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Abstract For near horizon geometry we examine the linearized equations around
extremal Kerr horizon (which is a unique axially symmetric near horizon geometry)
and give some arguments towards stability of this horizon with respect to generic (non-
symmetric) linear perturbation of near horizon geometry. The result is also applicable
for other situations like Kundt’s class spacetimes or isolated horizons.
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1 Introduction

Let us consider the following basic equation on a two-dimensional compact manifold

ωA||B + ωB||A + 2ωAωB = RAB, (1)

where ωAdx A is a covector field, || denotes covariant derivative compatible with
the metric gAB , and RAB is its Ricci tensor. The Eq. (1) is a starting point of our
considerations and it is a special case of (3.7) in [1], if we assume that S̃AB vanishes.
See also [4] or [9].
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Some geometric consequences of the basic equation1 (resulting from Einstein equa-
tions) were discussed in [6]. This is a non-linear PDE for unknown covector field and
unknown Riemannian structure on the two-dimensional manifold. It appears in the
context of Kundt’s class metrics (cf. [7,8]), degenerate Killing horizons [4,9], or vac-
uum degenerate isolated horizons [1,10,11]. Several important results are already
proved, like topological rigidity of the horizon and integrability conditions (cf. [6]).
Moreover, when the one-form ωBdx B is closed (e.g. static degenerate horizon [4])
there are no solutions of (1). The transformation (4) of a covector ωA leads to (par-
tially) linear problem (invented in [6]) and simplifies the proof of the uniqueness of
extremal Kerr for axially symmetric horizon. However, the problem of the existence
of non-symmetric solutions to the basic equation remains open. The solutions of this
equation enables one to construct near horizon metric (cf. [2–5,9]), Kundt’s class
spacetime or isolated horizon neighborhood.

In [6] the following results were proved:

Theorem 1 For any Riemannian metric gAB on a two-dimensional, compact, con-
nected manifold B with no boundary and genus g ≥ 2 there are no solutions of basic
equation.

Theorem 2 For any Riemannian metric gAB on a two-dimensional torus Eq. (1)
possesses only trivial solutions ωA ≡ 0 ≡ K and the metric gAB is flat.

Theorem 3 There are no solutions of Eq. (1) with the following properties:

• ωA = 0 only at finite set of points,
• B is a sphere with non-negative Gaussian curvature.

The symmetric part of ωA||B is controlled by the equation but f := 1
2ωA||BεAB is

an unknown function on a sphere. We have

ωA||B = f εAB + 1

2
K gAB − ωAωB . (2)

The integrability condition:

1

4
R||A

A + 2(RωA)||A = 6 f 2 + 3

8
R(R − 12ωAωA) (3)

implies that there exists non-empty open subset, where 12ωAωA > R > 0.
In this paper we analyze a linear perturbation of extremal Kerr solution. More pre-

cisely, in Sect. 2 we perform linearization of Eq. (1) around extremal Kerr solution
(20). Axial symmetry of the background solution gives possibility to decompose lin-
earized solution into Fourier series. Each Fourier mode vk fulfills ordinary differential
Eq. (42). Using functional analysis methods we prove (in Appendix C) that there are
no regular solutions for |k| > 8. We hope to check numerically the nonexistence of
low modes for |k| ≤ 8.

1 This is an equation describing the so-called near horizon geometries see [2,3,5].
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Degenerate axially symmetric Killing horizon 989

Moreover, in this Section below we give some new results like equivalent formula-
tions of the full nonlinear problem (cf. Theorem 4), equivalence between (2) and (18)
or some properties contained in formulae at the end of Sect. 1.

Finally, some nontrivial calculations are shifted to the Appendix which also contains
some useful formulae.

1.1 Transformation to linear problem

Let us denote

�A := ωA

ωBωB
. (4)

For any domain, where ωBωB > 0, equation (1) implies

�A||CεAC =
(

ωA

ωBωB

)
||C

εAC = 0 (5)

which simply means that the one-form �Adx A is closed, and locally there exists a
coordinate � such that

d� = �Adx A .

Moreover, from (1) we get

�A ||A = 1 (6)

hence the potential � is a solution of the Poisson’s equation:

�� = 1 . (7)

Remark If we choose one isolated point, where ω vanishes, then for a given metric g
we have unique solution of the above Laplace-Beltrami equation (Green’s function in
the enlarged sense cf. [12]). For more isolated points we can take linear combination
of such solutions. More precisely, let Gx0 be a unique solution (for a given metric
g) of the Eq. (7) on S2 − {x0}. If c0 + c1 + . . . + cn = 1 (where ci ∈ R) then
� = c0Gx0 + c1Gx1 + . . . + cnGxn is a solution of (7) on S2 − {x0, x1, . . . , xn}, and
ω vanishes at the points x0, x1, . . . , xn .

1.2 Two zeros of ω

Suppose ωA vanishes at two distinct points in a generic way (i.e. ωA||B is non-
degenerate at those points). Then the Eqs. (6) and (5) extend (in the sense of dis-
tributions) as follows:
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990 J. Jezierski, B. Kamiński

�A||A = 1 − c1δθ=π − c2δθ=0, (8)

�A||CεAC = d1δθ=π − d2δθ=0. (9)

Integration of the above equations on S2 implies d1 = d2 = d and c1 + c2 =∫
λ =(total volume of S2). Hence, for �A = ∂A� + εA

B∂B�̃ the potentials �, �̃

fulfill Laplace equations:

�� = 1 − c1δθ=π − c2δθ=0, (10)

��̃ = d1δθ=π − d2δθ=0, (11)

and their solutions may be expressed in terms of generalized Green’s functions on
S2 which are well defined as the distributions (they are integrable functions, smooth
outside poles with log divergence at poles).

Moreover, the trace of (1)

ωA ||A = K − ωAωA (12)

may be expressed in terms of �A as follows:

∂A

(
λ �A

�B�B

)
+ λ

�B�B
− λ K = 0 ≡ 2

‖�‖∂A

(
λ �A

‖�‖
)

= λ K . (13)

1.3 Equivalent form of the basic equation in terms of the covector �A

and its conformal rescaling

Equations (5) and (6) together with (13) written as follows:

λ εAC∂C�A = 0, (14)

∂A

(
λ g AB�B

)
= λ, (15)

∂A

(
λ g AB�B

gC D�C�D

)
+ λ

gC D�C�D
− λ K = 0 , (16)

for the conformally equivalent metric h AB = exp(−2u)gAB (cf. Eq. (22)) are almost
the same

(λ K )(h) − (λ K )(g) = λ h�hu = λ g�gu, −(λ K )(h) = 1

2
a2

,xx ,

∂A

(
λ hh AB�B

)
= λ h exp(2u), λ εAC∂C�A = 0,

∂A

(
λ hh AB�B exp(2u)

hC D�C�D

)
+ λ exp(4u)

hC D�C�D
− λ h Kh + λ h�hu = 0.

Moreover, we have the following
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Degenerate axially symmetric Killing horizon 991

Theorem 4 Equations (14–16) are locally equivalent to the Eq. (2) in the domain,
where ωA = �A

�B�B
is not vanishing.

Proof Let us represent tensor ωA||B as a sum of three parts: skewsymmetric ( f ),
traceless symmetric (τAB) and trace (τ ):

ωA||B = f εAB + τAB + τgAB . (17)

We have to show that τAB and τ are determined by Eq. (14–16). It is easy to check
that (16) implies 2τ = K − ‖ω‖2 = ωA ||A. Moreover, (14) gives

εABωAωCτC B = 0

and similarly (15) implies

2ωAωBτAB = −‖ω‖4 .

Let us observe that any two-dimensional traceless symmetric tensor has only two
independent components, hence the last two conditions determine τAB uniquely in the
following form:

τAB = −ωAωB + 1

2
gAB‖ω‖2 .

Finally, the above formula together with τ = 1
2 (K − ‖ω‖2) give the Eq. (2). �	

One can also check the following formula:

�A||B = 0 · εAB + 1

2
gAB − f (∗�A�B + ∗�B�A)

+(1 − K‖�‖2)

(
�A�B

‖�‖2 − 1

2
gAB

)
(18)

which is equivalent to (2) but in terms of �.
Let us observe that �B ||B A = 0 hence the symmetry of the tensor �A||B implies

�A
||B

B = �B ||AB = �B ||AB − �B ||B A = RAB�B,

and we obtain the following nice formulae:

�A||B
B = K�A, ∗�A||B

B = K∗�A. (19)

Moreover,

�A||BωA||B = K − ‖ω‖2
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992 J. Jezierski, B. Kamiński

and

(�A||BωA)||B = �A
||B

BωA + �A||BωA||B = 2K − ‖ω‖2 ,

lim
ε→0+

∫
∂Sε

�A||BωAdSB =
∫

S2

K = 4π, where Sε := S2 \
⎛
⎝ ⋃

xi ∈ω−1({0})
K (xi , ε)

⎞
⎠ .

2 Linearization of basic equation around extremal Kerr

After introducing a new coordinate x := cos θ the (two-dimensional) extremal Kerr
(see [6])

gKerr = 2m2
[

1 + cos2 θ

2
dθ2 + 2 sin2 θ

1 + cos2 θ
dφ2

]
, (20)

ωθ = − sin θ cos θ

m2(1 + cos2 θ)2 , ωϕ = 1

2m2(1 + cos2 θ)
, (21)

takes the following form:

gKerr = h ABdx Adx B = 2m2
(

a−2dx2 + a2dϕ2
)

, (22)

where a2 := 2 1−x2

1+x2 and λ := √
det h AB = 2m2. The components of various objects

for Kerr are the following:

ωx = x

1 + x2 , ωϕ = a2

1 + x2 , ‖ω‖2 = 1

2m2

a2

1 + x2 .

1

2m2 � = x

a2 dx + dϕ,
1

2m2 ∗ � = 1

a2 dx − xdϕ
(
∗�A := εA

B�B

)
, (23)

K = 2

m2

1 − 3x2

(1 + x2)3 , f = 1

m2

x(1 + a2)

(1 + x2)2 = 1

m2

x(3 − x2)

(1 + x2)3 ,

K

2
+ i f = 1

m2(1 − i x)3 , (24)

‖�‖ = ‖ ∗ �‖ , ∗� ∧ � = ‖�‖2
λ dx ∧ dϕ. (25)

The nearby metric g we describe by conformal factor:

gAB = exp(2u)h AB (26)

and we get

�C
AB(g) = �C

AB(h) + SC
AB,

SC
AB = δC

A∂Bu + δC
B ∂Au − h ABhC D∂Du.
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Degenerate axially symmetric Killing horizon 993

Let us denote by u B := hB A∂Au the gradient of u with respect to the metric h. We
have

∇B(g)ωA = ∇B(h)ωA − SC
AB(u)ωC (27)

= ∇B(h)ωA + h ABωC uC − ωAu B − ωBu A. (28)

Moreover, the Gaussian curvatures Kh and Kg for the conformally related metrics h
and g respectively are related as follows

�hu = Kh − exp(2u)Kg.

This gives the following transformation for the right-hand side of (1):

RAB(g) = KggAB = (Kh − �hu) h AB . (29)

Using (27) and (29) we rewrite basic Eq. (1) as follows:

∇B(h)ωA + ∇A(h)ωB + 2
(

h ABωC uC − ωAu B − ωBu A + ωAωB

)
= (Kh − �hu) h AB . (30)

Let us denote the linear part of the covector ω by

wA := ωA − ωKerr
A .

Now we are ready to linearize basic equation.

2
(
ωKerr

A wB + ωKerr
B wA + h ABωKerr

C uC − ωKerr
A u B − ωKerr

B u A

)
+ ∇B(h)wA

+∇A(h)wB + h AB�hu = 2wAu B + 2wBu A − 2h ABwC uC − 2wAwB ≈ 0.

(31)

Finally, for covector wA and conformal factor u in (26) the linearization of (1) takes
the following form:

∇A(wA + u A) + 2ωAwA = 0, (32)

T S (∇AwB + 2ωA(wB − u B)) = 0, (33)

where now ω and ∇ are background objects (corresponding to the Kerr solution (22)),
and

T S(tAB) := tAB + tB A − h ABhC DtC D

denotes the traceless symmetric part of the tensor tAB .
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994 J. Jezierski, B. Kamiński

We show in Appendix B that after elimination of u A we get:

�h(wA∗�A) + εABwA||B = 0, (34)

�h(wA�A) + 4wA�A‖ω‖2 + 3wA ||A = 0, (35)

where

u A = 1

2

[
wA + ∇B(�BwA − �AwB) + ∇A(�BwB)

]
. (36)

Remark The Eqs. (34–35) are conformally covariant with respect to the rescaling of
the two-metric h. More precisely, the form of these equations is the same for two
conformally related metrics provided that �, ∗� are vector fields and w and ω are
covector fields. One can easily verify this observation multiplying the above equations
by scalar density λ.

The non-existence of the solution wA to the Eqs. (34–35) is equivalent to the stability
of the solution (20–21).

Axial symmetry of the background solution enables one to separate variable ϕ with
the help of Fourier transform and (34–35) becomes second order ODE for

w : [−1, 1] �→ R
2 .

One can also introduce another pair of variables:

α := εABwA�B = 1

2

[
2wx − x(1 + x2)

1 − x2 wϕ

]
= wx − x(1 + x2)

2(1 − x2)
wϕ = wx − x

a2 wϕ,

β := �AwA = m2

[
x(1 + x2)

1 − x2 wx +2wϕ

]
= xwx + 1 + x2

2(1 − x2)
wϕ = xwx + 1

a2 wϕ,

where a2 := 2 1−x2

1+x2 . The formula (36) takes a simple form:

u A = 1

2

[
wA + εA

B∇Bα + ∇Aβ
]

. (37)

Moreover, the inverse transformation

wx = α + xβ

1 + x2 , wϕ = a2 β − xα

1 + x2 , (38)

implies the following form of the Eqs. (34–35) in terms of variables α, β:

�h(α) + ∂ϕ

(
α + xβ

1 + x2

)
− ∂x

(
a2 β − xα

1 + x2

)
= 0 , (39)

�h(β) + 4a2

1 + x2 β + 3∂ϕ

(
β − xα

1 + x2

)
+ 3∂x

(
a2 α + xβ

1 + x2

)
= 0 , (40)
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Degenerate axially symmetric Killing horizon 995

where

�h := ∂x a2∂x + ∂ϕa−2∂ϕ .

Let us denote v :=
[

α

β

]
, B := 1

1+x2

[
x −1
3 3x

]
, C := 1

1+x2

[
1 x

−3x 3

]
, then the Eqs.

(39–40) take the following (matrix) form:

�hv + 4a2

1 + x2

[
0 0
0 1

]
v + ∂x

(
a2 Bv

)
+ ∂ϕ (Cv) = 0. (41)

Other useful identities:

wA = βωA + αεA
BωB = ∂A(2u − β) − εA

B∂Bα,

2∂Au = ∂Aβ + βωA + εA
B(∂Bα + αωB).

2.1 Boundary data

A small perturbation of Kerr data (20–21) does not destroy the number of two zeros for
covector ωA. This is a simple consequence of the “inverse function theorem”. More
precisely, the non-vanishing curvature in the neighborhood of “spherical pole” (zero of
ωA) assures invertibility of the first derivative∇AωB in a small open neighborhood2 and
implies existence of a local diffeomorphism ωA(x B). Hence, for perturbed ωA(x B)

there exists (in a small open neighborhood of spherical pole) precisely one point,
where ωA vanishes. The freedom of global conformal transformations enables one
to introduce “new conformal coordinates” in such a way that the spherical poles
are always at the points where ωA vanishes. Hence, we can always assume that the
perturbed ωA vanishes at spherical poles which implies zero (homogeneous) boundary
data for linear perturbation wA or equivalently for v = (α, β)3.

One can also show that respectively chosen conformal vector field X enables one
to change wA → wA + LXωA in such a way that it will vanish at a given point (see
Appendix D).

Hypothesis The Eq. (41) has no regular solutions for homogeneous boundary data
wA

∣∣
x=1 = 0 = wA

∣∣
x=−1.

Proof attempt Let us consider Fourier series for v:

v(x, φ) =
∞∑

k=−∞
vk(x)eikφ.

2 Formula (2) implies that det ∇AωB = f 2 + K
2 ( K

2 − ‖ω‖2), for Kerr det ∇AωB = 2x2(3−x2)

(1+x2)5 and it

vanishes only on the equator x = 0.
3 It is not obvious that wA = 0 corresponds to v = 0 and it is not true for k = 0.
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996 J. Jezierski, B. Kamiński

It leads to ODE for vk(x):

∂x a2∂xvk − k2

a2 vk + 4a2

1 + x2

[
0 0
0 1

]
vk + ∂x (a

2 Bvk) + ik(Cvk) = 0. (42)

We check that vk vanishes at poles for |k| ≥ 1, because wA vanishes there. For k = 0
we have axial symmetry, hence we already have uniqueness in full nonlinear case,
however it would be nice to check this fact independently.

For |k| > 8 we show in Appendix C that there are no regular solutions. There are
some initial numerical results which confirm nonexistence hypothesis for |k| ≤ 8.
We are going to check numerically the existence or nonexistence of low modes. The
results will be published in a separate paper. �

The above Hypothesis implies stability of the extremal Kerr horizon. It is true for
|k| > 8 and adding this assumption we get Theorem 5. More precisely, Eq. (42) has
no regular solutions for |k| > 8. The analytical proof is given in Appendix C.
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Appendix A: Kerr in conformal coordinates

The background metric (22) can be conformally related to unit sphere metric as follows:

gKerr = h ABdx Adx B = 2m2
(

a−2dx2 + a2dϕ2
)

= 2m2 F2h̃ ABdx̃ Adx̃ B , (43)

where

h̃ ABdx̃ Adx̃ B :=
[

dx̃2

1 − x̃2 + (1 − x̃2)dϕ̃2
]

, ϕ̃ = ϕ , x̃ = x − tanh x
2

1 − x tanh x
2

is the usual unit sphere metric and

F2 = a2

1 − x̃2 = 2

1 + x2

(
cosh

x

2
− x sinh

x

2

)2
, dx = F2dx̃ .
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Degenerate axially symmetric Killing horizon 997

Appendix B: Reduced linearized equations

B.1 Elimination of u A

We start from traceless part (33):

∇AwB + ∇BwA + 2ωAwB + 2ωBwA − ∇CwC h AB − 2ωCwC h AB +
−2ωAu B − 2ωBu A + 2ωC uC h AB = 0 . (44)

The two independent components (AB) = (xx) and (AB) = (xφ) can be written as
follows. Component (xx):

2∇xwx + 4ωx wx − (∇x wx + ∇φwφ)hxx − 2(ωx wx + ωφwφ)hxx +
−4ωx ux + 2(ωx ux + ωφuφ)hxx = 0

or in an equivalent form (dividing by hxx ):

2∇x wx + 4ωx wx − ∇x wx − ∇φwφ − 2ωxwx − 2ωφwφ − 4ωx ux + 2ωx ux +
2ωφuφ = 0, (45)

2ωx ux − 2ωφuφ = ∇x wx − ∇φwφ + 2ωx wx − 2ωφwφ.

Component (xφ):

∇x wφ + ∇φwx + 2ωx wφ + 2ωφwx − 2ωx uφ − 2ωφux = 0,

2ωφux + 2ωx uφ = ∇xwφ + ∇φwx + 2ωxwφ + 2ωφwx . (46)

Finally we have (in matrix form)

[
2ωx −2ωφ

2ωφ 2ωx

] [
ux

uφ

]
=

[∇x wx − ∇φwφ + 2ωxwx − 2ωφwφ

∇x wφ + ∇φwx + 2ωx wφ + 2ωφwx

]
. (47)

Let us denote A :=
[

2ωx −2ωφ

2ωφ 2ωx

]
. Hence

A−1 = 1

4(ωxωx + ωφωφ)

[
2ωx 2ωφ

−2ωφ 2ωx

]
= 1

2‖ω‖2

[
ωx ωφ

−ωφ ωx

]
.

Multiplying by A−1 we get

ux = 1

2‖ω‖2 (ωx∇x wx − ωx∇φwφ + 2ωxω
xwx − 2ωxω

φwφ +
+ωφ∇xwφ + ωφ∇φwx + 2ωxω

φwφ + 2ωφωφwx )
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998 J. Jezierski, B. Kamiński

or in simpler form

ux = 1

2‖ω‖2 (ωx∇xwx − ωx∇φwφ + ωφ∇x wφ + ωφ∇φwx + 2‖ω‖2wx ). (48)

Similarly, component φ:

uφ = 1

2‖ω‖2 (ωφ∇φwφ − ωφ∇x wx + 2ωφωφwφ − 2ωφωxwx +
+ωx∇xwφ + ωx∇φwx + 2ωxωx wφ + 2ωxωφwx )

or

uφ = 1

2‖ω‖2 (ωφ∇φwφ − ωφ∇x wx + ωx∇xwφ + ωx∇φwx + 2‖ω‖2wφ). (49)

Equations (48) and (49) we can rewrite in covariant form:

u A = 1

2‖ω‖2 (ωB∇BwA + ωB∇AwB − ωA∇BwB + 2‖ω‖2wA).

Now, introducing �A := 1
‖ω‖2 ωA we have

u A = wA + 1

2
(�B∇BwA + �B∇AwB − �A∇BwB). (50)

Let us notice the following

�B∇BwA = ∇B(�BwA) − wA∇B�B = ∇B(�BwA) − wA (51)

(from [6] we know that ∇B�B = 1),

�B∇AwB = ∇A(�BwB) − wB∇A�B = ∇A(�BwB) − wB∇A�B, (52)

�A∇BwB = ∇B(�AwB) − wB∇B�A = ∇B(�AwB) − wB∇B�A. (53)

The above Eqs. (50), (51), (52) and (53) imply

u A = wA + 1

2

[
∇B(�BwA−�AwB) + ∇A(�BwB) + wB(∇B�A−∇A�B)−wA

]
.

From [6] we know that εAB∇B�A = 0, hence ∇B�A − ∇A�B = 0, and we obtain
formula (36): u A = 1

2

[
wA + ∇A(�BwB) + ∇B(�BwA − �AwB)

]
.
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Degenerate axially symmetric Killing horizon 999

B.2 Equations for wA

The trace and curl of u A gives:

∇ AwA + 2ωAwA + ∇ Au A = 0, (54)

εAB∇Bu A = 0. (55)

Using formula

u A = 1

2

[
wA + ∇A(�BwB) + ∇B(�BwA − �AwB)

]
(56)

and Eq. (54) we obtain

∇ AwA+2ωAwA+ 1

2
∇ AwA+ 1

2
∇ A∇A(�BwB)+ 1

2
∇ A∇B(�BwA−�AwB) = 0,

�(�BwB) + 3∇ AwA + 4ωAwA + ∇ A∇B(�BwA − �AwB) = 0.

Moreover, ∇ A∇B(�BwA − �AwB) = 0, because

∇C∇Dt AB − ∇D∇C t AB = R A
EC Dt E B + RB

EC Dt AE ,

where by R A
BC D we denote Riemann curvature tensor. We have

∇A∇Bt AB − ∇B∇At AB = RE Bt E B − RE At AE ,

where by RAB we denote Ricci tensor. The symmetry of Ricci

∇A∇Bt AB − ∇B∇At AB = RE Bt E B − RAE t AE = 0

implies

∇ A∇B(�BwA − �AwB) = ∇B∇ A(�BwA − �AwB) =
= ∇ A∇B(�AwB − �BwA) = −∇ A∇B(�BwA − �AwB).

Hence ∇ A∇B(�BwA − �AwB) = 0 and we obtain (35)

�(�BwB) + 3∇ AwA + 4ωAwA = 0.

Using formula (56) and Eq. (55) we get

εAB∇BwA + εAB∇B∇C (�CwA − �AwC ) + εAB∇B∇A(�BwB) = 0.

Vanishing torsion gives εAB∇B∇A(�BwB) = 0, hence

εAB∇BwA + εAB∇B∇C (�CwA − �AwC ) = 0.
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Moreover, �CwA − �AwC = εACεDE�DwE implies

εAB∇BwA + εABεAC∇B∇C (εDE�DwE ).

Using identity εABεAC = −δB
C , we get

εAB∇BwA + ∇C∇C (εAB�BwA) = 0,

and finally we obtain (34)

�(εAB�BwA) + εAB∇BwA = 0.

Appendix C: Proof for large k

Stability for the extremal Kerr leads to the following equation:

∂x a2∂xvk − k2

a2 vk + Dvk + ∂x (a
2 Bvk) + ikCvk = 0, (57)

where

• a2 = 2 1−x2

1+x2 .

• vk : [−1, 1] → C
2 is the unknown function we are looking for,

• B = 1
1+x2

[
x −1
3 3x

]
,

• C = 1
1+x2

[
1 x

−3x 3

]
,

• D = 4a2

1+x2

[
0 0
0 1

]
.

Theorem 5 Equation (57) has no solutions for |k| > 8.

Proof For functions f, g : [−1, 1] → C
2 let us define a standard scalar product:

( f |g) =
1∫

−1

f̄ T g dx .

Let us consider an operator X := a d
dx and its hermitian conjugate X∗ = − d

dx a. The
Eq. (57) takes the form:

X∗ Xvk + k2

a2 vk + X∗(aBvk) − ikCvk − Dvk = 0.
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The left-hand side we denote by Lvk , where L is a linear operator and vk ∈ ker L , i.e.
Lvk = 0. For (vk |Lvk) we have:

0 = (vk |Lvk) = ‖Xvk‖2 + k2
∥∥∥∥1

a
vk

∥∥∥∥ + (Xvk |aBvk) − ik

(
1

a
vk |aCv

)
− (vk |Dvk).

Introducing real numbers x := ‖Xvk‖‖vk‖ , y := ‖ 1
a vk‖
‖vk‖ we obtain:

x2‖vk‖2 + k2 y2‖vk‖2 = −(Xvk |aBvk) + ik

(
1

a
vk |aCvk

)
+ (vk |Dvk),

and absolute value one can estimate as follows:

x2‖vk‖2 + k2 y2‖vk‖2 ≤ |(Xvk |aBvk)| + |k|
∣∣∣∣
(

1

a
vk |aCvk

)∣∣∣∣ + |(vk |Dvk)| .

From Cauchy-Schwarz inequality

x2‖vk‖2 + k2 y2‖vk‖2 ≤ x‖vk‖‖aBvk‖ + |k|y‖vk‖‖aCvk‖ + ‖vk‖‖Dvk‖,

and from ‖Av‖ ≤ ‖A‖‖v‖ we get:

x2‖vk‖2 + k2 y2‖vk‖2 ≤ (x‖aB‖ + |k|y‖aC‖ + ‖D‖)‖vk‖2 .

Hence

x2 + k2 y2 ≤ x‖aB‖ + |k|y‖aC‖ + ‖D‖

or in an equivalent form:

(
x − ‖aB‖

2

)2

+
(

|k|y − ‖aC‖
2

)2

≤ ‖D‖ + ‖aB‖2 + ‖aC‖2

4
.

Positivity of (x − ‖a B‖
2 )2 gives

(
|k|y − ‖aC‖

2

)2

≤ ‖D‖ + ‖aB‖2 + ‖aC‖2

4

and

|k| ≤ ‖aC‖ + √
4‖D‖ + ‖aB‖2 + ‖aC‖2

2y
.
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Definition of y = ‖ 1
a vk‖
‖vk‖ and a ≤ √

2 gives y ≥ 1√
2

, hence

|k| ≤ ‖aC‖ + √
4‖D‖ + ‖aB‖2 + ‖aC‖2

√
2

.

A simple computation gives ‖D‖ = 8, ‖aB‖ = √
6, ‖aC‖ = 3

√
2. Finally

|k| ≤ 3
√

2 + √
32 + 6 + 18√

2
= 3 + √

28 ≈ 8.29,

but k is integer hence |k| ≤ 8. �	

Appendix D: Conformal vector field for extremal Kerr

We are looking for a vector field X in the following form:

X = A(x) cos φ∂x + B(x) sin φ∂φ.

In coordinates (x, φ) the metric tensor (gAB) =
(

m2 1+x2

1−x2 0

0 4m2 1−x2

1+x2

)
, hence

Xx = Am2 1 + x2

1 − x2 cos φ , Xφ = 4Bm2 1 − x2

1 + x2 sin φ .

The CVF equation

∇A X B + ∇B X A = ∇C XC gAB

applied to our field X reduces to

∇x Xx =
(

1 + x2

1 − x2 A′ + 2x

(1 − x2)2 A

)
m2 cos φ,

∇φ Xφ = 4m2
(

1 − x

1 + x2 B − 2x

(1 + x2)2 A

)
cos φ,

∇φ Xx + ∇x Xφ =
(

4
1 − x2

1 + x2 B ′ − 1 + x2

1 − x2 A

)
m2 sin φ,

∇C XC = (A′ + B) cos φ,

where A′ := d A
dx .
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They can be written in an equivalent form:

(
1 + x2

1 − x2 A′ + 2x

(1 − x2)2 A

)
m2 cos φ = 1

2
m2 1 + x2

1 − x2 (A′ + B) cos φ,

4m2
(

1 − x

1 + x2 B − 2x

(1 + x2)2 A

)
cos φ = 2m2 1 − x2

1 + x2 (A′ + B) cos φ,

4
1 − x2

1 + x2 B ′ − 1 + x2

1 − x2 A = 0,

and finally we obtain system of ODE’s:

B = A′ + 4x

1 − x4 A ,

4B ′ 1 − x2

1 + x2 = A
1 + x2

1 − x2 ,

which leads to the second order ODE for the function B:
[
∂2

x − 4x

1 − x4 ∂x − 1

4

(
1 + x2

1 − x2

)2
]

B(x) = 0

and A(x) = 4
(

1−x2

1+x2

)2
B ′(x). We get the following solution:

B(x) = C1 cosh

[
1

2

(
x + log

1 − x

1 + x

)]
+ C2 sinh

[
1

2

(
x + log

1 − x

1 + x

)]
.

If we assume that the field X vanishes at one “pole” (x = ±1) we obtain the relation
for constants Ci : C2 = ±C1. For C2 = −C1 we have:

B(x) = C

√
1 + x

1 − x
e− 1

2 x , A(x) = 2C

√
1 + x

1 − x

1 − x2

1 + x2 e− 1
2 x .

Finally the CVF X takes the form:

X = C

√
1 + x

1 − x
e− 1

2 x
(

2
1 − x2

1 + x2 cos φ∂x + sin φ∂φ

)
.
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