although definitions are formulated for elimination rules in general (sec-
tion 5.2), this chapter is particullarly concerned with their application to the
standard elimination rules for the system N of propositional intuitionistic logic.
Conventions, notation and terminology were described in section 2.1.

7.1 Preamble

7.1.1 Elimination rules and related notions

In an elimination rule for a logical constant, exactly one premiss of the rule is
required to have that constant as main logical operator. This premiss is called
the major premiss, and all others, if there are any others, are called minor
premisses.

In an elimination rule, a minor premiss is vertical if the same sentence fig-
ures as both minor premiss and consequence of the rule, otherwise it is called
horizontal. An elimination rule is a vertical rule if at least one of its minor
premisses is vertical and it allows the discharge of assumptions in the subar-
guments for its vertical minor premisses. I assume that every application of
vertical elimination rules do in fact discharge the assumptions as indicated by
the rule.1 Elimination rules that are not vertical are called reductive.

Notice that this terminology applies, first and foremost, to the schematic
rules and is employed in the context of particular inferences only insofar as

1. Otherwise, the application of the elimination rule would be superfluous (Prawitz 1965,
§ IV.1). This is in line with Dummett (1991, p. 283).
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they are recognised as applications of the rules in question. For example, the
minor premiss A in

A→ A A
A

is by no means vertical, but horizontal, despite the fact that A occurs both
as minor premiss and consequence in this particular inference. As examples of
vertical rules, there are the standard elimination rule for disjunction ∨E and
the alternative generalized elimination rule for implication →GE.

A ∨B

[A]
....
C

[B]
....
C

C
∨E

A→ B A

[B]
....
C

C
→GE

The first minor premiss of →GE is horizontal and the second one is vertical.
Since it takes only one vertical minor premiss to make a rule vertical, →GE is
vertical. In contrast, the standard elimination rule for implication →E, as well
as ∧E and ⊥E, are reductive rules.

7.1.2 Normal derivations

This subsection recollects some results and fixes some terminology regarding
normal derivations in propositional intuitionistic logic. The results are restated
mainly for your convenience and to avoid confusion resulting from conflicting
terminology. For detailed proofs, please resort to Prawitz’s monographs (Praw-
itz 1965, 1971).

Definition 7.1.1. A track2 in an argument Π is a sequence of sentence occur-
rences A1, · · ·An such that:

(i) A1 is a leaf in Π that is not discharged by an application of a vertical
elimination rule

(ii) Ai, for each i < n, is not a horizontal minor premiss of an application of
an elimination rule, and either (1) Ai is not a major premiss of a vertical
rule and Ai+1 is the sentence immediately below Ai, or (2) Ai is a major
premiss of a vertical rule and Ai+1 is an assumption discharged by the
respective application of the rule

2. The notion of “track” is obviously a slight adaptation of Prawitz’s notion of “path”
(Prawitz 1965, § IV.2). Since the term “path” is already reserved for a different concept, the
term “track” is used in order to avoid confusion.

68



7.1 Preamble

(iii) An is either a horizontal minor premiss or the conclusion of Π

As a sequence of occurrences of sentences, a track can also be divided into
segments; they conflate repeated consecutive occurrences of the same sentence
that arise from applications of vertical elimination rules. If the first sentence
in a track is an assumption of the argument, the track is open in the argument,
otherwise it is closed.

The tracks in an argument can be assigned an order. The lowest order is
assigned to tracks whose last sentence occurrence is the conclusion of the ar-
gument; they are called main tracks. The order then increases progressively
through horizontal minor premisses. The major premiss of the horizontal rule
belongs to a parent track which, of course, can have other children tracks shar-
ing an immediately higher order than their parents. The last sentence occur-
rence in a track determines a subargument, or subderivation, whose order is the
order of the track. The progeny relationship between tracks can be naturally
extended to cover them.

Theorem 7.1.1. Let τ be a track in a normal intuitionistic derivation and
let σ1 · · ·σn be the corresponding sequence of segments in τ . Then there is a
segment σi, called the basic segment in τ , which separates two (possibly empty)
parts of τ , called the analytic part and the synthetic part of τ , such that:

(i) for each σj in the analytic part, σj is a major premiss of an elimina-
tion rule and the sentence occurring in σj+1 is a subsentence of the one
occurring in σj

(ii) the basic segment σi is a premiss of an introduction rule or of ⊥E,
provided i 6= n

(iii) for each σj in the synthetic part, except the last one, σj is a premiss of
an introduction rule and the sentence occurring in σj is a subsentence of
the one occurring in σj+1

Definition 7.1.2. The subsentences of a sentence A are classified as positive
or negative as follows:

– A is a positive subsentence of A

– if B ∧ C or B ∨ C are positive (resp. negative) subsentences of A, then
B and C are positive (resp. negative) subsentences of A

– if B → C is a positive (resp. negative) subsentence of A, then B is
a negative (resp. positive) subsentence of A and C is a positive (resp.
negative) subsentence of A
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Definition 7.1.3. A sentence A is an assumption component (resp. conclusion
component) of an argument 〈Γ, G〉 when A is a positive (resp. negative) sub-
sentence of some assumption in Γ, or a negative (resp. positive) subsentence
of the conclusion G.

The notions defined above can be naturally extended to cover segments,
whereby a segment σj is a subsegment of a segment σi if the sentence occurring
in σj is a subsentence of the sentence occurring in σi.

Theorem 7.1.2. Let σ1 · · ·σn be a track in a normal derivation of G from Γ.
It holds that:

(i) every segment occurring in the analytic part is an assumption component
of 〈Γ, G〉 and subsegment of σ1

(ii) the basic segment σi is an assumption component of 〈Γ, G〉 and a sub-
segment of σ1; also, if different from ⊥, σi is a conclusion component of
〈Γ, G〉 and a subsegment of σn

(iii) every segment occurring in the synthetic part is a conclusion component
of 〈Γ, G〉 and a subsegment of σn

7.1.3 Succinct derivations

I build up on results and definitions of the previous subsection in order to
provide a complexity measure for subderivations in normal derivations. This
complexity measure is formulated solely in terms of the assumptions and con-
clusion and, therefore, can be applied to arbitrary arguments and their subar-
guments. It is later employed in the definition of validity, particularly defin-
itions 7.2.6 and 7.2.7. Theorem 7.1.4 guarantees that the complexity can be
required to decrease with the order of the (critical) subarguments without los-
ing soundness (section 7.3.2).

Definition 7.1.4. A negative assumption (resp. conclusion) component of
an argument 〈Γ, G〉 is a negative subsentence of G (resp. some sentence in
Γ). Analogously, a positive conclusion (resp. assumption) component of an
argument 〈Γ, G〉 is a positive subsentence of G (resp. some sentence in Γ).

The negative and positive partitions introduced in definition 7.1.4 make out
the components in definition 7.1.3. The assumption and conclusion components
afford a coarse summary of the sentences occurring in the analytic and synthetic
parts of tracks in a normal derivation on the basis of its assumptions and
conclusion. Their partition into negative and positive constituents yields a
somewhat finer distinction.
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Definition 7.1.5. A distinctive assumption (resp. conclusion) component of
an argument is either a negative assumption (resp. conclusion) component or
an assumption (resp. the conclusion).

The distinctive assumption components of an argument correspond intuit-
ively to the first sentences (leaves) of its tracks. They are either assumptions or,
possibly, leaves discharged by applications of →I and, consequently, negative
subsentences of the conclusion. Notice that the negative assumption compon-
ents represent, in a sense, a potential discharge. Whether an actual leaf was
discharged would depend on the particular derivation.

The distinctive conclusion components correspond intuitively to last sen-
tences (roots) of tracks. They include the conclusion of main tracks and, pos-
sibly, conclusions of their descendant tracks. More precisely, provided a parent
track is open, the conclusion of a child track is a negative subsentence of its
assumption.

Definition 7.1.6 (Dershowitz and Manna 1979). The degree of a (finite) col-
lection of sentences ∆j is lower than the degree of a collection of sentences
∆i (∆j < ∆i) if, and only if, ∆j results from ∆i by replacing one or more
sentences with a finite collection of sentences of lower degree.

Lemma 7.1.3. In a normal derivation, the degree of the collection of distinct-
ive conclusion components never increases with the order of subderivations. In
particular, if a parent track is closed, then the collection of distinctive conclu-
sion components of child subderivations have lower degree.

Proof. Consider derivations Πi and Πj , where Πj is a child of Πi. I show
that any distinctive conclusion component of Πj is either itself a distinctive
conclusion component of Πi, or is replaced in Πi with a distinctive conclu-
sion component of higher degree. By definition 7.1.5, a distinctive conclusion
component of Πj is either the conclusion of Πj or a negative conclusion com-
ponent of Πj . First, consider the negative conclusion components of Πj . By
definition 7.1.4, they also belong to the distinctive conclusion components of
Πi, unless the corresponding assumption was discharged. In that case, by the-
orem 7.1.1, either (→I) the conclusion of Πi has higher degree, or (∨E) it is
a negative subsentence of some assumption in Πi and, consequently, a negat-
ive conclusion component of Πi. Now consider the conclusion of Πj . Take a
parent track τ in Πi. Suppose that τ is open and A is its assumption. By
theorem 7.1.2, it is a negative subsentence of A and, by definition 7.1.5, also a
distinctive conclusion component of Πi. Finally, suppose that τ is closed and
its leaf A was discharged. Then, by theorem 7.1.1, the conclusion of Πi has
higher degree than the conclusion of Πj .
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Definition 7.1.7. Let ∆Γ (resp. ∆G) stand for the collection of distinctive
assumption (resp. conclusion) components of a normal derivation from Γ to G.
Consider sequences of subderivations 〈Γ0, G0〉 · · · 〈Γn, Gn〉 where each element
stands for a child subderivation of the previous one (〈Γ0, G0〉 being the main
derivation). The derivations in the sequence are measured for their complexity
as follows:

– if ∆Gj < ∆Gi then 〈Γj , Gj〉 ≺ 〈Γi, Gi〉

– if ∆Gj = ∆Gi then

– if ∆Γj < ∆Γi then 〈Γj , Gj〉 ≺ 〈Γi, Gi〉

– if ∆Γj ≥ ∆Γi then 〈Γj , Gj〉 � 〈Γi, Gi〉

Theorem 7.1.4. For any derivable argument, there is a normal derivation
where the complexity decreases with the order of subderivations.

Proof. I describe a method to shorten normal derivations by removing redund-
ancies (loops). Consider a normal derivation where a subderivation Πj has
equal or higher complexity than its parent subderivation Πi. By lemma 7.1.3,
a parent track is open. Let Ai be its assumption. Now, there is also an open
track in Πj where another occurrence Aj of the same sentence is an analytic as-
sumption, because otherwise Πj would already have lower complexity than Πi.
Let Πk be the descendant subderivation for the minor premiss of Aj . Replace
Πj with Πk. Because Πj has at least the same complexity as Πi, any negative
assumption components of Πj is also a negative assumption component of Πi.
Therefore, any discharge of assumptions of Πk can be transferred from Πj to
Πi. This shortening process can be iterated until the resulting child of Πi has
lower complexity.
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7.2 Validity

Example 7.1.8. Consider the derivation

¬(¬¬A→ A)(1)

¬¬A(2)

¬(¬¬A→ A)(3)

¬¬A(5)

¬(¬¬A→ A)(6)
A(7)

¬¬A→ A

⊥
¬A

(7)

⊥
A

¬¬A→ A
(5)

⊥
¬A

⊥
A

¬¬A→ A
(2)

⊥
¬¬(¬¬A→ A)

(1),(3),(6)

Climbing up from the conclusion, the subderivation Π1 for the second occur-
rence of ¬¬A → A is more complex than its parent subderivation Π2 for ¬A.
More precisely, their distinctive conclusion components have equal degree and
the distinctive assumption components of Π2 have higher degree than the dis-
tinctive assumptions components of Π1. In particular, ¬¬A is a distinctive
assumption component of Π2 but not of Π1. As per theorem 7.1.4, the deriv-
ation can be shortened by replacing Π2 with its descendent subderivation Π3

for the third occurrence of ¬¬A→ A.

¬(¬¬A→ A)(1)

¬¬A(2)

¬(¬¬A→ A)(3)
A(4)

¬¬A→ A

⊥
¬A

(4)

⊥
A

¬¬A→ A
(2)

⊥
¬¬(¬¬A→ A)

(1),(3)

The discharge number 7 in Π3 becomes discharge number 4 and discharges
number 5 and 6 in Π2 are discarded.

7.2 Validity

From a pragmatist perspective, a canonical argument start from open (usually
complex) assumptions and, through applications of elimination rules, arrive at
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an atomic conclusion. Dummett also admits basic rules (or boundary rules)
to determine deducibility among atomic sentences. In canonical arguments,
these basic rules can be applied to an atomic conclusion in order to obtain
further atomic consequences. However, since my main concern is with logical
validity, I leave basic rules out of the picture and adapt Dummett’s definitions
accordingly, for the sake of simplicity.3 I also adapt the definitions to the
propositional case.

Definition 7.2.1. A sentence occurrence in an argument is principal if every
sentence (inclusive) in the path down to the conclusion (exclusive) is a major
premiss of an elimination rule.4

Definition 7.2.2. An argument is proper if at least one of its assumptions is
principal.

The concept of proper argument is an essential component in the pragmat-
ist notion of validity because proper arguments are built from the principal
assumption by application of elimination rules. Arguments that do not fol-
low this pattern are improper. The path from the principal assumption to the
conclusion is the principal path.

The notion of canonical argument to be introduced later (definition 7.2.4) is
based primarily on the notion of a proper argument. Even in proper arguments,
however, the subargument for minor premisses of elimination rules may depend
on auxiliary assumptions that arrive at the conclusion through improper means,
i. e., through a path that is not solely composed of major premisses of elimina-
tion. These kind of improper subarguments for minor premisses of elimination
are called critical subarguments (definition 7.2.5).

7.2.1 Canonical arguments and critical subarguments

The following definitions are adapted from Dummett’s original definitions as
explained in section 7.3. The core ideas, however, are preserved.

Definition 7.2.3. A sentence occurrence is placid if no sentence down the
path to the conclusion is a horizontal minor premiss.

3. Dummett (1991, p. 273) explicitly stated the irrelevance of basic rules, or boundary rules,
as he called them, to logical validity. Furthermore, by reflection on the pragmatist definition
of validity (definition 7.2.8), it is easy to see that any basic rule in the complementation can
be transferred to the valid canonical argument required, thus making no difference to which
complex arguments are actually validated.

4. As a limiting case, in an argument consisting of a single occurrence of a sentence A,
acting both as assumption and conclusion, A is principal, since the empty path from A to A
satisfies the definition.
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Definition 7.2.4. A canonical argument has the following properties:

(i) it is proper;

(ii) the subargument for any placid vertical minor premiss of an elimination
rule is proper.

Definition 7.2.5. A critical subargument of a canonical argument is a non-
canonical subargument whose conclusion is a horizontal minor premiss of an
elimination rule.

In subarguments for minor premisses, the notion of canonicity deals with
vertical and horizontal minor premisses differently. The subarguments for pla-
cid vertical minor premisses are considered independent auxiliary arguments
and are thus required to be proper themselves. Ideally, the subarguments for
horizontal minor premisses would also be proper (and canonical). However,
in general, it is not possible to place any restrictions on the form of the sub-
arguments for horizontal minor premisses: when not already canonical, those
subarguments are critical, which means that the validity of the whole canonical
argument would depend on their validity (definition 7.2.6).

Remark 7.2.1. The inference steps in canonical arguments consist primarily of
applications of elimination rules: there is a principal path (which is composed
of eliminations) and subarguments for minor premisses which are themselves
either proper (again with a principal path composed of eliminations) or critical.
Thus, a canonical argument has the general form

· · ·
· · ·

· · · 5
· · · 5
· · ·

· · · 5
· · ·

· · · 5
· · ·

where the inference steps are applications of elimination rules except for the
critical subarguments (represented with “5” above), because the definitions
impose no restrictions on their inference steps. If we were to ignore the critical
subarguments, what remained could be called the proper fraction of the ca-
nonical argument and the corresponding sentence occurrences be called proper
occurrences. In the proper fraction, in addition to the principal assumption,
all other assumptions are principal assumptions of proper subarguments. In
the context of canonical arguments, they are called, collectively, proper leaves,
or proper assumptions, when undischarged throughout the argument.

Lemma 7.2.2. The conclusion of a canonical argument is always a subsentence
of some assumption, provided there is no proper occurrence of ⊥.
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7 Proof-Theoretic Validity Based on Eliminations

Proof. Let Π be a canonical argument with no proper occurrence of ⊥. By
definition 7.2.4, Π is proper and, by definition 7.2.2 and definition 7.2.1, it has
a principal path of major premisses of applications of elimination rules from an
assumption to the conclusion. In the principal path, the consequences of ap-
plications of ∧E and →E are subsentences of their respective major premisses.
The interesting cases are applications of vertical rules (∨E) since they figure a
consequence which is not required to be a subsentence of the major premiss.
By definition 7.2.4, the subarguments for minor premisses of vertical rules are
proper. By definition 7.2.2 and definition 7.2.1, each vertical subargument has
a path of eliminations from a proper leaf to the conclusion of the subargu-
ment. Now, if the proper leaf of a subargument for a vertical minor premiss
was discharged by the corresponding application of ∨E, then the conclusion
is, by induction hypothesis, a subsentence of its major premiss and hence a
subsentence of the principal assumption. Otherwise, if the proper leaf was
not discharged, then it is actually a proper assumption of the canonical ar-
gument and the conclusion is, by induction hypothesis, a subsentence of this
assumption.

Remark 7.2.3. It would perhaps be useful to make a parallel between the defin-
itions above and concepts familiar from normalisation for intuitionistic natural
deduction (section 7.1.2). For instance, notice that clause (ii) of definition 7.2.4
ensures that the segments in main tracks of canonical arguments are all major
premisses of applications of elimination rules (except the last one). In main
tracks of canonical arguments, the major premisses of vertical rules are followed
by a corresponding discharged assumption, which (if not the last segment in
the track) is also a major premiss of an elimination rule. As a result, the first
sentence in a main track is a proper assumption and the last sentence (the con-
clusion of the canonical argument) is a subsentence of this assumption, provided
⊥ does not occur in the main track. The first sentence in a main track, how-
ever, can be distinct from the principal assumption of the canonical argument,
because assumptions discharged by vertical rules may not be principal in their
respective proper minor subarguments. The tracks to whom the principal as-
sumption belongs may be called principal tracks. By theorem 7.1.1, in normal
derivations with empty synthetic parts, the main tracks are all principal tracks
and the derivations are, therefore, canonical arguments. Critical subarguments
are, inevitably, subarguments of higher order (clause (ii) of definition 7.1.1)
although not every subargument of higher order must be critical, since it can
be itself canonical (that is, in terms of derivations, when the synthetic parts of
main tracks are empty).
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7.2 Validity

Definition 7.2.6. A canonical argument is valid if all its critical subarguments
are valid and of lower complexity.5

Definition 7.2.7. A complementation of an argument 〈Γ, G〉 is the result of
replacing G by a valid canonical argument with the following properties:6

(i) it has G as principal assumption

(ii) it has an atomic conclusion

(iii) it has at most the same complexity7

Definition 7.2.8. An argument is valid if there is an effective method to
transform any complementation of it into a valid canonical argument for the
same conclusion from, at most, the same assumptions.

Definitions 7.2.6 to 7.2.8 should always be considered together since they
define notions in terms of each other. For instance, the notion of valid canonical
argument in definition 7.2.6 is defined in terms of the notion of valid argument
which is itself only defined in definition 7.2.8.

The process of complementation consists basically in the application of elim-
ination rules to the conclusion of the argument until we reach an atomic sen-
tence. During complementation, the application of elimination rules figuring
minor premisses can introduce auxiliary assumptions. Thus, the valid canonical
argument required by definition 7.2.8 can depend on additional assumptions
introduced by complementation.

Theorem 7.2.4 (Completeness of Intuitionistic Logic). If an argument 〈Γ, G〉
is valid, then there is a natural deduction derivation of G from Γ in intuition-
istic logic.

Proof. Suppose 〈Γ, G〉 is valid. By definition 7.2.8, for any complementation
Πc, we have a valid canonical argument Πv for the same conclusion from, at
most, the same assumptions. By definition 7.2.7, the complementations are
obtained by replacingG with a valid canonical argument that hasG as principal
assumption. By definition 7.2.2, there is a principal path in Πc from G to the

5. The complexity measure intended here is described in section 7.1.3, definition 7.1.7. The
rationale behind it can be found in section 7.3.2.

6. Dummett’s original definition has a special clause for when the conclusion G is an atomic
sentence. His clause is subsumed here by canonical arguments consisting of a single occurrence
of G (definition 7.2.1).

7. This ensures that complementations do not increase the complexity of the original ar-
gument.
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7 Proof-Theoretic Validity Based on Eliminations

atomic conclusion C which consists solely of applications of elimination rules.
Furthermore, there can be auxiliary assumptions ∆ in the subarguments for
minor premisses of elimination rules in the principal path.

Complementation Valid Canonical Argument Derivation

Γ
G, ∆....
C (Πc)

Γ,∆....
C (Πv)

Γ,∆....
C (Πd)

By definition 7.2.8, the valid canonical argument Πv has C as conclusion and,
at most, Γ,∆ as assumptions. We use Πv as base and assume that we already
have a natural deduction derivation Πd for C from Γ,∆ obtained by recursive
application of the procedure described here to the critical subarguments of Πv.8

Then, we go through the applications of elimination rules in the principal path
and construct, through a process of inversion, a natural deduction derivation of
G from Γ alone. Starting with C, we obtain a natural deduction derivation for
each principal sentence in the principal path until we reachG (at which point we
would have either discarded or discharged the auxiliary assumptions ∆). Since
definition 7.2.8 ensures a valid canonical argument Πv for any complementation
Πc, we are free to consider those complementations that are more convenient
for the construction of our natural deduction derivation. We proceed case by
case, where each case shows the derivation of the major premiss on the basis
of derivations of the principal sentences that came before (ordered from C to
G). For the cases of ∨E and →E, which introduce auxiliary assumptions, I
show how these assumptions can be either discarded (∨E) or discharged (→E).
That is, for each occurrence of ∨E and →E in the principal path of Πc, I
show how to obtain a derivation from only Γ,∆∗, where ∆∗ stands for the
auxiliary assumptions except those assumptions that are being introduced at
that particular inference. As a result, after going through all sentences in the
principal path, we obtain a derivation of G which depends solely on Γ.

8. Recall that a canonical argument is mostly already a natural deduction derivation,
except for the critical subarguments (remark 7.2.1). The termination of the recursive applic-
ation of the procedure to the critical subarguments of Πv is warranted by the complexity
restrictions on critical subarguments (definition 7.2.6). Example 7.4.2 illustrates the recurs-
ive nature of the definitions. In the limiting case where assumptions Γ and conclusion G are
atomic sentences, the argument is valid if, and only if, G is among the assumptions Γ.

78



7.2 Validity

(∧E) Consider complementations by both elimination rules for conjunction

Γ
G, ∆....
A ∧B
A (Πc1)

Γ
G, ∆....
A ∧B
B (Πc2)

Γ,∆....
A (Πd1)

Γ,∆....
B (Πd2)

A ∧B

From the derivations of A and B, the conjunction A∧B is derived by ∧I.

(→E) Consider a complementation where the minor premiss A is assumed.

Γ
G, ∆∗....
A→ B A

B (Πc)

Γ,∆∗, [A]
....
B (Πd)

A→ B

From a derivation of B from Γ,∆, we apply →I to obtain A → B, dis-
charging A.

(⊥E) Consider a complementation where C is an atomic sentence that does
not occur as a subsentence in either Γ or ∆. As a result, ⊥E is the last
rule applied. I show that Πd contains a derivation of ⊥ that depends, at
most, on Γ,∆.

Γ
G, ∆....
⊥
C (Πc)

Γ,∆....
⊥
C (Πd)

By definition 7.2.2, Πd has a principal path from one of the assumptions
Γ,∆ to C. Since C is not a subsentence of the principal assumption,
it could only have been obtained by either ⊥E or, possibly, a sequence
of one or more applications of ∨E.9 In the first case, we already have
a derivation of ⊥ from Γ,∆. In the second case, by definition 7.2.4,
the subarguments for vertical premisses are proper and hence have a
principal path to C. We climb our way up the vertical minor premisses
until we reach applications of a reductive elimination rule. The reductive

9. The cases where there is an application of ⊥E with a complex consequence containing
C and then further eliminations arriving at C are easily subsumed under the case where the
corresponding application of ⊥E has C directly as a consequence.
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elimination rule in question can only be ⊥E (lemma 7.2.2). We permute
these reductive applications down the sequence of vertical premisses and
thus obtain a derivation of ⊥ from, at most, Γ,∆.

(∨E) Consider a complementation of the form below, where A→ C and B → C
are assumed and C is atomic and does not occur as a subsentence in either
Γ, A, B or auxiliary assumptions ∆∗ (where ∆∗ does not contain A→ C
and B → C).

Γ
G, ∆∗....
A ∨B

A→ C [A]

C

B → C [B]

C
C (Πc)

In the derivation Πd, the conclusion C could have been obtained:

(a) by ⊥E.

Γ,∆∗....
⊥
C (Πd)

Γ,∆∗....
⊥

A ∨B

It is easy to derive A ∨B instead by the same rule.

(b) by →E from either A → C or, respectively, B → C as principal
assumption.

A/B → C

Γ,∆∗....
A/B

C (Πd)

Γ,∆∗....
A/B

A ∨B

In either case, we obtain a derivation of A∨B from the subderivation
of the horizontal minor premiss by ∨I.

(c) by a sequence of one or more applications of ∨E.

Γ,∆∗....· · ·
A/B → C

Γ,∆∗....
A/B

C

Γ,∆∗....
⊥
C

C (Πd)

Γ,∆∗....· · ·

Γ,∆∗....
A/B

A ∨B

Γ,∆∗....
⊥

A ∨B
A ∨B

We then consider main tracks in Πd (remark 7.2.3) and replace each
occurrence of C in the segment by A∨B in accordance with previous
cases (a) and (b).
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7.3 Prawitz’s objection

The resulting derivation of A ∨ B abstains from assumptions A → C
and B → C. Any doubts can be dispelled by putting the derivation into
normal form (theorem 7.1.1).

Theorem 7.2.5 (Soundness of Intuitionistic Logic). If there is a natural de-
duction derivation of G from Γ, then the argument 〈Γ, G〉 is valid.

Proof. Let Πd be a normal derivation of G from Γ. Now, suppose Πc is a
complementation of Πd from Γ,∆ to conclusion C. I show how to obtain a
valid canonical argument from Γ,∆ to C. By definition 7.2.2, G is the first
of a (possibly empty) sequence of major premisses of applications of elimin-
ation rules and, by theorem 7.1.1, the last of a (possibly empty) sequence of
immediate premisses of applications of introduction rules. By induction on the
degree of G, we perform reductions (section 2.3) until we obtain a deduction
Πv of C from Γ,∆. By remark 7.2.3 and induction hypotheses on its critical
subarguments, Πv is a valid canonical argument for C from Γ,∆.

7.3 Prawitz’s objection

There are subtle issues involved in the treatment of critical subarguments and
Dummett was not able to get his definitions completely right. In particular,
problems emerge when we consider a counterexample pointed out by Prawitz
(2007, endnote 15):

“The main fault [with Dummett’s definitions] is that in a comple-
mentation of an argument, the minor premise of an implication
elimination is only assumed. By not considering complementations
where the minor premise is the end of an arbitrary argument (which
is not possible to do in Dummett’s definition, proceeding as it does
by induction over the degree of arguments), the notion of validity
becomes too weak. In particular, it cannot be shown that inferences
by modus ponens are valid in general, because given two valid argu-
ments Π and Σ for A→ B and A, respectively, there is no guarantee
that the result ∆ of combining them in a modus ponens to conclude
B is valid. For an actual counterexample, we may let B be atomic,
Π be simply A → B, which is a valid argument for A → B from
A → B, and Σ to be a valid argument for a nonatomic A from
some hypotheses of higher degree than that of A → B. Then ∆ is
canonical argument and is its own complementation, but it is not
valid (Σ being of the same degree as ∆, nor can one find another
valid canonical argument for B from the same hypotheses.”
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In his reply to Prawitz, Dummett (2007) acknowledges the problem. There
are actually two different issues brought to light by Prawitz’s counterexample.
In the remainder of this section, I discuss these issues and indicate thereby
the adaptations that I incorporated into the original definitions in order to
avoid them. The adaptations, although elaborate, are fully in agreement with
Dummett’s overall philosophical outlook, particularly with respect to the treat-
ment of assumptions.

7.3.1 Canonical atomism

Dummett (1991, pp. 284,285) discussed an example closely related to Prawitz’s
counterexample.

A→ B

(A→ B)→ ((C → C)→ A) A→ B

A
B (7.1)

Notice that Dummett’s example is basically an instance of Prawitz’s counter-
example: both consist of an argument where major premiss A → B stands as
an assumption, and where there is a subargument for minor premiss A from
assumptions of higher complexity than A→ B. In Dummett’s discussion, how-
ever, the minor premiss A is atomic. This contrasts with Prawitz’s counter-
example where A is complex. The difference is important because, according
to Dummett’s original definition (which is divided into clauses), a canonical
argument, besides being proper (clause iii), must have an atomic conclusion
(clause i). Thus, the first problem revealed by Prawitz’s counterexample is
that, for complex A, there would be, in general, no canonical way to obtain A.

However, there is no conceptually compelling reason why canonical argu-
ments must have atomic conclusions. After all, we should be able to obtain
also complex sentences in a canonical manner.10 In order to avoid this objec-
tion, I removed the requirement of atomic conclusion from Dummett’s original
definition of canonical argument and adapted the definition of complementation
accordingly (clause (iii) of definition 7.2.7).

7.3.2 Stringency of the complexity restriction

When discussing his example (7.1), Dummett was concerned about improper
and, therefore, non-canonical subarguments for minor premisses: if these kind

10. I suspect that Dummett only imposed the requirement of atomic conclusion on canonical
arguments in order to simplify the formulation of his definition of complementation which,
in general, should require that the principal path be as long as possible in order to afford a
complete analysis of the conclusion.
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of subarguments could have higher complexity than the principal assumption
(A → B, in this example), the definition of validity would be in danger of
circularity. Dummett then presents a transformation that puts the improper
subargument into proper form.

A→ B

(A→ B)→ ((C → C)→ A) A→ B

(C → C)→ A

[C]

C → C

A
B (7.2)

Both arguments depend on the same assumptions but, in contrast with
the original example (7.1), the transformed argument (7.2) displays a proper
subargument for the minor premiss A, since there is a principal path from
(A→ B)→ ((C → C)→ A) to A.

Apparently relying on the strength of this particular transformation alone,
Dummett then introduces a narrow notion of validity for canonical arguments
which restricts improper arguments for minor premisses to those of strictly
lower degree, where the degree of an argument is the highest among the degrees
of its assumptions and conclusion.

Although the transformation worked for that particular example, it is inad-
equate in general, at least if Dummett’s notion of degree of an argument is used
as complexity measure. Consider, for instance, the following proper argument:

¬(A ∨ ¬A)

¬(A ∨ ¬A)

A ∨ ¬A
⊥

The degree of the minor subargument is equal to the degree of the principal
assumption ¬(A ∨ ¬A). In fact, ¬(A ∨ ¬A) occurs again as an assumption in
the minor subargument. The fact that the minor subargument cannot be put
into a proper form becomes clear when we replace it by its normal derivation
in intuitionistic logic:

¬(A ∨ ¬A)

¬(A ∨ ¬A)
A(1)

A ∨ ¬A
⊥
¬A

(1)

A ∨ ¬A
⊥

Dummett’s complexity restriction, as originally formulated, is therefore too
stringent. The approach suggested by Prawitz (2007) and Schroeder-Heister
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(2015) avoids this problem by dealing primarily with closed proofs, where
the conclusion provides the adequate complexity measure, since there are no
undischarged assumptions. Their approach thus differs unequivocally from
Dummett’s, especially with respect to the treatment of assumptions. I main-
tained Dummett’s core approach through the adoption of an adequate complex-
ity measure (definition 7.1.7), one that preserves soundness (theorem 7.1.4),
instead of his original notion of degree of an argument.

7.4 A decision procedure

In order to illustrate the definitions and give some intuition about the construc-
tion described in the proof of theorem 7.2.4, it can be useful to work though
some examples. The examples are meant to be an overall intuitive illustration
of how the proof-theoretic definitions evaluate the validity of arguments. They
are presented in the framework of a decision procedure that can be read off
from the definitions.

The idea behind definition 7.2.8 is roughly that an argument is valid if,
whatever we can obtain canonically from the conclusion, could as well be ob-
tained from the assumptions. A procedure to evaluate validity can therefore
be divided into two parts:

The complementation process determines what can be obtained from the
conclusion.

The search process looks for a way to obtain the same thing from the as-
sumptions.

Both complementation and search can employ only elimination rules — there
are no introduction rules available. In line with definition 7.2.2, they are based
on a similar method (let us call it analysis) of applying elimination rules to a
sentence, taken as major premiss, until an atomic sentence is obtained (clause
(ii) of definition 7.2.7). Thus, in the complementation process, the conclusion
of the argument is analysed in order to see what atomic conclusions can be ob-
tained (possibly under some additional auxiliary assumptions). In the search

process, the assumptions are then analysed (one by one) in order to evaluate
whether the same atomic conclusions can be obtained.

In the complementation process, the following simplifications are adopted,
without loss of generality, with respect to ∨E and →E (in agreement with the
corresponding cases in the proof of theorem 7.2.4):
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(→E) the minor premiss is assumed.

A→ B A
B

Here, A is an additional assumption and will be available to search.

(∨E) applications are “flattened” with the help of implication.

A ∨B
A→ C [A]

C

B→ C [B]

C
C

In order to maintain generality, C stands for a sentence that does not
occur as a subsentence either in the assumptions or the conclusion. Here,
A→ C and B→ C are assumed and will be available to search.

(⊥E) applications are abstained. The search will then target ⊥. Notice that
these simplifications are limited to the complementation process and do
not carry over to the search process where, naturally, applications of ⊥E
are not abstained.

Example 7.4.1. A definition of validity is expected to provide precise criteria for
the validity of arguments and, for the pragmatist definitions in particular, these
criteria are supposed to resort to elimination rules only (without assistance from
introduction rules). Consider a simple, but not trivial, argument

A→ (B ∧ C)

(A→B) ∧ (A→ C)

and let us evaluate its validity with respect to the pragmatist definitions.
First, we investigate what can be obtained canonically from the conclusion

by means of complementation:

A→ (B ∧ C)

(A→B) ∧ (A→ C)

A→B A
B

A→ (B ∧ C)

(A→B) ∧ (A→ C)

A→ C A
C

There are two complementations, with conclusions B and C, respectively, and
the assumptions A→ (B ∧ C) and A. In order to establish validity, we must
now find canonical arguments from A→ (B ∧ C) and A to B, and from A→
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(B ∧C) and A to C.11 The search for these canonical arguments can be done
mechanically by analysing the assumptions one by one, where some heuristics
could be employed to sort out the most promising candidates. In this example,
we have few assumptions and don’t need much heuristics to see that A→(B∧C)
is the best candidate:

A→ (B ∧ C) A

B ∧ C
B

A→ (B ∧ C) A

B ∧ C
C

The procedure is thus revealed to be strong enough to validate, not only the
introduction rules on the basis of the elimination rules, but also complex ar-
guments whose derivation would require both eliminations and introduction
rules.

Example 7.4.2. Regarded as a decision algorithm, the procedure for evaluation
of validity based on elimination rules is not so straightforward and uncomplic-
ated as example 7.4.1 makes it out to be. In the general case, the procedure may
involve recursion and backtracking. The search process can deliver candidates
with critical subarguments, which would demand a recursive call to evaluate
their legitimacy (definition 7.2.6). If unsuccessful, the process backtracks and
tries out the analysis on a different assumption. Consider, for instance, the
argument

A→¬¬B
¬¬(¬A ∨B)

The complementation below stops at the conclusion ⊥, before an application
of ⊥E, in accordance with the aforementioned simplifications to the comple-
mentation process.

A→¬¬B
¬¬(¬A ∨B) ¬(¬A ∨B)

⊥ (C1)

The search process has assumptions A → ¬¬B and ¬(¬A ∨B) to try out
in order to obtain ⊥. For simplicity of exposition, let us heuristically select
¬(¬A ∨B), although we could as well have first unsuccessfully tried A→ ¬¬B

11. The assumptions of the complementations happen to be the same in this example. In
the general case, however, they have to be considered separately, e.g. each complementation
has their own assumptions and conclusion. In order to establish validity, we must then show
that the conclusion of the complementation can be obtained from the assumptions of the
complementation, for every complementation.
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out and then backtracked here.

¬(¬A ∨B) ¬A ∨B
⊥

Now, notice that ¬A∨B itself is not available among our assumptions. There-
fore we presume that ¬A ∨ B can, in fact, be obtained from the assumptions
that are available to us, and recall the procedure recursively on the critical
subargument enclosed in a box below.12

¬(¬A ∨B)

A→¬¬B ¬(¬A ∨B)

¬A ∨B
⊥ (S1)

In the complementation of our recursive call, we again adhere to aforemen-
tioned simplifications and use C as the conclusion of ∨E since it does not occur
anywhere else.

A→¬¬B ¬(¬A ∨B)

¬A ∨B
¬A→ C [¬A]

C

B→ C [B]

C
C (C2)

In order to obtain the foreign C, the search must either (1) obtain ⊥, and
thereby C, or (2) obtain one of the disjuncts and thereby obtain C from the
corresponding assumption, either ¬A→ C or B → C, or yet (3) obtain C by
∨E from a disjunctive principal sentence, whereby we may use the disjuncts
as additional assumptions on the search for proper subarguments for the re-
spective vertical minor premisses. We examine the second option and choose
assumption ¬A→ C. The other one may be discarded.

¬A→ C

A→¬¬B ¬(¬A ∨B)

¬A
C (S2)

The next recursive step reveals an important aspect of the definitions. Consider
the complementation.

A→¬¬B ¬(¬A ∨B)

¬A A
⊥ (C3)

12. Notice that ¬(¬A ∨ B) appears twice: as major premiss and also as an assumption of
the critical subargument. This cannot be avoided in general and is related to the problem
with contraction in the search for proofs in the sequent calculus (Došen 1987; Dyckhoff 1992;
Hudelmaier 1993).
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7 Proof-Theoretic Validity Based on Eliminations

In the candidate (S3) below, if we were to retain all the assumptions available
for the next recursive call, that is, if A→ ¬¬B and A where both passed as as-
sumptions to the critical subargument enclosed in a box, we would be in danger
of running into a vicious circle (a loop): after the complementation (C4) be-
low, the candidate (S2) above may need to be considered again by the search.
Indeed, by definition 7.1.7, the argument from {A → ¬¬B,A,¬(¬A ∨B)} to
¬B has higher complexity than the critical subargument in (S2), because its
conclusion ¬B has the same degree than ¬A and it has A as an additional
assumption. Therefore, for the particular case with A → ¬¬B as principal
assumption, the search must consider only candidates where A or some other
assumptions are left out of the critical subargument, on pain of violating the
complexity restriction. As it turns out, we do not need A→ ¬¬B either.

A→¬¬B A
¬¬B

¬(¬A ∨B)

¬B
⊥ (S3)

More recursion.
¬(¬A ∨B)

¬B B
⊥ (C4)

We see the complexity restriction at work again in the candidate offered by the
search below (notice that ¬(¬A ∨B) is left out of the critical subargument).

¬(¬A ∨B)
B

¬A ∨B
⊥ (S4)

I think that the procedure should be clear enough by now for us to omit the
last recursive call.

The construction described in theorem 7.2.4 can be applied to the canonical
arguments produced by complementation and search in order to obtain a
derivation.

¬(¬A ∨B)(1)

A→ ¬¬B A(2)

¬¬B

¬(¬A ∨B)(3)
B(4)

¬A ∨B
⊥
¬B

(4)

⊥
¬A

(2)

¬A ∨B
⊥

¬¬(¬A ∨B)
(1),(3)
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7.4 A decision procedure

The derivation contains four tracks. If we order the tracks from one to four and
divide them into their analytic and synthetic parts, they correspond roughly to
the complementation and search processes of the procedure: (C1), [(C2), (C3)],
(C4) and (C5) (omitted) correspond to the synthetic parts of tracks 1, 2, 3 and
4; (S1), (S3) and (S4) correspond to the analytic parts of tracks 1, 2 and 3 (the
analytic part of track 4 is empty). The simplifications adopted with respect to
∨E in the complementation process resulted in a dedicated recursive step for
applications of ∨I in the derivation (in track 2, (C2) and (S2); in track 4, (C5)
and (S5)). This seems a reasonable exchange against the achieved separation
between the processes and deterministic character of the complementation.

89





8 Discussion and Prospects

Dummett’s approach to proof-theoretic validity differs substantially from stand-
ard approaches. The most noteworthy difference is rejection of the placeholder
view of assumptions. As a result, conceptual and technical advantages are
gained for the notion of validity based on introduction rules and complete ad-
equacy to intuitionistic logic is achieved for the notion of validity based on the
elimination rules.

Standard definitions of validity have often been biased towards introduc-
tion rules and verificationism. Comparatively, notions of validity based on the
elimination rules has received far less attention (Dummett 1991; Prawitz 2007;
Schroeder-Heister 2015). I hope the results in chapter 7 would help to tip the
scale. In addition to the technical results, I discuss some philosophical and
conceptual reasons to prefer the pragmatist approach.

8.1 Schematicity and independence

In contrast with the verificationist notion, the pragmatist notion of validity
is, by design, completely schematic. In supplementations, the situation could
change drastically if an atomic sentence needed to be replaced throughout by a
complex sentence (section 6.5.1). In complementations, on the other hand, this
kind of replacement would not disturb the validation procedure in the slightest.

In the verificationist scenario, verifications for atomic sentences must be
provided in the form of atomic bases and they are an indispensable component
in the definition of validity. As a result, the verificationist notion of validity
becomes highly sensitive to changes in the basic framework. From the point of
view of logical validity, there is no reason why bases should matter at all. In
this respect, the pragmatist notion of validity offers a better approach because
it is fundamentally independent from bases, although it could incorporate them
without any problems.
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8.2 Invalidity, Kripke semantics and counterexamples

The purpose of a logical semantics is not only to ascertain validity but also
to provide a criterion for invalidity. The question then could be raised: How
does a proof-theoretic semantics establish invalidity, since it cannot avail itself
of countermodels and, consequently, the usual notion of counterexample?

According to definition 7.2.8, a counterexample is a complementation such
that no valid canonical argument can be provided for the same conclusion
from, at most, the same assumptions. Once the simplifications described in
section 7.4 are adopted, complementations become deterministic. The valid
or invalid verdict would then rest upon the canonical analysis of the available
assumptions: if they do not afford the desired conclusion, then the argument
is invalid. In the worst case scenario, after the necessary recursive steps over
critical subarguments, the verdict would ultimately rest upon the validity of
simple atomic arguments.

For comparison, consider Kripke semantics for intuitionistic logic (Troelstra
and van Dalen 1988, § 2.5). If there is a valid canonical argument for an atomic
sentence c from assumptions Γ, then c is forced by any node κ in a Kripke
model K such that, for each assumption A in Γ, A is valid in K. Therefore, if
the assumptions in an argument are associated with nodes at Kripke models
in which they are valid, then pragmatist complementation counterexamples
correspond to invalidating nodes in Kripke countermodels.

In order to illustrate how the pragmatist notion handles invalidity, I con-
sider two important counterexamples which appeared in connection with the
incompleteness results for the standard proof-theoretic notions (section 4.2).
For simplicity, I adopt the conventions laid out in section 7.4.

Example 8.2.1. I show that Peirce’s rule

(A→ B)→ A

A

is invalid. By definition 7.2.8, there is a complementation that cannot be
transformed into a valid canonical argument for the same conclusion from, at
most, the same assumptions. Suppose, for simplicity, that A and B are distinct
atomic sentences. Then, Peirce’s rule is, so to say, its own complementation
(definition 7.2.7). A valid canonical argument for A from (A→ B)→ A

(A→ B)→ A A→ B

A

would need A→ B as an additional assumption unless a critical subargument
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8.2 Invalidity, Kripke semantics and counterexamples

for A→ B could be validly obtained from (A→ B)→ A (definition 7.2.6).

(A→ B)→ A

(A→ B)→ A

A→ B

A

But this is not the case, because the complementation of the critical subargu-
ment

(A→ B)→ A

A→ B A
B

cannot be transformed into a valid canonical argument for B from (A→ B)→
A and A since none of these assumptions can be principal in a canonical argu-
ment for B (definition 7.2.4).

Example 8.2.2. I show that the argument

A→ (B ∨ C)

(A→ B) ∨ (A→ C)

is invalid. For simplicity, assume that A, B, C and D are distinct atomic
sentences and consider the complementation

A→ (B ∨ C)

(A→ B) ∨ (A→ C)

(A→ B)→ D [A→ B]

D

(A→ C)→ D [A→ C]

D

D

Any purpoted valid canonical argument for D must have (A→ C)→ D and/or
(A→ B)→ D as proper assumptions (lemma 7.2.2). None of those candidates,
however, are valid

(A→ B)→ D

A→ (B ∨ C)

A→ B

D

(A→ C)→ D

A→ (B ∨ C)

A→ C

D

A → (B ∨ C)

A → (B ∨ C)

A

B ∨ C

(A → B) → D

A → (B ∨ C) B

A → B

D

(A → C) → D

A → (B ∨ C) C

A → C

D

D

because not all of their critical subarguments are valid (definition 7.2.6). More
precisely, the arguments for A→ B/C from A→ B ∨ C and the argument for
A from A→ B ∨ C are not valid, as can be seen by carrying on the procedure
as described in section 7.4.
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8.3 Towards proof-theoretic semantics for philosophical
logics

As already remarked, the pragmatist notion of validity embraces assumptions
and hypothetical arguments as first class citizens, so to speak. A direct benefit
of this feature is that it opens up the possibility to handle substructural logics
by refining the way assumptions are collected and managed. This is why I
avoided talking about “sets” of assumptions but instead preferred the more
ambiguous term “collection”.

For example, the pragmatist procedure can handle relevant implications if
some minor adaptations are made. With assumptions collected into sets, defin-
ition 7.2.8 could be amended to require valid canonical arguments to depend
on exactly the same set of assumptions. Another substructural implication can
be handled if assumptions are collected into multisets. In a similar manner,
various restrictions to the structural rules of weakening and contraction could
be imposed. In fact, I would expect that the core of the pragmatist notion
is robust enough to account for many of the substructural systems described
by Došen (1988). Further research on the topic must be conducted before this
expectation can be either fulfilled or frustrated. The prospects, nevertheless,
are very promising.
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