
Integer Programming in Parameterized
Complexity: Three Miniatures
Tomáš Gavenčiak
Department of Applied Mathematics, Charles University, Prague, Czech Republic
gavento@kam.mff.cuni.cz

Dušan Knop1

Department of Informatics, University of Bergen, Bergen, Norway and
Department of Theoretical Computer Science, Faculty of Information Technology,
Czech Technical University in Prague, Prague, Czech Republic
dusan.knop@uib.no

Martin Koutecký2

Technion - Israel Institute of Technology, Haifa, Israel and
Computer Science Institute, Charles University, Prague, Czech Republic
koutecky@technion.ac.il

Abstract
Powerful results from the theory of integer programming have recently led to substantial advances
in parameterized complexity. However, our perception is that, except for Lenstra’s algorithm for
solving integer linear programming in fixed dimension, there is still little understanding in the
parameterized complexity community of the strengths and limitations of the available tools. This
is understandable: it is often difficult to infer exact runtimes or even the distinction between FPT
and XP algorithms, and some knowledge is simply unwritten folklore in a different community.
We wish to make a step in remedying this situation.

To that end, we first provide an easy to navigate quick reference guide of integer programming
algorithms from the perspective of parameterized complexity. Then, we show their applications
in three case studies, obtaining FPT algorithms with runtime f(k) poly(n). We focus on:

Modeling: since the algorithmic results follow by applying existing algorithms to new models,
we shift the focus from the complexity result to the modeling result, highlighting common
patterns and tricks which are used.
Optimality program: after giving an FPT algorithm, we are interested in reducing the depen-
dence on the parameter; we show which algorithms and tricks are often useful for speed-ups.
Minding the poly(n): reducing f(k) often has the unintended consequence of increasing
poly(n); so we highlight the common trade-offs and show how to get the best of both worlds.

Specifically, we consider graphs of bounded neighborhood diversity which are in a sense the
simplest of dense graphs, and we show several FPT algorithms for Capacitated Dominating
Set, Sum Coloring, and Max-q-Cut by modeling them as convex programs in fixed dimension,
n-fold integer programs, bounded dual treewidth programs, and indefinite quadratic programs
in fixed dimension.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Graph algorithms analysis

Keywords and phrases graph coloring, parameterized complexity, integer linear programming,
integer convex programming

Digital Object Identifier 10.4230/LIPIcs.IPEC.2018.21

1 Author supported by the project NFR MULTIVAL.
2 Author supported by Technion postdoctoral fellowship.

© Tomáš Gavenčiak, Dušan Knop, and Martin Koutecký;
licensed under Creative Commons License CC-BY

13th International Symposium on Parameterized and Exact Computation (IPEC 2018).
Editors: Christophe Paul and Michał Pilipczuk; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/186450133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:gavento@kam.mff.cuni.cz
mailto:dusan.knop@uib.no
mailto:koutecky@technion.ac.il
https://doi.org/10.4230/LIPIcs.IPEC.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Integer Programming in Parameterized Complexity: Three Miniatures

Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
02032.

1 Introduction

Our focus is on modeling various problems as integer programming (IP), and then
obtaining FPT algorithms by applying known algorithms for IP. IP is the problem

min{f(x) | x ∈ S ∩ Zn, S ⊆ Rn is convex} . (IP)

We give special attention to two restrictions of IP. First, when S is a polyhedron, we get

min{f(x) | Ax ≤ b, x ∈ Zn}, (LinIP)

where A ∈ Zm×n and b ∈ Zm; we call this problem linearly-constrained IP, or LinIP. Further
restricting f to be a linear function gives Integer Linear Programming (ILP):

min{wx | Ax ≤ b, x ∈ Zn}, (ILP)

where w ∈ Zn. The function f : Zn → Z is called the objective function, S is the feasible set
(defined by constraints or various oracles), and x is a vector of (decision) variables. By 〈·〉
we denote the binary encoding length of numbers, vectors and matrices.

In 1983 Lenstra showed that ILP is polynomial in fixed dimension and solvable in
time nO(n)〈A,b,w〉 (including later improvements [22, 36, 45]). Two decades later this
algorithm’s potential for applications in parameterized complexity was recognized, e.g. by
Niedermeier [52]:

[...] It remains to investigate further examples besides Closest String where
the described ILP approach turns out to be applicable. More generally, it would
be interesting to discover more connections between fixed-parameter algorithms and
(integer) linear programming.

This call has been answered in the following years, for example in the context of graph
algorithms [19, 20, 24, 44], scheduling [30, 35, 38, 51] or computational social choice [8].

In the meantime, many other powerful algorithms for IP have been devised; however
it seemed unclear exactly how could these tools be used, as Lokshtanov states in his PhD
thesis [46], referring to FPT algorithms for convex IP in fixed dimension:

It would be interesting to see if these even more general results can be useful for
showing problems fixed parameter tractable.

Similarly, Downey and Fellows [14] highlight the FPT algorithm for so called n-fold IP:

Conceivably, [Minimum Linear Arrangement] might also be approached by the
recent (and deep) FPT results of Hemmecke, Onn and Romanchuk [28] concerning
nonlinear optimization.

Interestingly, Minimum Linear Arrangement was shown to be FPT by yet another new
algorithm for IP due to Lokshtanov [47].

In the last 3 years we have seen a surge of interest in, and an increased understanding
of, these IP techniques beyond Lenstra’s algorithm, allowing significant advances in fields
such as parameterized scheduling [9, 30, 33, 38, 51], computational social choice [39, 40, 42],
multichoice optimization [23], and stringology [39]. This has increased our understanding of
the strengths and limitations of each tool as well as the modeling patterns and tricks which
are typically applicable and used.

https://arxiv.org/abs/1711.02032
https://arxiv.org/abs/1711.02032


T. Gavenčiak, D. Knop, and M. Koutecký 21:3

1.1 Our Results

We start by giving a quick overview of existing techniques in Section 2, which we hope to
be an accessible reference guide for parameterized complexity researchers. Then, we resolve
the parameterized complexity of three problems when parameterized by the neighborhood
diversity of a graph (we defer the definitions to the relevant sections). However, since our
complexity results follow by applying an appropriate algorithm for IP, we also highlight our
modeling results. Moreover, in the spirit of the optimality program (introduced by Marx [49]),
we are not content with obtaining some FPT algorithm, but we attempt to decrease the
dependence on the parameter k as much as possible. This sometimes has the unintended
consequence of increasing the polynomial dependence on the graph size |G|. We note this
and, by combining several ideas, get the “best of both worlds”. Driving down the poly(|G|)
factor is in the spirit of “minding the poly(n)” of Lokshtanov et al. [48].

We denote by |G| the number of vertices of the graph G and by k its neighborhood
diversity; graphs of neighborhood diversity k have a succinct representation (constructible in
linear time) with O(k2 log |G|) bits and we assume to have such a representation on input.

I Theorem 1. Capacitated Dominating Set
(a) Has a convex IP model in O(k2) variables and can be solved in time and space

kO(k2) log |G|.
(b) Has an ILP model in O(k2) variables and O(|G|) constraints, and can be solved in time

kO(k2) poly(|G|) and space poly(k, |G|).
(c) Can be solved in time kO(k) poly(|G|) using model a and a proximity argument.
(d) Has a polynomial OPT + k2 approximation algorithm by rounding a relaxation of a.

I Theorem 2. Sum Coloring
(a) Has an n-fold IP model in O(k|G|) variables and O(k2|G|) constraints, and can be solved

in time kO(k3)|G|2 log2 |G|.
(b) Has a LinIP model in O(2k) variables and k constraints with a non-separable convex

objective, and can be solved in time 22kO(1)

log |G|.
(c) Has a LinIP model in O(2k) variables and O(2k) constraints whose constraint matrix

has dual treewidth k + 2 and whose objective is separable convex, and can be solved in
time kO(k2) log |G|.

I Theorem 3. Max-q-Cut has a LinIP model with an indefinite quadratic objective and
can be solved in time g(q, k) log |G| for some computable function g.

1.2 Related Work

Graphs of neighborhood diversity constitute an important stepping stone in the design of
algorithms for dense graphs, because they are in a sense the simplest of dense graphs [2, 3,
6, 20, 24, 25, 50]. Studying the complexity of Capacitated Dominating Set on graphs
of bounded neighborhood diversity is especially interesting because it was shown to be
W[1]-hard parameterized by treewidth by Dom et al. [13]. Sum Coloring was shown to be
FPT parameterized by treewidth [32]; its complexity parameterized by clique-width is open
as far as we know. Max-q-Cut is FPT parameterized by q and treewidth (by reduction to
CSP), but W[1]-hard parameterized by clique-width [21].

IPEC 2018



21:4 Integer Programming in Parameterized Complexity: Three Miniatures

1.3 Preliminaries
For positive integers m,n with m ≤ n we set [m,n] = {m, . . . , n} and [n] = [1, n]. We write
vectors in boldface (e.g., x,y) and their entries in normal font (e.g., the i-th entry of x is xi).
For a graph G we denote by V (G) its set of vertices, by E(G) the set of its edges, and by
NG(v) = {u ∈ V (G) | uv ∈ E(G)} the (open) neighborhood of a vertex v ∈ V (G). For a
matrix A we define

the primal graph GP (A), which has a vertex for each column and two vertices are
connected if there exists a row such that both columns are non-zero, and,
the dual graph GD(A) = GP (Aᵀ), which is the above with rows and columns swapped.

We call the treedepth and treewidth of GP (A) the primal treedepth tdP (A) and primal
treewidth twP (A), and analogously for the dual treedepth tdD(A) and dual treewidth twD(A).

We define a partial order v on Rn as follows: for x,y ∈ Rn we write x v y and say that
x is conformal to y if xiyi ≥ 0 (that is, x and y lie in the same orthant) and |xi| ≤ |yi| for
all i ∈ [n]. It is well known that every subset of Zn has finitely many v-minimal elements.

I Definition 4 (Graver basis). The Graver basis of A ∈ Zm×n is the finite set G(A) ⊂ Zn of
v-minimal elements in {x ∈ Zn | Ax = 0, x 6= 0}.

Neighborhood Diversity. Two vertices u, v are called twins if N(u) \ {v} = N(v) \ {u}.
The twin equivalence is the relation on vertices of a graph where two vertices are equivalent
if and only if they are twins.

I Definition 5 (Lampis [44]). The neighborhood diversity of a graph G, denoted by nd(G),
is the minimum number k of classes (called types) of the twin equivalence of G.

We denote by Vi the classes of twin equivalence on G for i ∈ [k]. A graph G with
nd(G) = k can be described in a compressed way using only O

(
log |G| · k2) space by its type

graph, which is computable in linear time [44]:

I Definition 6. The type graph T (G) of a graph G is a graph on k = nd(G) vertices [k],
where each i is assigned weight |Vi|, and where i, j is an edge or a loop in T (G) if and only if
two distinct vertices of Vi and Vj are adjacent.

Modeling. Loosely speaking, by modeling an optimization problem Π as a different problem
Λ we mean encoding the features of Π by the features of Λ, such that the optima of Λ encode
at least some optima of Π. Modeling differs from reduction by highlighting which features of
Π are captured by which features of Λ.

In particular, when modeling Π as an integer program, the same feature of Π can often
be encoded in several ways by the variables, constraints or the objective. For example, an
objective of Π may be encoded as a convex objective of the IP, or as a linear objective which
is lower bounded by a convex constraint; similarly a constraint of Π may be modeled as a
linear constraint of IP or as minimizing a penalty objective function expressing how much is
the constraint violated. Such choices greatly influence which algorithms are applicable to
solve the resulting model. Specifically, in our models we focus on the parameters #variables
(dimension), #constraints, the largest coefficient in the constraints ‖A‖∞ (abusing the
notation slightly when the constraints are not linear), the largest right hand side ‖b‖∞,
the largest domain ‖u − l‖∞, and the largest coefficient of the objective function ‖w‖∞
(linear objectives), ‖Q‖∞ (quadratic objectives) or fmax = maxx:l≤x≤u |f(x)| (in general),
and noting other relevant features.



T. Gavenčiak, D. Knop, and M. Koutecký 21:5

Solution structure. We concur with Downey and Fellows that FPT and structure are
essentially one [14]. Here, it typically means restricting our attention to certain structured
solutions and showing that nevertheless such structured solutions contain optima of the
problem at hand. We always discuss these structural properties before formulating a model.

2 Integer Programming Toolbox

We give a list of the most relevant algorithms solving IP, highlighting their fastest known
runtimes (marked >), typical use cases and strengths (+), limitations (−), and a list
of references to the algorithms (♥) and their most illustrative applications (.), both in
chronological order.

2.1 Small Dimension
The following tools generally rely on results from discrete geometry.

ILP in small dimension. Problem (ILP) with small n.
> n2.5n〈A,b,w〉 [36, 22]
+ Can use large coefficients, which allows encoding logical connectives using Big-M coeffi-

cients [5]. Runs in polynomial space. Most people familiar with ILP.
− Small dimension can be an obstacle in modeling polynomially many “types” of objects [7,

Challenge #2]. Models often use exponentially many variables in the parameter, leading to
double-exponential runtimes (applies to all small dimension techniques below). Encoding a
convex objective or constraint requires many constraints (cf. Model 9). Big-M coefficients
are impractical.

♥ [45, 36, 22]
. [52, 19, 35, 20, 18]

Convex IP in small dimension. Problem (IP) with f a convex function; S can be represented
by polynomial inequalities, a first-order oracle, a separation oracle, or as a semialgebraic set.
> n

4
3n〈B〉, where S is contained in a ball of radius B [12].

+ Strictly stronger than ILP. Representing constraints implicitely by an oracle allows better
dependence on instance size (cf. Model 8).

− Exponential space. Algorithms usually impractical. Proving convexity can be difficult.
♥ [26, Theorem 6.7.10] (weak separation oracle), [37] (semialgebraic sets), [27, 31] (polyno-

mials), [11] randomized / [12] deterministic (strong separation oracle), [53] reduction to
Mixed ILP subproblems (first-order oracle).

. [30, 8, 51, 38, 41], Model 8

Indefinite quadratic IP in small dimension. Problem (LinIP) with f(x) = xᵀQx indefinite
(non-convex) quadratic.
> g(n, ‖A‖∞, ‖Q‖∞)〈b〉 [55]
+ Currently the only tractable indefinite objective.
− Limiting parameterization.
♥ [47, 55]
. [47], Model 10

IPEC 2018



21:6 Integer Programming in Parameterized Complexity: Three Miniatures

Parametric ILP in small dimension. Given a Q = {b ∈ Rm | Bb ≤ d}, decide

∀b ∈ Q ∩ Zm ∃x ∈ Zn : Ax ≤ b .

> g(n,m) poly(‖A,B,d‖∞) [16]
+ Models one quantifier alternation. Useful in expressing game-like constraints (e.g., “∀

moves ∃ a counter-move”). Allows unary big-M coefficients to model logic [42, Theorem
4.5].

− Input has to be given in unary (vs. e.g. Lenstra’s algorithm).
♥ [16, Theorem 4.2], [10, Corollary 1]
. [10, 42]

2.2 Variable Dimension
In this section it will be more natural to consider the following standard form of (LinIP)

min{f(x) | Ax = b, l ≤ x ≤ u, x ∈ Zn}, (SLinIP)

where b ∈ Zm and l,u ∈ Zn. Let L = 〈fmax,b, l,u〉. In contrast with the previous section,
the following algorithms typically rely on algebraic arguments and dynamic programming.

ILP with few rows. Problem (SLinIP) with small m and a linear objective wx for w ∈ Zn.
> O((m‖A‖∞)2m)〈b〉 if l ≡ 0 and u ≡ +∞, and n · (m‖A‖∞)O(m2)〈b, l,u〉 in general [34]
+ Useful for configuration IPs with small coefficients, leading to exponential speed-ups. Best

runtime in the case without upper bounds. Linear dependence on n.
− Limited modeling power. Requires small coefficients.
♥ [54, 17, 34]
. [34]

Anfold =


A1 A1 · · · A1
A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2

 Astoch =


B1 B2 0 · · · 0
B1 0 B2 · · · 0
...

...
...

. . .
...

B1 0 0 · · · B2



n-fold IP, tree-fold IP, and dual treedepth. n-fold IP is problem (SLinIP) in dimension
nt, with A = Anfold for some two blocks A1 ∈ Zr×t and A2 ∈ Zs×t, l,u ∈ Znt, b ∈ Zr+ns,
and with f a separable convex function, i.e., f(x) =

∑n
i=1
∑t
j=1 f

i
j(xij) with each f ij : Z→ Z

convex. Tree-fold IP is a generalization of n-fold IP where the block A2 is itself replaced by
an n-fold matrix, and so on, recursively, τ times. Tree-fold IP has bounded tdD(A).

> (‖A‖∞rs)O(r2s+rs2)(nt)2 log(nt)〈L〉 n-fold IP [1, 15]; (‖A‖∞ + 1)2tdD(A)(nt)2 log(nt)〈L〉
for (SLinIP) [43].

+ Variable dimension useful in modeling many “types” of objects [40, 42]. Useful for
obtaining exponential speed-ups (not only configuration IPs). Seemingly rigid format is
in fact not problematic (blocks can be different provided coefficients and dimensions are
small).

− Requires small coefficients.
♥ [28, 39, 9, 15, 1, 43]
. [38, 40, 39, 9, 33], Model 11



T. Gavenčiak, D. Knop, and M. Koutecký 21:7

2-stage and multi-stage stochastic IP, and primal treedepth. 2-stage stochastic IP is
problem (SLinIP) with A = Astoch and f a separable convex function; multi-stage stochastic
IP is problem (SLinIP) with a multi-stage stochastic matrix, which is the transpose of a
tree-fold matrix; multi-stage stochastic IP is in turn generalized by IP with small primal
treedepth tdP (A).
> g(tdP (A), ‖A‖∞)n2 logn〈L〉, g computable [43]
+ Similar to Parametric ILP in fixed dimension, but quantification ∀b ∈ Q∩Zn is now over

a polynomial sized but possibly non-convex set of explicitely given right hand sides.
− Not clear which problems are captured. Requires small coefficients. Parameter dependence

g is possibly non-elementary; no upper bounds on g are known, only computability.
♥ [29, 4, 43]
. N/A

Small treewidth and Graver norms. Let g∞(A) = maxg∈G(A) ‖g‖∞ and g1(A) =
maxg∈G(A) ‖g‖1 be maximum norms of elements of G(A).
> min{g∞(A)O(twP (A)), g1(A)O(twD(A))}n2 logn〈L〉 [43]
+ Captures IPs beyond the classes defined above (cf. Section 5.3).
− Bounding g1(A) and g∞(A) is often hard or impossible.
♥ [43]
. Model 14

3 Convex Constraints: Capacitated Dominating Set

Capacitated Dominating Set
Input: A graph G = (V,E) and a capacity function c : V → N.
Task: Find a smallest possible set D ⊆ V and a mapping δ : V \D → D such that for each

v ∈ D, |δ−1(v)| ≤ c(v).

Solution Structure. Let <c be a linear extension of ordering of V by vertex capacities, i.e.,
u <c v if c(u) ≤ c(v). For i ∈ T (G) and ` ∈ [|Vi|] let Vi[1 : `] be the set of the first ` vertices
of Vi in the ordering <c and let fi(`) =

∑
v∈Vi[2:`] c(v); for ` > |Vi| let fi(`) = fi(|Vi|). Let

D be a solution and Di = D∩Vi. We call the functions fi the domination capacity functions.
Intuitively, fi(`) is the maximum number of vertices dominated by Vi[1 : `]. Observe that
since fi(`) is a partial sum of a non-increasing sequence of numbers, it is a piece-wise linear
concave function. We say that D is capacity-ordered if, for each i ∈ T (G), Di = Vi[1 : |Di|].
The following observation allows us to restrict our attention to such solutions; the proof goes
by a simple exchange argument.

I Lemma 7 (?). There is a capacity-ordered optimal solution.

Observe that a capacity-ordered solution is fully determined by the sizes |Di| and <c rather
than the actual sets Di, which allows modeling CDS in small dimension.

I Model 8 (Capacitated Dominating Set as convex IP in fixed dimension).
Variables & notation:

xi = |Di|
yij = |δ−1(Di) ∩Dj |
fi(xi) = maximum #vertices dominated by Di if |Di| = xi

IPEC 2018



21:8 Integer Programming in Parameterized Complexity: Three Miniatures

Objective & Constraints:

min
∑

i∈T (G)

xi min |D| =
∑

i∈T (G)

|Di| (cds:cds-obj)

∑
j∈NT (G)(i)

yij ≤ fi(xi) ∀i ∈ T (G) respect capacities (cds:cap)

∑
i∈NT (G)(j)

yij ≥ |Vj | − xj ∀j ∈ T (G) every v ∈ Vj \Dj dominated (cds:dom)

0 ≤ xi ≤ |Vi| ∀i ∈ T (G) (cds:bounds)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞
O(k2) O(k) 1 |G| |G| 1

constraint (cds:cap) is convex, since it bounds the area under a concave function, and is
piece-wise linear.

Then, applying for example Dadush’s algorithm [11] to Model 8 yields Theorem 1a. We
can trade the non-linearity of the previous model for an increase in the number of constraints
and the largest coefficient. That, combined with Lenstra’s algorithm, yields Theorem 1b,
where we get a larger dependence on |G|, but require only poly(k, |G|) space.

I Model 9 (Capacitated Dominating Set as ILP in fixed dimension).
Exactly as Model 8 but replace constraints (cds:cap) with the following equivalent set of |G|
linear constraints:∑

ij∈E(T (G))

yij ≤ fi(`− 1) + c(v`)(xi − `+ 1) ∀i ∈ T (G)∀` ∈ [|Vi|] (cds:cap-lin)

The parameters then become: #vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞
O(k2) O(k + |G|) |G| |G| |G| 1

[Additive approximation] Proof of Theorem 1d. Let (x,y) ∈ Rk+k2 be an optimal solution
to the continuous relaxation of Model 8, i.e., we relax the requirement that (x,y) are integral;
note that such (x,y) can be computed in polynomial time using the ellipsoid method [26], or
by applying a polynomial LP algorithm to Model 9. We would like to round (x,y) up to an
integral (x̂, ŷ) to obtain a feasible integer solution which would be an approximation of an
integer optimum. Ideally, we would take ŷ = dye and compute x̂ accordingly, i.e., set x̂i to
be smallest possible such that

∑
j∈NT (G)(i) ŷij ≥ fi(x̂i); note that x̂i ≤ xi + k, since we add

at most k neighbors (to be dominated) in neighborhood of Vi. However, this might result in
a non-feasible solution if, for some i, x̂i > |Vi|. In such a case, we solve the relaxation again
with an additional constraint xi = |Vi| and try rounding again, repeating this aforementioned
fixing procedure if rounding fails, and so on. After at most k repetitions this rounding
results in a feasible integer solution (x̂, ŷ), in which case we have ‖x̂−x‖1 ≤ k2 and thus the
solution represented by (x̂, ŷ) has value at most OPT + k2; the relaxation must eventually
become feasible as setting xi = |Vi| for all i ∈ T (G) yields a feasible solution. J



T. Gavenčiak, D. Knop, and M. Koutecký 21:9

[Speed trade-offs] Proof of Theorem 1c. Notice that on our way to proving Theorem 1d
we have shown that Model 8 has integrality gap at most k2, i.e., the value of the continuous
optimum is at most k2 less than the value of the integer optimum. This implies that an integer
optimum (x∗,y∗) satisfies, for each i ∈ [k], max{0, bxi − k2c} ≤ x∗i ≤ min{|Vi|, xi + dk2e}.

We can exploit this to improve Theorem 1a in terms of the parameter dependence at
the cost of the dependence on |G|. Let us assume that we have a way to test, for a given
integer vector x̂, whether it models a capacity-ordered solution, that is, whether there exists
a capacitated dominating set with Di = Vi[1 : x̂i] for each i. Then we can simply go over all
possible (2k2 + 2)k choices of x̂ and choose the best. So we are left with the task of, given a
vector x̂, deciding if it models a capacity-ordered solution.

But this is easy. Let <c be the assumed order and define D as above. Now, we construct
an auxiliary bipartite matching problem, where we put c(v) copies of each vertex from D

on one side of the graph, and all vertices of V \D on the other side, and connect a copy of
v ∈ D to u ∈ V \D if uv ∈ E(G). Then, D is a capacitated dominating set if and only if all
vertices in V \D can be matched. The algorithm is then simply to compute the continuous
optimum x, and go over all integer vectors x̂ with ‖x − x̂‖1 ≤ k2, verifying whether they
model a solution and choosing the smallest (best) one. J

4 Indefinite Quadratics: Max q-Cut

Max-q-Cut
Input: A graph G = (V,E).
Task: A partition W1∪̇ · · · ∪̇Wq = V maximizing the number of edges between distinct Wα

and Wβ , i.e., |{uv ∈ E(G) | u ∈Wα, v ∈Wβ , α 6= β}|.

Solution structure. As before, it is enough to describe how many vertices from type i ∈ T (G)
belong to Wα for α ∈ [q], and their specific choice does not matter; this gives us a small
dimensional encoding of the solutions.

I Model 10 (Max-q-Cut as LinIP with indefinite quadratic objective).
Variables & Notation:

xiα = |Vi ∩Wα|
xiα · xjβ = #edges between Vi ∩Wα and Vj ∩Wβ if ij ∈ E(T (G)).

Objective & Constraints:

min
∑

α,β∈[q]:
α6=β

∑
ij∈E(T (G))

xiα · xjβ min#edges across partites (mc:obj)

∑
α∈[q]

xiα = |Vi| ∀i ∈ T (G) (Vi ∩Wα)α∈[q] partitions Vi (mc:part)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖Q‖∞
kq k 1 |G| |G| 1

objective (mc:obj) is indefinite quadratic.

Applying Lokshtanov’s [47] or Zemmer’s [55] algorithm to Model 10 yields Theorem 3. Note
that since we do not know anything about the objective except that it is quadratic, we have
to make sure that ‖Q‖∞ and ‖A‖∞ are small.

IPEC 2018



21:10 Integer Programming in Parameterized Complexity: Three Miniatures

5 Convex Objective: Sum Coloring

Sum Coloring
Input: A graph G = (V,E).
Task: A proper coloring c : V → N minimizing

∑
v∈V c(v).

In the following we first give a single-exponential algorithm for Sum Coloring with
a polynomial dependence on |G|, then a double-exponential algorithm with a logarithmic
dependence on |G|, and finally show how to combine the two ideas together to obtain a
single-exponential algorithm with a logarithmic dependence on |G|.

5.1 Sum Coloring via n-fold IP
Structure of Solution. The following observation was made by Lampis [44] for the Col-
oring problem, and it holds also for the Sum Coloring problem: every color C ⊆ V (G)
intersects each clique type in at most one vertex, and each independent type in either none
or all of its vertices. The first follows simply by the fact that it is a clique; the second by the
fact that if both colors α, β with α < β are used for an independent type, then recoloring all
vertices of color β to be of color α remains a valid coloring and decreases its cost. We call a
coloring with this structure an essential coloring.

I Model 11 (Sum Coloring as n-fold IP).
Variables & Notation:

xαi = 1 if color α intersects Vi
α · xαi = cost of color α at a clique type i
α|Vi| · xαi = cost of color α at an independent type Vi
Snfold(x) =

∑|G|
α=1

(
(
∑

clique i∈T (G) αx
α
i ) + (

∑
indep. i∈T (G) α|Vi|xαi )

)
= total cost of x

Objective & Constraints:

min Snfold(x) (sc:nf:obj)
|G|∑
α=1

xαi = |Vi| ∀i ∈ T (G), Vi is clique Vi is colored (sc:nf:cliques)

|G|∑
α=1

xαi = 1 ∀i ∈ T (G), Vi is independent Vi is colored (sc:nf:indeps)

xαi + xαj ≤ 1 ∀α ∈ [|G|] ∀ij ∈ E(T (G)) xα is independent set (sc:nf:xi-indep)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ ‖w‖∞ r s t

k|G| k + k2|G| 1 |G| 1 |G| k k2 k

Constraints have an n-fold format: (sc:nf:cliques) and (sc:nf:indeps) form the (A1 · · ·A1)
block and (sc:nf:xi-indep) form the A2 blocks; see parameters r, s, t above.

Applying the algorithm of Altmanová et al. [1] to Model 11 yields Theorem 2a. Model 11 is
a typical use case of n-fold IP: we have a vector of multiplicities b (modeling (|V1|, . . . , |Vk|))
and we optimize over its decompositions into independent sets of T (G). A clever objective
function models the objective of Sum Coloring.



T. Gavenčiak, D. Knop, and M. Koutecký 21:11

x1

x2

x3

x5

x6

C
ol
or

nu
m
be

r

Number of vertices in a color class (σ)

1
2
3
4
5
6
7
8

y1 y2 y3 y4 y5 y6 y7 y8 yq

ζq−1ζsucc(6)ζ6ζ5

Figure 1 An illustration of the cost decomposition to the individual classes. Note that i-th row
(color i) has cost i per vertex.

5.2 Sum Coloring via Convex Minimization in Fixed Dimension

Structure of Solution. The previous observations also allow us to encode a solution in
a different way. Let I = {I1, . . . , IK} be the set of all independent sets of T (G); note
that K < 2k. Then we can encode an essential coloring of G by a vector of multiplicities
x = (xI1 , . . . , xIK

) of elements of I such that there are xIj
colors which color exactly the

types contained in Ij . The difficulty with Sum Coloring lies in the formulation of its
objective function. Observe that given an I ∈ I, the number of vertices every color class of
this type will contain is independent of the actual multiplicity xI . Define the size of a color
class σ : I → N as σ(I) =

∑
clique i∈I 1 +

∑
indep. i∈I |Vi|.

I Lemma 12 (?). Let G = (V,E) be a graph and let c : V → N be a proper coloring of G
minimizing

∑
v∈V c(v). Let µ(p) denote the quantity |{v ∈ V | c(v) = p}|. Then µ(p) ≥ µ(q)

for every p ≤ q.

Our goal now is to show that the objective function can be expressed as a convex function
in terms of the variables x. We will get help from auxiliary variables y1, . . . , y|G| which are a
linear projection of variables x; note that we do not actually introduce these variables into
the model and only use them for the sake of proving convexity. Namely, yj indicates how
many color classes contain at least j vertices: yj =

∑
σ(I)≥j xI . Then, the objective function

can be expressed as Sconvex(x) =
∑p
i=1 |iσ(Ii)| =

∑|G|
j=1

(
yj

2
)
, where i = 1, . . . , p is the order

of the color classes given by Lemma 12, every class of type I is present xI times, where we
enumerate only those I with xI ≥ 1. The equivalence of the two is straightforward to check.

Finally, Sconvex is convex with respect to x because,
1) all xI are linear (thus affine) functions,
2) yi =

∑
I:σ(I)≥i xI is a sum of affine functions, thus affine,

3) yi(yi − 1)/2 is convex: it is a basic fact that h(x) = g(f(x)) is convex if f is affine and g
is convex. Here f = yi is affine by the previous point and g = f(f − 1)/2 is convex.

4) Sconvex is the sum of yi(yi − 1)/2, which are convex by the previous point.

IPEC 2018



21:12 Integer Programming in Parameterized Complexity: Three Miniatures

I Model 13 (Sum Coloring as LinIP in fixed dimension with convex objective).
Variables & Notation:

xI = #of color class I
yi = #of color classes I with σ(I) ≤ i(
yi

2
)
cost of column yi (Figure 1)

Sconvex =
∑|G|
i=1
(
yi

2
)

= cost of all columns
Objective & Constraints:

min Sconvex(x) (sc:convex:obj)∑
Ij :i∈Ij

xIj = |Vi| ∀clique i ∈ T (G) clique Vi gets |Vi| colors (sc:convex:cliques)

∑
Ij :i∈Ij

xIj
= 1 ∀indep. i ∈ T (G) indep. Vi gets 1 color (sc:convex:indeps)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ fmax

2k k 1 |G| |G| |G|2

Objective Sconvex is non-separable convex, and can be computed in time 2k log |G| by
noticing that there are at most 2k different yi’s (see below).

Applying the algorithm of Dadush [11] to Model 13 yields Theorem 2b. Notice that we could
not apply Lokshtanov’s algorithm because the objective has large coefficients. Also notice
that we do not need separability of Sconvex or any structure of A.

5.3 Sum Coloring and Graver Bases
Consider Model 13. The fact that the number of rows and the largest coefficient ‖A‖∞ is
small, and that we can formulate Sconvex as a separable convex objective in terms of the yi
variables gives us some hope that Graver basis techniques would be applicable.

Since |I| ≤ 2k, we can replace the yi’s by a smaller set of variables zi for a set of “critical
sizes” Γ = {i ∈ [|G|] | ∃I ∈ I : σ(I) = i}. For each i ∈ Γ let succ(i) = min{j ∈ Γ | j > i}
(and let succ(max Γ) = max Γ), define zi =

∑
I∈I:σ(I)≥i xI , and let ζi = (succ(i)− i) be the

size difference between a color class of size i and the smallest larger color class. Then,

Sconvex(x) =
|G|∑
i=1

(
yi
2

)
=
∑
i∈Γ

ζi

(
zi
2

)
= Ssepconvex(z) .

Now we want to construct a system of inequalities of bounded dual treewidth twD(A);
however, adding the zi variables as we have defined them amounts to adding many inequalities
containing the z1 variable, thus increasing the dual treewidth to k + 2k. To avoid this, let us
define zi equivalently as zi = zsucc(i) +

∑
I∈I:

succ(i)>σ(I)≥i
xI = zsucc(i) +

∑
I∈I:
σ(I)=i

xI .

I Model 14 (Sum Coloring as LinIP with small twD(A) and small g1(A)).
Variables & Notation:

xI = #of color class I
zi = #of color classes I with σ(I) ≥ i
ζi = size difference between I ∈ I with σ(I) = i and closest larger J ∈ I
ζi
(
zi

2
)
cost of all columns between yi and ysucc(i) (Figure 1)



T. Gavenčiak, D. Knop, and M. Koutecký 21:13

Γ = set of critical sizes
Ssepconvex(z) =

∑
i∈Γ ζi

(
zi

2
)

= total cost
Objective & Constraints: constraints (sc:convex:cliques) and (sc:convex:indeps), and:

min Ssepconvex(z) (sc:graver:obj)

zi = zsucc(i) +
∑

I∈I:σ(I)=i

xI ∀i ∈ Γ (sc:graver:sep)

Parameters & Notes:
#vars #constraints ‖A‖∞ ‖b‖∞ ‖l,u‖∞ fmax g1(A) twD(A)
O
(
2k
)

O
(
2k
)

1 |G| |G| |G|2 O
(
kk
)

k + 2
Bounds on g1(A) and twD(A) by Lemmas 16 and 15, respectively.
Objective Ssepconvex is separable convex. J

Applying the algorithm of Koutecký et al. [43] to Model 14 yields Theorem 2c.
Let us denote the matrix encoding the constraints (sc:convex:cliques) and

(sc:convex:indeps) as F ∈ Zk×2·2k (notice that we also add the empty columns for the
zi variables), and the matrix encoding the constraints (sc:graver:sep) by L ∈ Z2k×2·2k ; thus
A = ( FL ).

I Lemma 15 (?). In Model 14 it holds that twD(A) ≤ k + 1.

Proof Idea. GD(F ) is a k-clique Kk, and GD(L) is a 2k-path P2k . Thus, GD(A) are these
two graphs connected by all possible edges, and we construct a path decomposition, whose
consecutive nodes contain GD(F ) and consecutive vertices of GD(L). J

I Lemma 16 (?). In Model 14 it holds that g1(A) ≤ kO(k).

Proof Idea. We first simplify the structure of L by deleting duplicitous columns, and then
explicitely construct a decomposition of any h s.t. Lh = 0 into conformal vectors g of small
`1-norm. Combining with known bounds on matrices with few rows (F ) and stacked matrices
(A) yields the bound. J

References
1 Kateřina Altmanová, Dušan Knop, and Martin Kouteckỳ. Evaluating and Tuning n-fold

Integer Programming. In Gianlorenzo D’Angelo, editor, 17th International Symposium
on Experimental Algorithms, SEA 2018, June 27-29, 2018, L’Aquila, Italy, volume 103
of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.
doi:10.4230/LIPIcs.SEA.2018.10.

2 Sancrey Rodrigues Alves, Konrad Kazimierz Dabrowski, Luérbio Faria, Sulamita Klein,
Ignasi Sau, and Uéverton dos Santos Souza. On the (Parameterized) Complexity of Rec-
ognizing Well-Covered (r, l)-graphs. In 10th International Conference on Combinatorial
Optimization and Applications (COCOA’16), volume 10043 of Lecture Notes in Computer
Science, pages 423–437, 2016. doi:10.1007/978-3-319-48749-6.

3 NR Aravind, Subrahmanyam Kalyanasundaram, Anjeneya Swami Kare, and Juho
Lauri. Algorithms and hardness results for happy coloring problems. arXiv preprint
arXiv:1705.08282, 2017.

4 Matthias Aschenbrenner and Raymond Hemmecke. Finiteness theorems in stochastic inte-
ger programming. Foundations of Computational Mathematics, 7(2):183–227, 2007.

5 Johannes Bisschop. AIMMS Optimization Modeling. Paragon Decision Technology BV,
2006.

IPEC 2018

http://dx.doi.org/10.4230/LIPIcs.SEA.2018.10
http://dx.doi.org/10.1007/978-3-319-48749-6


21:14 Integer Programming in Parameterized Complexity: Three Miniatures

6 Édouard Bonnet and Florian Sikora. The Graph Motif problem parameterized by the
structure of the input graph. Discrete Applied Mathematics, 2016.

7 Robert Bredereck, Jiehua Chen, Piotr Faliszewski, Jiong Guo, Rolf Niedermeier, and Ger-
hard J Woeginger. Parameterized algorithmics for computational social choice: Nine re-
search challenges. Tsinghua Science and Technology, 19(4):358–373, 2014.

8 Robert Bredereck, Piotr Faliszewski, Rolf Niedermeier, Piotr Skowron, and Nimrod Talmon.
Elections with Few Candidates: Prices, Weights, and Covering Problems. In Proc. ADT
2015, volume 9346 of Lecture Notes Comput. Sci., pages 414–431, 2015.

9 Lin Chen and Daniel Marx. Covering a tree with rooted subtrees–parameterized and approx-
imation algorithms. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, pages 2801–2820. SIAM, 2018.

10 Jason Crampton, Gregory Gutin, Martin Koutecký, and Rémi Watrigant. Parameterized
resiliency problems via integer linear programming. In Proc. CIAC 2017, volume 10236 of
Lecture Notes Comput. Sci., pages 164–176, 2017.

11 Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative Lattice Algorithms in
any Norm Via M-ellipsoid Coverings. In Rafail Ostrovsky, editor, FOCS, page 580–589.
IEEE, 2011. doi:10.1109/FOCS.2011.31.

12 Daniel Dadush and Santosh S Vempala. Near-optimal deterministic algorithms for vol-
ume computation via M-ellipsoids. Proceedings of the National Academy of Sciences,
110(48):19237–19245, 2013.

13 Michael Dom, Daniel Lokshtanov, Saket Saurabh, and Yngve Villanger. Capacitated dom-
ination and covering: A parameterized perspective. In International Workshop on Param-
eterized and Exact Computation, pages 78–90. Springer, 2008.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Friedrich Eisenbrand, Christoph Hunkenschröder, and Kim-Manuel Klein. Faster Algo-
rithms for Integer Programs with Block Structure. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 49:1–49:13. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.49.

16 Friedrich Eisenbrand and Gennady Shmonin. Parametric integer programming in fixed
dimension. Math. Oper. Res., 33(4), 2008.

17 Friedrich Eisenbrand and Robert Weismantel. Proximity results and faster algorithms
for Integer Programming using the Steinitz Lemma. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 808–816. SIAM, 2018.

18 Piotr Faliszewski, Rica Gonen, Martin Koutecký, and Nimrod Talmon. Opinion diffusion
and campaigning on society graphs. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 219–225. International Joint
Conferences on Artificial Intelligence Organization, 7 2018. doi:10.24963/ijcai.2018/30.

19 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph Layout Problems Parameterized by Vertex Cover. In Seok-Hee Hong,
Hiroshi Nagamochi, and Takuro Fukunaga, editors, ISAAC, volume 5369 of Lecture Notes
in Computer Science, page 294–305. Springer, 2008. doi:10.1007/978-3-540-92182-0.

20 Jiří Fiala, Tomáš Gavenčiak, Dušan Knop, Martin Kouteckỳ, and Jan Kratochvíl. Parame-
terized complexity of distance labeling and uniform channel assignment problems. Discrete
Applied Mathematics, 2017.

21 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost Op-
timal Lower Bounds for Problems Parameterized by Clique-Width. SIAM J. Comput.,
43(5):1541–1563, 2014. doi:10.1137/130910932.

http://dx.doi.org/10.1109/FOCS.2011.31
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.49
http://dx.doi.org/10.24963/ijcai.2018/30
http://dx.doi.org/10.1007/978-3-540-92182-0
http://dx.doi.org/10.1137/130910932


T. Gavenčiak, D. Knop, and M. Koutecký 21:15

22 András Frank and Eva Tardos. An application of simultaneous diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987. doi:10.1007/
BF02579200.

23 Jakub Gajarský, Petr Hliněný, Martin Koutecký, and Shmuel Onn. Parameterized shifted
combinatorial optimization. In International Computing and Combinatorics Conference,
pages 224–236. Springer, 2017.

24 Robert Ganian. Using neighborhood diversity to solve hard problems. arXiv preprint
arXiv:1201.3091, 2012.

25 Luisa Gargano and Adele A. Rescigno. Complexity of conflict-free colorings of
graphs. Theoretical Computer Science, 566(??):39–49, February 2015. URL: http:
//www.sciencedirect.com/science/article/pii/S0304397514009463.

26 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and com-
binatorial optimization, volume 2. Springer Science & Business Media, 2012.

27 Sebastian Heinz. Complexity of integer quasiconvex polynomial optimization. J. Complex-
ity, 21(4):543–556, 2005. doi:10.1016/j.jco.2005.04.004.

28 Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. n-Fold integer programming
in cubic time. Math. Program, 137(1-2):325–341, 2013. doi:10.1007/s10107-011-0490-y.

29 Raymond Hemmecke and Rüdiger Schultz. Decomposition methods for two-stage stochastic
integer programs. In Online optimization of large scale systems, pages 601–622. Springer,
2001.

30 Danny Hermelin, Judith-Madeleine Kubitza, Dvir Shabtay, Nimrod Talmon, and Gerhard
Woeginger. Scheduling two competing agents when one agent has significantly fewer jobs.
In LIPIcs-Leibniz International Proceedings in Informatics, volume 43. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

31 Robert Hildebrand and Matthias Köppe. A new Lenstra-type algorithm for quasicon-
vex polynomial integer minimization with complexity 2O(nlogn). Discrete Optimization,
10(1):69–84, 2013. doi:10.1016/j.disopt.2012.11.003.

32 Klaus Jansen. Complexity results for the optimum cost chromatic partition problem.
Manuscript, 1997.

33 Klaus Jansen, Kim-Manuel Klein, Marten Maack, and Malin Rau. Empowering the
Configuration-IP – New PTAS Results for Scheduling with Setups Times. arXiv preprint
arXiv:1801.06460, 2018.

34 Klaus Jansen and Lars Rohwedder. On Integer Programming and Convolution. arXiv
preprint arXiv:1803.04744, 2018.

35 Klaus Jansen and Roberto Solis-Oba. An OPT+ 1 Algorithm for the Cutting Stock Problem
with Constant Number of Object Lengths. In IPCO, pages 438–449. Springer, 2010.

36 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper.
Res., 12(3):415–440, August 1987.

37 Leonid Khachiyan and Lorant Porkolab. Integer Optimization on Convex Semialge-
braic Sets. Discrete & Computational Geometry, 23(2):207–224, 2000. doi:10.1007/
PL00009496.

38 Dušan Knop and Martin Koutecký. Scheduling meets n-fold Integer Programming. Journal
of Scheduling, November 2017. doi:10.1007/s10951-017-0550-0.

39 Dušan Knop, Martin Koutecký, and Matthias Mnich. Combinatorial n-fold Integer Pro-
gramming and Applications. In Kirk Pruhs and Christian Sohler, editors, 25th Annual Euro-
pean Symposium on Algorithms (ESA 2017), volume 87 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 54:1–54:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ESA.2017.54.

40 Dušan Knop, Martin Koutecký, and Matthias Mnich. Voting and Bribing in Single-
Exponential Time. In Heribert Vollmer and Brigitte Vallée, editors, 34th Symposium on

IPEC 2018

http://dx.doi.org/10.1007/BF02579200
http://dx.doi.org/10.1007/BF02579200
http://www.sciencedirect.com/science/article/pii/S0304397514009463
http://www.sciencedirect.com/science/article/pii/S0304397514009463
http://dx.doi.org/10.1016/j.jco.2005.04.004
http://dx.doi.org/10.1007/s10107-011-0490-y
http://dx.doi.org/10.1016/j.disopt.2012.11.003
http://dx.doi.org/10.1007/PL00009496
http://dx.doi.org/10.1007/PL00009496
http://dx.doi.org/10.1007/s10951-017-0550-0
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.54


21:16 Integer Programming in Parameterized Complexity: Three Miniatures

Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017, Hannover, Ger-
many, volume 66 of LIPIcs, pages 46:1–46:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2017.

41 Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized Complexity of Fair Vertex
Evaluation Problems. CoRR, abs/1803.06878, 2018. arXiv:1803.06878.

42 Dušan Knop, Martin Koutecký, and Matthias Mnich. A Unifying Framework for Manipula-
tion Problems. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages 256–
264, 2018. URL: http://dl.acm.org/citation.cfm?id=3237427.

43 Martin Koutecký, Asaf Levin, and Shmuel Onn. A Parameterized Strongly Polynomial
Algorithm for Block Structured Integer Programs. In Ioannis Chatzigiannakis, Christos
Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, volume 107 of LIPIcs, pages 85:1–85:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.85.

44 Michael Lampis. Algorithmic Meta-theorems for Restrictions of Treewidth. Algorithmica,
64(1):19–37, 2012.

45 Hendrik W. Lenstra, Jr. Integer programming with a fixed number of variables. Mathe-
matics of Operations Research, 8(4):538–548, 1983.

46 Daniel Lokshtanov. New Methods in Parameterized Algorithms and Complexity. PhD thesis,
University of Bergen, 2009.

47 Daniel Lokshtanov. Parameterized integer quadratic programming: Variables and coeffi-
cients. arXiv preprint arXiv:1511.00310, 2015.

48 Daniel Lokshtanov, MS Ramanujan, and Saket Saurabh. A linear time parameterized
algorithm for directed feedback vertex set. arXiv preprint arXiv:1609.04347, 2016.

49 Dániel Marx. What’s next? Future directions in parameterized complexity. In The Multi-
variate Algorithmic Revolution and Beyond, pages 469–496. Springer, 2012.

50 Tomáš Masařík and Tomáš Toufar. Parameterized Complexity of Fair Deletion Prob-
lems. In International Conference on Theory and Applications of Models of Computation
(TAMC’16), pages 628–642, 2017.

51 Matthias Mnich and Andreas Wiese. Scheduling and fixed-parameter tractability. Math.
Program., 154(1-2, Ser. B):533–562, 2015.

52 Rolf Niedermeier. Ubiquitous Parameterization - Invitation to Fixed-Parameter Algo-
rithms. In Jirí Fiala, Václav Koubek, and Jan Kratochvíl, editors, MFCS, volume 3153
of Lecture Notes in Computer Science, page 84–103. Springer, 2004. doi:10.1007/
978-3-540-28629-5_4.

53 Timm Oertel, Christian Wagner, and Robert Weismantel. Integer convex minimization by
mixed integer linear optimization. Oper. Res. Lett, 42(6-7):424–428, 2014. doi:10.1016/
j.orl.2014.07.005.

54 Christos H Papadimitriou. On the complexity of integer programming. Journal of the ACM
(JACM), 28(4):765–768, 1981.

55 Kevin Zemmer. Integer Polynomial Optimization in Fixed Dimension. PhD thesis, ETH
Zurich, 2017.

http://arxiv.org/abs/1803.06878
http://dl.acm.org/citation.cfm?id=3237427
http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.85
http://dx.doi.org/10.1007/978-3-540-28629-5_4
http://dx.doi.org/10.1007/978-3-540-28629-5_4
http://dx.doi.org/10.1016/j.orl.2014.07.005
http://dx.doi.org/10.1016/j.orl.2014.07.005

	Introduction
	Our Results
	Related Work
	Preliminaries

	Integer Programming Toolbox
	Small Dimension
	Variable Dimension

	Convex Constraints: Capacitated Dominating Set
	Indefinite Quadratics: Max q-Cut
	Convex Objective: Sum Coloring
	Sum Coloring via n-fold IP
	Sum Coloring via Convex Minimization in Fixed Dimension
	Sum Coloring and Graver Bases


