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Abstract
The Program Committee of the Third Parameterized Algorithms and Computational Experi-
ments challenge (PACE 2018) reports on the third iteration of the PACE challenge. This year,
all three tracks were dedicated to solve the Steiner Tree problem, in which, given an edge-
weighted graph and a subset of its vertices called terminals, one has to find a minimum-weight
subgraph which spans all the terminals. In Track A, the number of terminals was limited. In
Track B, a tree-decomposition of the graph was provided in the input, and the treewidth was lim-
ited. Finally, Track C welcomed heuristics. Over 80 participants on 40 teams from 16 countries
submitted their implementations to the competition.
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1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 to deepen the relationship between parameterized algorithms and
practice. It aims to:
1. Bridge the divide between the theory of algorithm design and analysis, and the practice

of algorithm engineering.
2. Inspire new theoretical developments.
3. Investigate in how far theoretical algorithms from parameterized complexity and related

fields are competitive in practice.
© Édouard Bonnet and Florian Sikora;
licensed under Creative Commons License CC-BY

13th International Symposium on Parameterized and Exact Computation (IPEC 2018).
Editors: Christophe Paul and Michał Pilipczuk; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/186450138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:edouard.bonnet@dauphine.fr
mailto:florian.sikora@dauphine.fr
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://data-experts.de
https://fdsi.org/
https://data-experts.de
https://www.optil.io
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


26:2 PACE 2018

4. Produce universally accessible libraries of implementations and repositories of benchmark
instances.

5. Encourage the dissemination of these findings in scientific papers.
The first iteration of PACE was held at IPEC 2016 [13]. Since then, PACE has been mentioned
as an inspiration in many papers [1, 3, 21, 22, 25, 31, 33, 41, 42]. Hisao Tamaki’s companion
theory paper to his winning implementations of PACE 2017 [14] won the best paper award
at ESA 2017 [40]. Very recent works acknowledging PACE or inspired by the challenge
include the following papers [5, 7, 32, 20, 4, 17]. At this year’s ESA, it was shown that
parallelized dynamic programming (DP) on tree decompositions is a competitive approach to
SAT solving [23]. According to the paper, this was made possible by the excellent programs
developed for the treewidth tracks of PACE 2016 and 2017. At the same conference, Bannach
and Brendt provided an efficient and simple interface to DP on tree decompositions [2].

In this article, we report on the third iteration of PACE. The PACE 2018 challenge was
announced on November 14, 2017. The final version of the submissions was due on May 12,
2018. We informed the participants of the result on May 14, and announced them to the
public on August 22nd, during the award ceremony at the International Symposium on
Parameterized and Exact Computation (IPEC 2018) in Helsinki.

2 The Steiner Tree Problem: Theory and Practice

There are many different variants of the Steiner Tree problem. They all involve the task to
interconnect objects called terminals by using minimum-length wires. Here, we focus on the
main variant in graphs. For a subset of edges F of an undirected graph, let V (F ) denote the
set of vertices that are endpoints of those edges. A formal definition of the Steiner Tree
problem can be stated as follows.
Input: An undirected graph G with a non-negative weight function on its edges

w : E(G)→ R+, and a set of terminals T ⊆ V (G).
Output: A subset of edges F ⊆ E(G) minimizing

∑
e∈F w(e) such that:

T ⊆ V (F ) holds and (V (F ), F ) is a connected graph.
We will interchangeably regard F and (V (F ), F ) as the solution. In words, given an edge-
weighted graph and a subset of its vertices (the terminals) the task is to find a minimum-weight
subgraph that spans all terminals. As the weights are non-negative, any edge of a cycle in a
feasible solution can be removed to obtain a solution that is still feasible but has a smaller
or equal total weight. Hence, there is always a tree among the optimum solutions, which
explains the second word, Tree, in the problem name. The first word, Steiner, refers to the
19th-century geometer Jakob Steiner.

We chose Steiner Tree to be the problem of PACE 2018 since it has a wide spectrum
of real-life applications, including the design of VLSI, optical or wireless communication
systems, and transportation networks [30]. Furthermore, as a result of the 11th DIMACS
implementation challenge, there are established benchmarks for Steiner Tree and its
variants. Finally, as we will see in the next section, this problem has interesting FPT
algorithms.

2.1 Parameterized algorithms
In what follows, we denote the number of edges of an input graph G by n, its number of
edges by m, its number of terminals by t, and its treewidth by w. Steiner vertices are the
non-terminal vertices touched by a solution F ⊆ E(G), and we denote their number by s,



É. Bonnet and F. Sikora 26:3

that is, we have s = |V (F ) \ T |. As we will see, there are FPT algorithms for Steiner
Tree with t as a parameter and with w as a parameter, that is, algorithms running in time
f(t)nO(1) and g(w)nO(1) for some computable functions f and g.

The Dreyfus-Wagner algorithm

There is a classical algorithm from the 70s designed by Dreyfus and Wagner [16] (henceforth
DW) with running time O(3tn + 2tn2 + n(n log n + m)). This was later improved to
O(3tn + 2t(n log n + m)) by Erickson, Monma, and Veinott [19] (henceforth EMV). It works
by dynamic programming on pairs of disjoint subsets of the set of terminals T . To keep
it simple, in a solution (V (F ), F ), there is a vertex with degree at least 3 whose removal
would disconnect two disjoint sets of terminals T1, T2 ⊂ T . One can store a lightest way of
connecting T1 and T2 for all the pairs T1, T2 in a bottom-up manner. The number of pairs of
disjoint sets in a universe of t elements is 3t, which explains part of the running time of DM
and EMV.

One can wonder if the exponential basis of 3 can be decreased. There has been quite a bit
of work done in that direction, leading to a series of improvements going from 3 to 2. However,
no submission to this year’s PACE challenge have made use of these improvements, for good
reason: They tend to come with a nasty blow-up in the polynomial factors. For instance,
there are O(2.5tn15) and O(2.1tn58) time algorithms [24]. If the weights are bounded by
some constant (and in the variant where the vertices, not the edges, are weighted), there is
an algorithm with running time roughly O(2tn2 + nm), based on the so-called fast subset
convolution [6].

Treewidth-based algorithms

Given a tree-decomposition (T , {Vu}u∈V (T )) of width w of the input graph G (with T , a
rooted tree and {Vu}, a family of subsets of V (G) indexed by the nodes of T ), one can
solve Steiner Tree in time O∗(ww) by bottom-up dynamic programming on the nodes
of T . Indeed, once the subtree of T at u ∈ V (T ) is processed, the information to remember,
besides the invested budget, is the subset of vertices of Vu touched by a partial solution and
how these vertices are connected in the partial solution. This information can be represented
by a partition of a subset of Vu. The number of such objects is bounded by O(ww) since
|Vu| 6 w + 1, hence the size of the DP table and the running time.

For some time it was an open question if Steiner Tree and similar problems with a
connectivity constraint can be solved in time 2O(w)nO(1) instead of 2O(w log w)nO(1). This was
finally resolved in 2011 with the Cut&Count technique of Cygan et al. [12]. In a nutshell, the
Cut&Count technique starts by addressing the parity version of the problem: how many sets
of ` connected edges span T , modulo 2? For this, one counts the number p of pairs (D, C)
where D is a set of at most ` edges spanning T (and D is not required to be connected) and
C is a cut such that every connected component of D is fully contained in one side of C. If
we restrict a designated terminal to always be on the left side of C, the number of possible C
for a given D is 2cc(D)−1, where cc(D) is the number of connected components of D. This
number is 1 if D is connected and even otherwise. So, the parity of p is the answer to our
question. Since computing p does not exhibit a (global) connectivity constraint, it can be
done in time 2O(w)nO(1) by standard dynamic programming. Finally, one can distinguish the
case zero solutions from the case non-zero even number of solutions by using the Isolation
Lemma. This lemma implies that by giving uniformly random integer weights between 1 and
100`m to edges, there will be, with high probability, exactly one solution of minimum total
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weight (provided, of course, that there was a solution to begin with). For this total weight,
we will therefore find an odd number of solutions, and may confidently report it.

One might then ask for a deterministic 2O(w)nO(1) time algorithm, which could handle
weighted instances. The rank-based approach of Bodlaender et al. [8] does exactly that. The
main idea is that when performing the standard O∗(ww) DP, one does not need to keep
every partition of a bag. Instead, one can prune the partitions in the following way. If S is
the set of partitions of a bag achievable by partial solutions of a certain cost, then one can
safely restrict attention to a subset S ′ ⊆ S, such that: if there is a Π1 ∈ S compatible with
a partition Π∗ generated by a partial solution in the rest of the graph, then there should
be at least one Π2 ∈ S ′ also compatible with Π∗. By compatible, we mean that the two
partitions would fully connect the common subset of the bag touched by the partial solutions.
If one represents compatibility by a square matrix in F2 whose rows and columns are indexed
by the partitions (with a 1 in the entries corresponding to compatible partitions, and a
0 otherwise), then it can be observed that any single row/column of a linearly dependent
family of rows/columns can be safely removed. Indeed, for every index of the deleted vector
containing a 1, there has to be another vector of the family also containing a 1 at this
position. Then it is proved that the rank of the matrix with all the partitions is 2O(w), and
that Gaussian elimination can be done in the same time without having to explicitly store or
compute all O∗(ww) permutations. This three-act story is told with the exact balance of
details and conciseness in the book on parameterized complexity by Cygan et al. [11].

Known theoretical obstacles

The Steiner Tree problem parameterized by the number s of Steiner vertices is W [2]-
hard [34]. Furthermore it is unlikely that there is an algorithm running in time O(ns−ε), for
any ε > 0. Such an algorithm would indeed give, by a simple reduction, an algorithm in
nk−ε for k-Dominating Set, contradicting the Strong Exponential Time Hypothesis [39].
Theory also says that one cannot expect very efficient preprocessing: there is no polynomial
kernel in s + t (the total number of vertices in V (F )) unless the polynomial-time hierarchy
collapes [15]. Although, in practice, there are dozens of listed reductions rules which can
sometimes completely solve large real-world instances.

Approximations

We hastily touch the approximability status of Steiner Tree as it might be relevant
to heuristics. A minimum spanning tree in the subgraph induced by the terminals of
the metric closure yields an approximation ratio of 2 [27]. There is a 1.39-approximation
based on a scheme called iterative randomized rounding of an LP-formulation [9], and a
combinatorial 1.55-approximation [38]. However, Steiner Tree is APX-hard: there is no
1.01-approximation unless P=NP [10].

2.2 DIMACS challenge
In 2014, the 11th (and latest) DIMACS implementation challenge was also dedicated to
solving Steiner Tree problems, and extensive libraries of instances existed prior to our
challenge. As we will detail later, we mainly selected our instances from the Steinlib sets.
Furthermore, there were already very efficient programs solving Steiner Tree and its variants.
One successful program during the DIMACS competition, SCIP-Jack, also participated in
our challenge. SCIP-Jack is a branch-and-cut algorithm based on the free MIP-solver SCIP.
As such, it provides a natural baseline and comparison for the FPT approaches.
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Figure 1 The distribution (#edges,#terminals) of the public (left) and private (right) instances
of Track A in log-log plot.

3 Selection of the instances and rules

Before we selected the instances, we first defined the precise goals of each track. In light of the
efficient parameterized algorithms described in the previous paragraphs and the objectives of
PACE, it will not come as a surprise that we decided that Track A would have instances
where the number t of terminals is relatively small, while in Track B the treewidth w of the
graphs would be relatively small.

Generating artificial instances for which a careful optimization of the Dreyfus-Wagner
algorithm (for Track A) or of the rank-based approach for dynamic programming on tree
decompositions (for Track B) would get a decisive advantage compared to a generic solver
(ILP, SAT) was not our goal. So, we selected our instances among established benchmarks
(mainly Steinlib, PUC, GAP, Vienna), which were also used four years ago in the DIMACS
challenge on Steiner Tree.

3.1 Track A

For this track, we picked quite a lot of instances with a VLSI application. They are grid
graphs with rectangular holes and Manhattan distance weights (in the ALUE, ALUT, DIW,
DMXA, GAP, MSM, TAQ, and LIN sets). We used randomly generated sparse instances
meant to be resistant to preprocessing (in the E, I160, I640, PUC sets). We also included
industrial instances stemming from wire routing problems (in the WRP3 and WRP4 sets),
and real geographical networks in the form of complete graphs with Euclidean distances (X
set).

Among these instance sets, we selected 200 instances: 100 public (given to the contestants)
and 100 private (used for the evaluation), with 4 to 136 terminals. The median number
of terminals is 16 and its mean is 19.4, while 1480 is the mean number of vertices, and
8515, the mean number of edges (see Figure 1). On more than 20 of those instances, top
implementations of the DIMACS challenge, such as Staynerd, take tens of minutes. We
sorted the instances by increasing (t, m) in the lexicographic order.

The main rule for Track A and B was that the algorithm (deterministic or randomized)
should be exact. A sub-optimal output (in the public or private instances) would therefore
mean disqualification. The final score is the number of private instances solved on the
optil.io platform with 30 minutes per instance.

IPEC 2018
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Figure 2 The distribution (#edges,treewidth) of the public (left) and private (right) instances of
Track B in lin-log plot.

3.2 Track B

For this track, we used a lot of rectilinear instances with a low treewidth but a high number
of terminals (in the ES100FST, ES500FST, ES1000FST sets, where the number between
ES and FST corresponds to the number of terminals). We also used many instances from
WRP3 and WRP4 with an intermediate number of terminals (≈50). A tree decomposition of
almost always minimum width was given with the input. We computed these decompositions
using the winning implementations of the treewidth track of PACE 2017 by Strasser and by
Tamaki and his team [14].

On the 200 instances that we picked, the average number of vertices is 1490, the average
number of edges is 2847, the average number of terminals is 606, and its median is 100.
Furthermore the width of the given tree decompositions range from 6 to 47 with a median of
19.5 (see Figure 2). We sorted the instances by increasing (w, m). The rules were the same
as in Track A.

3.3 Track C

Finally in Track C, dedicated to heuristics, we chose large and difficult instances with many
terminals and high treewidth. To this end, we used the hardest instances of Steinlib. We
also added a lot of instances from the Vienna set. These instances were generated from
real-world telecommunication networks by Ivana Ljubic’s group at the University of Vienna.
A majority of the selected instances cannot be solved within one hour by the state-of-the-art
program. In several cases, the actual optimum is unknown.

The average number of vertices is 27K, the average number of edges is 48K, and the
average number of terminals is 1114, with a median at 360.5 (see Figure 3). Finally the best
treewidth upper bound (obtained with the heuristics of previous PACE) on these instances
is almost always above 40. We sorted the instances by increasing (t, m).

In track C, the final score to maximize is the sum over all the private instances of the ratio
opt/sol where opt is the optimum (if known) or the best known upper bound (otherwise)
and sol is the value of the proposed output. Outputting a non-feasible solution would not
disqualify the submission, but would give a score of 0 on that particular instance.
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Figure 3 The distribution (#edges,#terminals) of the public (left) and private (right) instances
of Track C in log-log plot.

Table 1 Participation per country (based on the initial registration form; more teams and
participants uploaded their code on optil.io afterwards).

Country Teams Participants

Austria 2 4
Brazil 1 3
Canada 1 1
Czechia 2 4
Denmark 1 1
England 1 1
Finland 1 1
France 4 7

Germany 4 5
India 6 12
Japan 4 8
Mexico 1 4

Netherlands 2 6
Norway 2 4
Poland 2 11
Romania 1 3

Total 35 75

4 Participation and results

This year, we had over 40 teams and 80 participants coming from 16 countries and four
continents: including Austria, Brazil, Canada, Czechia, Denmark, England, Finland, France,
Germany, India, Japan, Mexico, the Netherlands, Norway, Poland, and Romania.

The number of teams and participants both doubled compared to PACE 2017. To
be precise, the above numbers correspond to teams and participants who sent a final
implementation to at least one track. If we also count people who uploaded some code on
the optil.io platform but dropped out of the competition, the number of teams exceeds 50
and the number of participants exceeds 100. If we count the teams with their multiplicity
(that is, the number of tracks in which they participated), this number exceeds 75.

IPEC 2018
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4.1 Track A
Yoichi Iwata and Takuto Shigemura won this track by solving 95 private instances. Their
algorithm builds upon the dynamic programming of Erickson-Monma-Veinott (EMV). A
technical lemma permitted them to prune a lot of entries in the DP table. This happens to
also solve instances with small treewidth even when the number of terminals is relatively
large.

Krzysztof Maziarz and Adam Polak got the second place by preprocessing and improving
Dreyfus-Wagner (DW) with the heuristic ideas presented by Hougardy et al. [29]. The latter
consists of running a shortest path algorithm (Dijkstra, A∗, etc.) in the partial solutions in
order to prune the search space.

Koch and Rehfeldt took the third place with their program SCIP-Jack which has three
main components. First, known and new reduction methods simplify the instance. Secondly,
a set of heuristics provides upper and lower bounds. Finally, a reduction (of many variants)
to the directed Steiner tree problem is performed and the core of the algorithm is a branch-
and-cut approach using the MIP-solver SCIP (developed by a superset of this team).

At the fourth place, albeit still very close to the first place, solving 92 instances, Andre
Schidler, Johannes Fichte, and Markus Hecher used reduction rules presented by Rehfeldt [37],
including the so-called dual ascent and the improved DW by Hougardy et al. [29].

All the other teams implemented some refinements of DW or EMV.
1st place, 450e: Yoichi Iwata and Takuto Shigemura (team wata&sigma from Japanese
National Institute of Informatics and University of Tokyo) solved 95 out of 100 instances
github.com/wata-orz/steiner_tree
2nd place, 350e: Krzysztof Maziarz and Adam Polak (team Jagiellonian from Jagiel-
lonian University) solved 94 out of 100 instances
https://bitbucket.org/krismaz/pace2018
3rd place, 300e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) solved 93 out of 100 instances
github.com/dRehfeldt/scipjack/
4th place, 225e: Andre Schidler, Johannes Fichte, and Markus Hecher (team TUW
from TU Vienna) solved 92 out of 100 instances
github.com/ASchidler/pace17/
5th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) solved 67 out of 100 instances
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
6th place: Suhas Thejaswi (team Noname from Aalto University) solved 66 out of 100
instances
github.com/suhastheju/pace-2018-exact
6th place: Peter Mitura and Ondřej Suchý (team FIT CTU in Prague from the Czech
Technical University) solved 66 out of 100 instances
github.com/PMitura/pace2018
6th place: Johannes Varga (team johannes from TU Vienna) solved 66 out of 100
instances
github.com/josshy/st-tree
9th place: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale (team SSPSPT from
the Institute Of Mathematical Sciences, HBNI, Chennai and the International Institute
of Information Technology, Bangalore) solved 48 out of 100 instances
github.com/pptale/PACE18

https://github.com/wata-orz/steiner_tree
https://bitbucket.org/krismaz/pace2018
https://github.com/dRehfeldt/scipjack/
https://github.com/ASchidler/pace17/
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
https://github.com/suhastheju/pace-2018-exact
https://github.com/PMitura/pace2018
https://github.com/josshy/st-tree
https://github.com/pptale/PACE18
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10th place: Sharat Ibrahimpur (team the65thbit from University of Waterloo) solved
69 out of 100 instances but was incorrect on 1 instance
github.com/sharat1105/PACE2018

11th place: S. Vaishali and Rathna Subramanian (team PCCoders from PSG College
of Technology, Coimbatore) solved 14 out of 100 instances but was incorrect on several
instances
github.com/ammuv/PACE-2018-
12th place: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M. (team
Resilience from TCS Lab, Indian Institute of Technology, Madras) solved 9 instances but
was incorrect on several instances
github.com/mrprajesh/pace2018

One can see two well-defined clusters (90-95 and 65-70). The implementation at 10th
place would have led the second cluster, if not for a small bug that showed only on one
private instance.

4.2 Track B
In this track with low treewidth, the developers of SCIP-Jack, Thorsten Koch and Daniel
Rehfeldt, took the first place by solving 92 of the 100 instances in the private set. They
do not directly exploit the tree-decomposition given in input, but it is likely that the low
treewidth indirectly translates into higher efficiency of their preprocessing, heuristics, and/or
branch-and-cut. Otherwise, it is hard to explain how the same program, discarding the
tree-decomposition, won Track B by solving 15 more instances than the winner of Track A
(where they finished third).

At the second place, Yoichi Iwata and Takuto Shigemura implemented the standard
O∗(ww) dynamic programming on the tree-decomposition. When the treewidth becomes too
large, they switch to their improved EMV algorithm. They observe that their algorithm
for Track A performs well when the treewidth is low since the existence of small separators
prunes a lot of entries in the DP table.

Completing the podium, Tom van der Zanden added to the rank-based approach a handful
of nice observations, crediting some of them to Luuk van der Graaff’s master thesis [28].
This results in the only program of the competition solving all the instances with treewidth
at most 15. In particular, this implementation is the only one to solve instance 39 of the
private set, which has 5K+ vertices, 20K+ edges, 2.4K+ terminals, and treewidth 11.

1st place, 450e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) solved 92 out of 100 instances
github.com/dRehfeldt/scipjack/
2nd place, 350e: Yoichi Iwata and Takuto Shigemura (team wata&sigma from the
Japanese National Institute of Informatics and the University of Tokyo) solved 77 out of
100 instances
github.com/wata-orz/steiner_tree
3rd place, 300e: Tom van der Zanden (team Tom from Utrecht University) solved 58
out of 100 instances
github.com/TomvdZanden/SteinerTreeTW
4th place: Peter Mitura and Ondřej Suchý (team FIT CTU in Prague from the Czech
Technical University) solved 52 out of 100 instances
github.com/PMitura/pace2018
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Table 2 For each team: score is the number of private instances solved, treewidth approach, the
treewidth-based algorithm used, if any, first unsolved, the number of the first unsolved private instance
(we recall that the instances of Track B were sorted lexicographically by increasing (w, e)) and the
corresponding value of the treewidth, switching to DW-like, if the treewidth approach is substituted
to a terminal-based algorithm (DW = Dreyfus-Wagner algorithm, EMV = Erickson-Monma-Veinott
algorithm), and criterion to switch what is the test to switch to such an algorithm.

Team score treewidth approach first unsolved switching to DW-like criterion to switch

reko 92 no 26, w = 9 no –
wata_sigma 77 ww DP 26, w = 9 EMV w > 10 or (w > 8 and t < 300)
Tom 58 2O(w) rank-based 54, w = 16 EMV 3t < 5w

FIT CTU in Prague 52 2O(w) rank-based 39, w = 11 no –
yasu 52 2O(w) rank-based 13, w = 7 DW w > 15
fujiyoshi 49 2O(w) rank-based 39, w = 11 no –
UWarsaw 33 2O(w) rank-based 32, w = 10 no –
lapo 33 2O(w) rank-based 13, w = 7 no –

4th place: Yasuaki Kobayashi (team Yasu from Kyoto University) solved 52 out of 100
instances
https://bitbucket.org/yasu0207/steiner_tree
6th place: Akio Fujiyoshi (team CBGfinder from Ibaraki University) solved 49 out of
100 instances
github.com/akio-fujiyoshi/CBGfinder_for_steiner_tree_problem
7th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) solved 33 out of 100 instances
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
7th place: Dilson Guimarães, Guilherme Gomes, João Gonçalves, and Vinícius dos
Santos (team lapo from LAPO-UFMG) solved 33 out of 100 instances
github.com/dilsonguim/pace2018

The rest of the teams implemented the rank-based approach of Bodlaender et al. [8] as
the main or secondary component. At the shared fourth place, Peter Mitura and Ondřej
Suchý (FIT CTU in Prague)’s implementation is the fastest of the competition on average,
while Yasuaki Kobayashi’s program also switches to a terminal-based approach when the
treewidth becomes too large. Table 2 summarizes the approach used by all the teams.

Since the instances were edge-weighted, no submission tried to use the Cut&Count
technique. It would be interesting to compare the speed of the rank-based and the Cut&Count
techniques on unweighted instances of relatively low treewidth. Another direction would be
to make Cut&Count work on edge-weighted instances, in practice and/or in theory.

4.3 Track C

This track attracted the most participants. Regarding the instance sizes, it should be observed
that a naive implementation (without preprocessing) of the 2-approximation algorithm does
not finish within the time limit. The contributions use either meta-heuristics (an evolutionary
algorithm for the winning team, iterated local-search with noising for the third team, simulated
annealing, etc.), or start from some solution (a spanning tree, an arbitrary feasible solution,
or a 2-approximation) and then improve it with local search. Radek Hušek and teammates
(Team Tarken) used a parameterized approximation approach [18].

https://bitbucket.org/yasu0207/steiner_tree
https://github.com/akio-fujiyoshi/CBGfinder_for_steiner_tree_problem
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
https://github.com/dilsonguim/pace2018
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1st place, 450e: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique
Villalobos López, and Carlos Segura González (CIMAT Team from the Center for Research
in Mathematics, Guanajuato) got an average ratio of 99.93/100
github.com/HeathcliffAC/SteinerTreeProblem
2nd place, 350e: Thorsten Koch and Daniel Rehfeldt (team reko from Zuse Institute
Berlin and TU Berlin) got an average ratio of 99.85/100
github.com/dRehfeldt/scipjack/
3rd place, 300e: Martin Josef Geiger (team MJG from HSU Hamburg) [26] got an
average ratio of 99.80/100
https://data.mendeley.com/datasets/yf9vpkgwdr/1
4th place, 225e: Radek Hušek, Tomáš Toufar, Dušan Knop, Tomáš Masařík, and
Eduard Eiben (team CUiB from Charles University, Prague and University of Bergen)
got an average ratio of 99.72/100
github.com/goderik01/PACE2018
5th place: Emmanuel Arrighi and Mateus de Oliveira Oliveira (team Gardeners from
ENS Cachan and University of Bergen) got an average ratio of 98.93/100
github.com/SteinerGardeners/TrackC-Version1
6th place: Krzysztof Kiljan, Dominik Klemba, Marcin Mucha, Wojciech Nadara, Marcin
Pilipczuk, Mateusz Radecki, and Michał Ziobro (team UWarsaw from University of
Warsaw and Jagiellonian University) got an average ratio of 98.27/100
https://bitbucket.org/marcin_pilipczuk/pace2018-steiner-tree
7th place: Stéphane Grandcolas (team SGLS from LIS Marseille) got an average ratio
of 97.54/100
http://www.dil.univ-mrs.fr/~gcolas/sgls.c
8th place: Max Hort, Marciano Geijselaers, Joshua Scheidt, Pit Schneider, and Tahmina
Begum (team JMMPT from the Department of Data Science and Knowledge Engineering,
Maastricht University) got an average ratio of 97.15/100
github.com/maxhort/Pacechallenge-TrackC/
9th place: Dimitri Watel and Marc-Antoine Weisser (team DoubleDoubleU from
SAMOVAR-ENSIIE and LRI-Centrale-Supelec) got an average ratio of 96.92/100
github.com/mouton5000/PACE2018/
10th place: R. Vijayaragunathan, N. S. Narayanaswamy, and Rajesh Pandian M. (team
Resilience from TCS Lab and the Indian Institute of Technology Madras) got an average
ratio of 94.57/100
github.com/mrprajesh/pace2018
11th place: Sharat Ibrahimpur (team the65thbit from University of Waterloo) got an
average ratio of 94.37/100
github.com/sharat1105/PACE2018
12th place: Saket Saurabh, P. S. Srinivasan, and Prafullkumar Tale (team SSPSPT from
the Institute Of Mathematical Sciences, HBNI, Chennai and the International Institute
of Information Technology, Bangalore) got an average ratio of 82.61/100
github.com/pptale/PACE18
13th place: Harumi Haraguchi, Hiroshi Arai, Shiyougo Akiyama, and Masaki Kubonoya
(team Haraguchi laboratory from Ibaraki University) got an average ratio of 80.73/100
github.com/Harulabo/pace2018

Eleven more teams participated in this track but did not finalize their submission by
sharing a link to their code. Table 3 shows that the second team (reko) was more often the
one reporting a best solution. However, the first team (CIMAT Team) was more consistently
very close to those best solutions.
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Table 3 For the first four teams: their final score, how many times they computed the best
solution, and how many times their solution is x% close to the best solution, on the private set.

Team name Cumul. ratio # Best # 6 0.1% # 6 0.5% # 6 1% # 6 2% # 6 3%
CIMAT Team 99.93 34 49 95 100 100 100

reko 99.85 78 81 88 93 99 100
MJG 99.80 24 58 87 95 98 100
CUiB 99.72 19 48 82 89 97 100

5 PACE organization

In September 2018, the PACE 2018 Program Committee transferred to the Steering Com-
mittee. The Steering Committee and the PACE 2018 Program Committee are as follows.

Steering
committee:

Édouard Bonnet ENS Lyon
Holger Dell Saarland Informatics Campus
Thore Husfeldt ITU Copenhagen & Lund University
Bart M. P. Jansen (chair) Eindhoven University of Technology
Petteri Kaski Aalto University
Christian Komusiewicz Philipps-Universität Marburg
Frances A. Rosamond University of Bergen
Florian Sikora Paris-Dauphine University

Track A, B, C: Édouard Bonnet ENS Lyon
Florian Sikora Paris-Dauphine University

The Program Committee of PACE 2019 will be chaired by Johannes Fichte (TU Dresden)
and Markus Hecher (TU Vienna).

6 Conclusion

We thank all the participants for their enthusiasm and look forward to the next PACE. We
are particularly happy that this edition attracted many people outside the parameterized
complexity community, and wish that this will continue for the future editions.

We welcome anyone who is interested to add their name to the mailing list on the
website [36] to receive PACE updates and join the discussion. In particular, plans for
PACE 2019 will be posted there.
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