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Abstract
Numerous problems consisting in identifying vertices in graphs using distances are useful in
domains such as network verification and graph isomorphism. Unifying them into a meta-problem
may be of main interest. We introduce here a promising solution named Distance Identifying
Set. The model contains Identifying Code (IC), Locating Dominating Set (LD) and
their generalizations r-IC and r-LD where the closed neighborhood is considered up to distance
r. It also contains Metric Dimension (MD) and its refinement r-MD in which the distance
between two vertices is considered as infinite if the real distance exceeds r. Note that while
IC = 1-IC and LD = 1-LD, we have MD = ∞-MD; we say that MD is not local.

In this article, we prove computational lower bounds for several problems included in
Distance Identifying Set by providing generic reductions from (Planar) Hitting Set
to the meta-problem. We focus on two families of problem from the meta-problem: the first one,
called bipartite gifted local, contains r-IC, r-LD and r-MD for each positive integer r while the
second one, called 1-layered, contains LD, MD and r-MD for each positive integer r. We have:

the 1-layered problems are NP-hard even in bipartite apex graphs,
the bipartite gifted local problems are NP-hard even in bipartite planar graphs,
assuming ETH, all these problems cannot be solved in 2o(

√
n) when restricted to bipartite

planar or apex graph, respectively, and they cannot be solved in 2o(n) on bipartite graphs,
even restricted to bipartite graphs, they do not admit parameterized algorithms in 2O(k) ·nO(1)

except if W[0] = W[2]. Here k is the solution size of a relevant identifying set.
In particular, Metric Dimension cannot be solved in 2o(n) under ETH, answering a question
of Hartung in [20].
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10:2 On the Distance Identifying Set Meta-Problem

1 Introduction and Corresponding Works

Problems consisting in identifying each element of a combinatorial structure with a hopefully
small number of elements have been widely investigated. Here, we study a meta identific-
ation problem which generalizes three of the most well-known identification problems in
graphs, namely Identifying Code (IC), Locating Dominating Set (LD) and Metric
Dimension (MD). These problems are used in network verification [3, 5], fault-detection in
networks [22, 28], graph isomorphism [2] or logical definability of graphs [23]. The versions
of these problems in hypergraphs have been studied under different names in [6], [7] and [8].
Given a graph G with vertex set V , the classical identifying sets are defined as follows:

IC: Introduced by Karposky et al. [22], a set C of vertices of G is said to be an identifying
code if none of the sets N [v] ∩ C are empty, for v ∈ V and they are all distinct.
LD: Introduced by Slater [25, 26], a set C of vertices of G is said to be a locating-
dominating set if none of the sets N [v] ∩ C are empty, for v ∈ V \ C and they are all
distinct. When not considering the dominating property (N [v] ∩C may be empty), these
sets have been studied in [2] as distinguing sets and in [23] as sieves.
MD: Introduced independently by Harary et al. [18] and Slater [24], a set C of vertices of
G is said to be a resolving set if C contains one vertex from each connected component
of G and, for every distinct vertices u and v of G, there exists a vertex w of C such that
d(w, u) 6= d(w, v). The metric dimension of G is the minimum size of its resolving sets.

The corresponding minimization problems of the previous identifying sets are defined
as follows: given a graph G, compute a suitable set C of minimal size, if one exists. In this
paper, we mainly focus on the computational complexity of these minimization problems.

Known results. A wide collection of NP-hardness results has been proven for the problems.
For IC and LD, the minimization problems are indeed NP-hard [10, 11]. Charon et al.

showed the NP-hardness when restricted to bipartite graphs [9], while Auger showed it for
planar graphs with arbitrarily large girth [1]. For trees, there exists a linear algorithm [25].

The MD problem is also NP-hard, even when restricted to Gabriel unit disk graphs [17, 21].
Epstein et al. [14] showed that MD is polynomial on several classes as trees, cycles, cographs,
partial wheels, and graphs of bounded cyclomatic number, but it remains NP-hard on split
graphs, bipartite graphs, co-bipartite and line graphs of bipartite graphs. Additionally, Diaz
et al. [12] proved a quite tight separation: the problem is polynomial on outerplanar graphs
whereas it remains NP-hard on bounded degree planar graphs.

In a recent publication, Foucaud et al. [16] also proved the NP-hardness of the three
problems restricted to interval graphs and permutation graphs.

These notions may be considered under the parameterized point of view; see [13] for a
comprehensive study of Fixed Parameter Tractability (FPT). In the following, the parameter
k is chosen as the solution size of a distance identifying set.

For IC and LD, the parameterized problems are clearly FPT since the number of vertices
of a positive instance is bounded by 2k + k (k vertices may characterize 2k neighbors).

Such complexity is not likely to be achievable in the case of MD, since it would imply
W[2] = FPT (= W[0]). Indeed, Hartung et al. [19, 20] showed MD is W[2]-hard for bipartite
subcubic graphs. The problem is however FPT on families of graphs with degree ∆ growing
with the number of vertices because the size k of a resolving set must satisfy log3(∆) < k.
Finally, Foucaud et al. [16] provided a FPT algorithm on interval graphs.
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1-layered r-local 0-layered r-local
problems problems problems

Planar
Hitting Set

NP-hard on
bipartite

apex graphs

NP-hard on
bipartite

planar graphs

(bipartite) planar gadget ⇒
NP-hard on (bipartite)

planar graphs
with ETH no algorithm running in 2O(

√
n) time for relevant classes of graphs.

Hitting Set NP-hard on bipartite graph (bipartite) gadget ⇒
NP-hard on (bipartite) graphs

with ETH no algorithm running in 2O(n) for (bipartite) graphs.
with W[2] 6= W[0] no parameterized algorithm in 2O(k) · nO(1) for (bipartite) graphs.

Figure 1 The computational lower bounds implied by our generic reductions.

Our contributions. In order to unify the previous minimization problems, we introduce the
concept of distance identifying functions. Given a distance identifying function f and a value
r as a positive integer or infinity, the Distance Identifying Set meta-problem consists in
finding a minimal sized r-dominating set which distinguishes every couple of vertices of an
input graph thanks to the function f . Here, we mainly focus on two natural subfamilies of
problems of Distance Identifying Set named local, in which a vertex cannot discern the
vertices outside of its i-neighborhood, for i a fixed positive integer, and 1-layered, where a
vertex is able to separate its open neighborhood from the distant vertices.

With this approach, we obtain several computational lower bounds for problems included
in Distance Identifying Set by providing generic reductions from (Planar) Hitting
Set to the meta-problem. The reductions rely on the set/element-gadget technique, the
noteworthy adaptation of the clause/variable-gadget technique from SAT to Hitting Set.

As we provide a 1-layered generic gadget, the 1-layered reductions operate without
condition. For local problems, the existence of a local gadget is not always guaranteed.
Thus, a local reduction operates only if a local gadget is provided. However, the local
planar reduction is slightly more efficient than its 1-layered counterpart: it indeed implies
computational lower bounds for planar graphs whereas the 1-layered reduction requires an
auxiliary apex, limiting the consequences to apex graphs.

The reductions in general graphs are designed to exploit the W[2]-hardness of Hitting
Set parameterized by the solution size kHS of an hitting set, hereby using:

I Theorem 1 (folklore). Let nHS and mHS be the number of elements and sets of an Hitting
Set instance, and kHS be its solution size. A parameterized problem with parameter k
admitting a reduction from Hitting Set verifying k = O(kHS + log(nHS +mHS)) does not
have a parameterized algorithm running in 2O(k) · nO(1) time except if W[2] = FPT.

Proof. Given a reduction from Hitting Set to a parameterized problem Π such that the
reduced parameter satisfies k = O(kHS + log(nHS + mHS)) and the size of the reduced
instance verifies n = (nHS +mHS)O(1), an algorithm for Π of running time 2O(k) · nO(1) is
actually an algorithm for Hitting Set of running time 2O(kHS) · (nHS +mHS)O(1), meaning
that Hitting Set is FPT, a contradiction to its W[2]-hardness (otherwise W[2] = FPT). J

Hence, as each gadget contributes to the resulting solution size of a distance identifying set,
we set up a binary compression of the gadgets to limit their number to the logarithm order.
From the best of our knowledge, this merging gadgets technique has never been employed.

The organization of the paper is as follows. After a short reminder of the computational
properties of Hitting Set, Section 2 contains the definitions of distance identifying functions
and sets, allowing us to precise the computation lower bounds we obtain. Section 3 designs
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10:4 On the Distance Identifying Set Meta-Problem

the supports of the reductions as distance identifying graphs and compressed graph. Finally,
the gadgets needed for the reductions to apply are given in Section 4.

2 Definition of the Meta-Problem and Related Concepts

2.1 Preliminaries
Notations. Throughout the paper, we consider simple non oriented graphs.

Given a positive integer n, the set of positive integers smaller than n is denoted by
[[n]]. By extension, we define [[∞]] = N>0 ∪ {∞}. Given two vertices u, v of a graph G, the
distance between u and v corresponds to the number of vertices in the shortest path between
u and v and is denoted d(u, v). The open neighborhood of u is denoted by N(u), its closed
neighborhood is N [u] = N(u)∪{u}, and for a value r ∈ [[∞]], the r-neighborhood of u is Nr[u],
that is the set of vertices at distance less than r+ 1 of u. For r =∞, the ∞-neighborhood of
u is the set of vertices in the same connected component than u. We recall that a subset D of
V is called a r-dominating set of G if for all vertices u of V , the set Nr[u] ∩D is non-empty.
Thus an ∞-dominating set of G contains at least a vertex for each connected component
of G.

Given two subsets X and Y of V , the distance d(X,Y ) corresponds to the value d(X,Y ) =
min{d(x, y) | x ∈ X, y ∈ Y }. For a vertex u, we will also use d(u,X) and d(X,u), defined
similarly. The symmetric difference between X and Y is denoted by X ∆Y , and the
2-combination of a set X is denoted P2(X)

Given two graphs G = (VG, EG) and H = (VH , EH), H is an induced subgraph of G if
VH ⊆ VG and for all vertices u and v of VH , (u, v) ∈ EG if and only if (u, v) ∈ EH . We
denote H = G[VH ] and VG \ VH by VG\H . Symmetrically, G is an induced supergraph of H.

The (Planar) Hitting Set problem

Consider a universe of n elements denoted Ω = {ui | i ∈ [[n]]} and a set of m non-empty
subsets of Ω denoted S = {Si | i ∈ [[m]]} such that every element belongs to at least a subset.
Then, a subset of Ω intersecting every set of S is called an hitting set of S:

Hitting Set
Input: A universe Ω and a set S of non-empty subsets of Ω whose union covers Ω.
Output: A minimal-sized hitting set C of S, i.e. a subset of Ω satisfying ∀Si ∈ S, Si ∩ C 6= ∅.
The parameterized version Hitting Set(k) decides if there exists a hitting set of size k.

I Theorem 2 (R.G. Downey and M.R Fellows [13]). Hitting Set cannot be solved in 2o(n)

time under ETH even if m = O(n). Moreover, Hitting Set(k) is W[2]-hard.

Hitting Set may be translated into a dominating problem on bipartite graphs. Given
an instance (Ω,S) of Hitting Set, let us define φ(Ω,S) = (VΩ ∪ VS , E) as the bipartite
graph of size n + m such that for each i ∈ [[n]], there exists a vertex vΩ

i in VΩ, for each
j ∈ [[m]], there exists a vertex vSj in VS , and the edge (vΩ

i , v
S
j ) is present in E if and only if

the element ui belongs to the subset Sj . Henceforth, a hitting set of S is equivalent to a
subset C of VΩ that dominates VS . We call φ(Ω,S) the associated graph of (Ω,S):

Planar Hitting Set
Input: An instance (Ω,S) of Hitting Set such that φ(Ω,S) is planar.
Output: A hitting set C of S of minimal size.
We also consider the parameterized version Planar Hitting Set(k) of the latter problem.
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I Theorem 3 (folklore). There exists a reduction from SAT to Planar Hitting Set(n)
producing associated graphs of quadratic size in the number n of variables of the instances of
SAT. Thus Planar Hitting Set cannot be solved in 2o(

√
n) under ETH even if m = O(n).

Sketch of proof. A linear reduction from SAT to Hitting Set is known. To guarantee
the planarity of φ(Ω,S), we apply the reduction on a restriction of SAT named Separate
Simple Planar SAT which is not solvable in 2o(

√
n) under ETH. See [27]. J

2.2 The Distance Identifying Set meta-problem
Given a graph G = (V,E) and r ∈ [[∞]], the classical identifying sets may be rewritten:

r-IC: a subset C of V is a r-identifying code of G if it is an r-dominating set and for
every distinct vertices u, v of V , a vertex w in C verifies w ∈ Nr[u] ∆Nr[v].
r-LD: a subset C of V is a r-locating dominating set of G if it is an r-dominating set and
for every distinct vertices u, v of V , a vertex w in C verifies w ∈ (Nr[u] ∆Nr[v]) ∪ {u, v}.
r-MD: a subset C of V is a r-resolving set of G if it is an r-dominating set and for every
distinct vertices u, v of V , a vertex w in C verifies w ∈ Nr[u]∪Nr[v] and d(u,w) 6= d(v, w).

A pattern clearly appears: the previous identifying sets only deviate on the criterion that
the vertex w must verify. The pivotal idea is to consider an abstract version of the criterion
which does not depend on the input graph. Hence:

I Definition 4 (identifying function). A function f of type: G→ (V ×P2(V )→ {true, false}),
is called an identifying function. Given three vertices u, v and w of a graph G such that
u 6= v, we write fG[w](u, v) to get the resulting boolean. The notation P2(V ) implies that
fG is symmetric, that is fG[w](u, v) = fG[w](v, u).

We need to require some useful properties on identifying functions to produce generic
results. By mimicking the classical identifying sets, the main property we consider is that a
vertex cannot distinguish two vertices at the same distance from it. Then:

I Definition 5 (distance function). A distance identifying function f is an identifying function
such that for every graph G and all vertices u,v and w of G with u 6= v:
(α) fG[w](u, v) is false when d(u,w) = d(v, w).
Besides this mandatory criterion, we suggest two paradigms related to the neighborhood of
a vertex. Let i ∈ [[∞]]. First, we may restrain the range of a vertex to its i-neighborhood:
a vertex should not distinguish two vertices if they do not lie in its i-neighborhood but it
should always distinguish them whenever exactly one of them lies to that i-neighborhood.
Reciprocally, we may ensure that a vertex could distinguish the vertices of its i-neighborhood:
a vertex should distinguish a vertex belonging to its i-neighborhood from all the other
vertices, assuming the distances are different. Formally, we have:

IDefinition 6 (i-local function). For i ∈ [[∞]], an i-local identifying function f is an identifying
function such that for every graph G and all vertices u, v, w of G with u 6= v:
(β1) fG[w](u, v) is true when d(u,w) ≤ i < d(v, w) or, symmetrically, d(v, w) ≤ i < d(u,w).
(β2) fG[w](u, v) is false when i < min{d(u,w), d(v, w)}.

I Definition 7 (i-layered function). For i ∈ [[∞]], an i-layered identifying function f is an
identifying function such that for every graph G and all vertices u,v,w of G with u 6= v:
(γ) fG[w](u, v) is true when min{d(u,w), d(v, w)} ≤ i and d(u,w) 6= d(v, w).

IPEC 2018



10:6 On the Distance Identifying Set Meta-Problem

In the following, given an identifying function f and three vertices u, v, w of a graph G,
we say that w f -distinguishes u and v if and only if fG[w](u, v) is true. By extension, given
three vertex sets C, X and Y of G, we say that C f -distinguishes X and Y if for every u in
X and v in Y , either u = v or there exists w in C verifying fG[w](u, v). Finally, a graph G
of vertex set V is f -distinguished by C when C f -distinguishes V and V .

We are now ready to define the Distance Identifying Set meta-problem.
I Definition 8 ((f, r)-distance identifying set). For a distance identifying function f and
r ∈ [[∞]], a (f, r)-distance identifying set of a graph G is an r-dominating set of G that
f -distinguishes G.
Distance Identifying Set
Input: A distance identifying function f and r ∈ [[∞]]. A graph G.
Output: A (f, r)-distance identifying set of G of minimal size, if one exists.
Given a distance identifying function f and r ∈ [[∞]] as inputs of the meta-problem, the
resulting problem is called (f, r)-Distance Identifying Set and denoted (f, r)-DIS. The
problem (f, r)-DIS is said to be i-layered when the function f is i-layered, and it is said to
be i-local when f is i-local and r = i. A problem is local if it is i-local for an integer i. Recall
that our local reductions need a local gadget to operate: the subfamilies of local problems
admitting a (bipartite) local gadget is called (bipartite) gifted local. We do not need to define
gifted 1-layered as every 1-layered problem admits a 1-layered gadget. We also consider the
parameterized version Distance Identifying Set(k).

2.3 Detailed Computational Lower Bounds
Using the Distance Identifying Set meta-problem, we get the following lower bounds:
I Theorem 9. For each 1-layered distance identifying function f and every r ∈ [[∞]], the
(f, r)-Distance Identifying Set problem restricted to bipartite apex graphs is NP-hard,
and does not admit an algorithm running in 2O(

√
n) time under ETH.

I Theorem 10. The (bipartite) gifted local problems restricted to (bipartite) planar graphs
are NP-hard, and do not admit an algorithm running in 2O(

√
n) time under ETH.

I Theorem 11. For each r-local 0-layered distance identifying function f , (f, r)-DIS
restricted to bipartite planar graphs is NP-hard, and cannot be solved in 2O(

√
n) under

ETH.
I Theorem 12. Let f, g and h be distance identifying functions such that f is 1-layered, g
is q-local 0-layered and h is p-local and admits a local (bipartite) gadget. Let r ∈ [[∞]]. The
(f, r)-, (g, q)- and (h, p)- DIS problems are NP-hard, and do not admit:

algorithms running in 2o(n) time, except if ETH fails,
parameterized algorithms running in 2O(k) · nO(1) time, except if W [2] = FPT.

The parameter k denotes here the solution size of a relevant distance identifying set.
All bounds still hold in the bipartite case (whenever the gadget associated with h is bipartite).

As a side result, the 1-layered general reduction answers a question of Hartung in [20]:
I Corollary 13. Under ETH, Metric Dimension cannot be solved in 2o(n).

Finally, notice that the parameterized lower bound from Theorem 12 may be complemented
by an elementary upper bound inspired from the kernel of IC and LD of size 2k + k:
I Proposition 14. For every r-local distance identifying function f , the (f, r)-Distance
Identifying Set problem has a kernel of size (r + 1)k + k where k is the solution size.
Therefore, it admits a naive parameterized algorithm running in O(nk+3) ∈ O∗(r(k2)) time.
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3 The Supports of the Reductions for Distance Identifying Set

3.1 The Distance Identifying Graphs
Consider the associated graph φ(Ω,S) as defined in Section 2.1. The differences between
the Distance Identifying Set meta-problem and the dominating problem related to
associated graphs actually raise two issues for a reduction based on these latter notions to be
effective on Distance Identifying Set. First, contrarily to the dominating problem where
a vertex may only discern its close neighborhood, the meta-problem may allow a vertex to
discern further than its direct neighborhood. In that case, we cannot certify that a vertex
vΩ

i does not distinguish a vertex vSj when ui is not in Sj , the adjacency not remaining a
sufficient argument. Secondly, one may object that a vertex vΩ

i formally has to distinguish a
vertex vSj from another vertex, but that distinguishing a single vertex is not defined.

To circumvent these problems, we suggest the following fix: rather than producing a
single vertex for each Sj ∈ S, the set VS may contain two vertices vSj and v̄Sj . Then, the
role of vΩ

i would be to distinguish them if and only if ui ∈ Sj . To ensure that the vertex vΩ
i

distinguishes vSj and v̄Sj when ui ∈ Sj , we may use the properties (β1) and (γ) of Definition
6 and 7 for the r-local and 1-layered problems, respectively. Precisely, when ui ∈ Sj , vΩ

i

should be at distance r to vSj (with r = 1 in the 1-layered cases) while v̄Sj should not be in
the r-neighborhood of vΩ

i . Similarly, to ensure that vΩ
i cannot distinguish vSj and v̄Sj when

ui 6∈ Sj , we may use properties (α) or (β2) of Definitions 5 and 6. Hence, when ui 6∈ Sj , vSj
should not be in the r-neighborhood of vΩ

i , or d(vΩ
i , v

S
j ) and d(vΩ

i , v̄
S
j ) should be equal.

That fix fairly indicates how to initiate the transformation of the associated graphs in
order to deliver an equivalence between a hitting set formed by elements of Ω and the vertices
of a distance identifying set included in VΩ. However, it is clearly not sufficient since we also
have to distinguish the couples of vertices of VΩ for which nothing is required. To solve that
problem, we suggest to append to each vertex of the associated graph a copy of some gadget
with the intuitive requirement that the gadget is able to distinguish the close neighborhood
of its vertices from the whole graph. We introduce the notion of B-extension:

I Definition 15 (B-extension). Let H = (VH , EH) be a connected graph, and B ⊆ VH . An
induced supergraph G = (VG, EG) is said to be a B-extension of H if it is connected and for
every vertex v of VG\H , the set N(v) ∩ VH is either equal to ∅ or B.

A vertex v of VG\H such that N(v)∩VH = B is said to be B-adjacent. The B-extensions of
H such that VG\H contains exactly a B-adjacent vertex or two B-adjacent (but not neighbors)
vertices are called the B-single-extension and the B-twin-extension of H, respectively.

Here, the border B makes explicit the connections between a copy of a gadget H and a
vertex outside the copy. In particular, a B-single-extension is formed by a gadget with its
related vertex vΩ

i , while a B-twin-extension contains a gadget with its two related vertices
vSj and v̄Sj . Piecing all together, we may adapt the associated graphs to the meta-problem:

I Definition 16 (distance identifying graph). Let (Ω = {ui | i ∈ [[n]]},S = {Si | i ∈ [[m]]}) be
an instance of Hitting Set. Let H be a connected graph, B a subset of its vertices, and r
a positive integer. The (H,B, r)-distance identifying graph Φ[H,B, r](Ω,S) is as follows.

for each i ∈ [[n]], the graph Φ[H,B, r](Ω,S) contains as induced subgraph a copy HΩ
i of

H together with a BΩ
i -adjacent vertex vΩ

i , where BΩ
i denotes the copy of B.

similarly, for each j ∈ [[m]], the graph Φ[H,B, r](Ω,S) contains a copy HSj of H together
with two BSj -adjacent vertices vSj and v̄Sj ; the latter vertices are not adjacent.
finally, for each Sj ∈ S and each ui ∈ Sj , vΩ

i is connected to vSj by a path of r− 1 vertices
denoted lki,j with d(vΩ

i , l
k
i,j) = k for each k ∈ [[r − 1]].
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Figure 2 A (H, B, 3)-distance identifying graph and a (H, B)-apex distance identifying graph
built on the planar instance formed by Ω = {1, 2, 3, 4} and S = {{1, 2}, {2, 3, 4}}.

When the problem is not local, we prefer the following identifying graph:

I Definition 17 ((H,B)-apex distance identifying graph). An (H,B)-apex distance identifying
graph Φ∗[H,B](Ω,S) is the union of a (H,B, 1)-distance identifying graph with an additional
vertex a called apex such that:

for each ui ∈ Ω, the apex a is BΩ
i -adjacent to HΩ

i .
for each Sj ∈ S, the apex a is adjacent to vSj and v̄Sj .

I Proposition 18. Given an instance (Ω,S) of Planar Hitting Set where |Ω| = n,
|S| = m, the graphs G = Φ[H,B, r](Ω,S) and G′ = Φ∗[H,B](Ω,S)

are connected and have size bounded by (|H|+ 2r)(n+m), (with r = 1 for G′),
may be built in polynomial time in their size,
are bipartite if the B-single extension of H is bipartite,
are respectively planar and an apex graph if the B-twin-extension of H is planar.

Having defined the (apex) distance identifying graphs, the main effort to obtain generic
reduction from Planar Hitting Set is done. We now define relevant gadgets:

I Definition 19 ((f, r)-gadgets). Let f be a distance identifying function and r ∈ [[∞]]. Let
H = (VH , EH) be a connected graph, and B,C be two subsets of VH . We said that the triple
(H,B,C) is a (f, r)-gadget if for every B-extension G of H:
(ph) C f -distinguishes VH and VG.
(pb) C f -distinguishes NB and VG\H \NB , where NB is the set of B-adjacent vertices of G.
(pd) C is an r-dominating set of G[VH ∪NB ].
(ps) For all (f, r)-distance identifying set S of G, |C| ≤ |S ∩ VH |.

I Definition 20 (local gadgets). A (f, r)-gadget is a local gadget, if f is a r-local identifying
function with r 6=∞, and (pl): for every k ∈ [[r]], there exists c ∈ C such that d(c,B) = k− 1.

Consistently, we say that a (f, r)-gadget (H,B,C) is bipartite if the B-single-extension of
H is bipartite, and that it is planar if the B-twin-extension of H is planar.

I Theorem 21. Let (Ω,S) be an instance of Hitting Set such that |Ω| = n > 1, |S| = m.
Let (H,B,C) be a (f, r)-gadget for a 1-layered identifying function f and let (H ′, B′, C ′) be
a local (g, q)-gadget. The following propositions are equivalent:

there exists a hitting set of S of size k.
there exists a (f, r)-distance identifying set of Φ∗[H,B](Ω,S) of size k + |C|(n+m).
there exists a (g, q)-distance identifying set of Φ[H ′, B′, q](Ω,S) of size k + |C ′|(n+m).
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Proof of Theorem 21. We focus on the equivalence between the first and second items.
Suppose first that P is a hitting set of (Ω,S) of size k. By denoting CΩ

i and CSj the
copies of C associated to the copies HΩ

i and HSj of H, we suggest the following set I of size
k + |C|(n+m) as a (f, r)-distance identifying set of G = Φ∗[H,B](Ω,S):

I = {vΩ
i : ui ∈ P} ∪

⋃
i∈ [[n]]

CΩ
i ∪

⋃
j ∈ [[m]]

CSj .

Recall that by construction, G is a BΩ
i -extension of HΩ

i (respectively BSj -extension of HSj )
for any i ∈ [[n]] (respectively j ∈ [[m]]). This directly implies that I is an r-dominating set of
G. Indeed, the condition (pd) of Definition 19 implies that CΩ

i (respectively CSj ) r-dominates
HΩ

i plus vΩ
i (respectively of HSj plus vSj , v̄Sj ). The remaining apex is also r-dominated by

any CΩ
i , as it is BΩ

i -adjacent for every i ∈ [[n]].
We now have to show that I f -distinguishes G. We begin with the vertices of the gadget

copies because the condition (ph) implies that CΩ
i ⊆ I f -distinguishes the vertices of HΩ

i

and G for every i ∈ [[n]], and I f -distinguishes the vertices of HSj and G for every j ∈ [[m]].
Thereby, we only have to study the vertices of the form vΩ

i , vSj , v̄Sj , and the apex a (there is
no vertex of the form lki,j in an apex distance identifying graph). To distinguish them, we
use the condition (pb). Recall that n > 1. Then, for each distinct i, i′ ∈ [[n]], we have:

vΩ
i is BΩ

i -adjacent but not BΩ
i′ -adjacent,

a is both BΩ
i -adjacent and BΩ

i′ -adjacent,
a vertex of the form vSj or v̄Sj is neither BΩ

i -adjacent nor BΩ
i′ -adjacent.

Enumerating the relevant i and i′, we deduce that every couple of vertices is distinguished
except when they are both of the form vSj or v̄Sj′ for j, j′ ∈ [[m]]. But we may distinguish vSj
or v̄Sj′ for distinct j, j′ by applying (pb) on HSj .

It remains to distinguish vSj and v̄Sj for j ∈ [[m]]. We now use the fact that P is a hitting
set for (Ω,S). By definition of a hitting set, for any set Sj ∈ S, there exists a vertex ui ∈ P
such that ui ∈ Sj . We observe that d(vΩ

i , v
S
j ) = 1 < d(vΩ

i , v̄
S
j ) by construction of G and that

vΩ
i ∈ I by definition of I. Since f is 1-layered, I f -distinguishes vSj and v̄Sj .

In the other direction, assume that I is a distance identifying set of G of size k+|C|(n+m).
As every set of S is not empty, we may define a function ϕ : [[m]]→ [[n]] such that uϕ(j) ∈ Sj .

We suggest the following set P as an hitting set of S of size at most k:

P = {ui ∈ Ω | vΩ
i ∈ I} ∪ {uϕ(j) ∈ Ω | vSj ∈ I or v̄Sj ∈ I}

We claim that the only vertices that may f -distinguish vSj and v̄Sj are themselves and
the vertices vΩ

i such that ui ∈ Sj . To prove so, we apply propriety (α) of Definition 5:
the apex a verifies d(a, vSj ) = 1 = d(a, v̄Sj )
a vertex vΩ

i such that ui 6∈ Sj verifies d(vΩ
i , v

S
j ) = 3 = d(vΩ

i , v̄
S
j )

a vertex v of HΩ
i verifies d(v, vSj ) = 2 + d(v,BΩ

i ) = d(v, v̄Sj )
a vertex v of HSj′ with j 6= j′ verifies d(v, vSj ) = 3 + d(v,BSj ) = d(v, v̄Sj )
both vSj and v̄Sj are BSj -adjacent, so they are at the same distance of any vertex of HSj .

We deduce that vSj and v̄Sj are f -distinguished only if either one on them belongs to I (in
that case uϕ(j) ∈ P ∩ Sj) or there exists vΩ

i ∈ I such that ui ∈ Sj (and then ui ∈ P ∩ Sj).
It remains to show that |P | ≤ k. By the condition (ps) of Definition 19, we know that

|I ∩ VHΩ
i
| ≥ |CΩ

i | and |I ∩ VHS
j
| ≥ |CSj | for any i ∈ [[n]] and j ∈ [[m]], implying

k = |I| − |C|(n+m) ≥
∑
i∈[n]

|I ∩{vΩ
i }|+

∑
j∈[m]

|I ∩{vSj , v̄Sj }| ≥
∑

vΩ
i
∈I

1 +
∑

I∩{vS
j

,v̄S
j
}6=∅

1 = |P |

The equivalence between the first and third points is proven in [4]. J
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3.2 Binary Compression of Gadgets
The Theorem 21 is a powerful tool to get reductions, in particular in the planar cases.
However, the number of involved gadgets does not allow to use Theorem 1. This limitation
is due to the uses of a gadget per vertex to identify in the distance identifying graphs. Using
power set, we may obtain a better order: given k gadgets, we may identify 2k − 1 vertices
(we avoid to identify a vertex with the empty subset of gadgets). Thus, we will consider
binary representations of integers as sequences of bits, with weakest bit at last position. For
a positive integer n, we define the integer lgn = 1 + blog2(n)c and introduce a new graph:

I Definition 22 ((H,B, r)-compressed graph). Let (Ω = {ui | i ∈ [[n]]},S = {Si | i ∈ [[m]]})
be an instance of Hitting Set. Let H be a connected graph, B be a subset of its vertices,
and r be a positive integer. The (H,B, r)-compressed graph Ψ[H,B, r](Ω,S) is defined as
follows. Ψ[H,B, r](Ω,S) contains as induced subgraphs lgn+1 copies of H denoted HΩ

i for
i ∈ [[lgn+1]] and lgm another copies of H denoted HSj for j ∈ [[lgm]]. Then:

for each j ∈ [[m]], we add two non-adjacent vertices vSj and v̄Sj . They are BSk -adjacent for
each k ∈ [[lgm]] such that the kth bit of the binary representation of j is 1.
for each i ∈ [[n]], we add r vertices denoted lj−1

i with j ∈ [[r]] to form a fresh path such
that d(vΩ

i , l
j−1
i ) = j − 1 where vΩ

i = l0i . We make vΩ
i BΩ

k -adjacent for each k ∈ [[lgn+1]]
such that the kth bit of the binary representation of i is 1.
for each Sj ∈ S and each ui ∈ Sj , we add the edge (lr−1

i , vSj ).
we add r vertices denoted aj−1 with j ∈ [[r]] to form a path such that d(a0, aj−1) = j − 1.
The vertex a0 is BΩ

k -adjacent for every k ∈ [[lgn+1]], and we add the edges (ar−1, vSj ) and
(ar−1, v̄Sj ) for each j ∈ [[m]].

By definition of lgn+1, for every i ∈ [[n]], one of the last lgn+1 bits of the binary representation
of i is 0. So, a0 has a distinct characterization in the power set formed by the gadgets HΩ

i .

I Proposition 23. The graph Ψ[H,B, r](Ω,S) built on an instance (Ω,S) of Hitting Set
is connected and has size at most |H|(lgn+1 + lgm) + r(n + 1) + 2m, where |Ω| = n,
|S| = m

may be built in polynomial time in its size,
is bipartite if the B-single extension of H is bipartite.

I Theorem 24. Let (Ω,S) be an instance of Hitting Set such that |Ω| = n, |S| = m. Let
(H,B,C) be a (f, r)-gadget for a 1-layered identifying function f and let (H ′, B′, C ′) be a
local (g, q)-gadget. The following propositions are equivalent:

there exists a hitting set of S of size k.
there exists a (f, r)-distance identifying set of Ψ[H,B, 1](Ω,S) of size k+|C|(lgn+1 + lgm).
there exists a (q, r)-distance identifying set of Ψ[H ′, B′, q](Ω,S) of size k+|C ′|(lgn+1 + lgm).

4 On Providing Gadgets to Establish Generic Reductions

In this section, we finalize the reductions by furnishing some gadgets and combining them
with the suitable theorems and propositions from Section 3. We directly define the gadgets.

I Definition 25 (The 1-layered gadget). Let H be the bipartite planar graph such that:
Its ten vertices are denoted b, b̄, u1, ū1, u2, ū2, v1, v̄1, v2 and v̄2,
The vertices u1, u2, ū1 and ū2 form a cycle as well as the vertices v1, v2, v̄1 and v̄2.
The vertices b and b̄ are adjacent to u1, ū1, v1 and v̄1.
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BΩ
3 BΩ

2 BΩ
1

BS
2 BS

1

vΩ
4

l14

vΩ
3

l13

vΩ
2

l12

vΩ
1

l11

vS2 v̄S2 v
S
1 v̄S1

a0

a1

HΩ
3 HΩ

2 HΩ
1

HS
2 HS

1

Figure 3 A (H,B,2)-compressed graph built
with Ω = {1, 2, 3, 4} and S = {{1, 2}, {2, 3, 4}}.

b b̄

u1

u2

ū1

ū2

v1

v2

v̄1

v̄2

B

Figure 4 The 1-layered gadget (H, B, C).
C contains the colored vertices.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

B2

Figure 5 The 2-local 0-layered gadget.
C2 contains the colored vertices.

b21 a21

a11b11

b1 a1

b22 a22

a12b12

b2 a2b3 a3b0 a0
B2

Figure 6 The 2-IC gadget.
C2 contains the colored vertices.

We define the sets B = {b, b̄} and C = {b, u1, u2, v1, v2}.
The triple (H,B,C) is called the 1-layered gadget (see Fig. 4).

I Definition 26 (The r-local 0-layered gadget). Given an integer r > 1 (respectively r = 1),
let Hr be the bipartite planar graph of size 4r + 2 (respectively 8) such that:

its vertices are denoted ai and bi for i ∈ [[2r + 1]] (respectively i ∈ [[4]]),
for each i ∈ [[2r]] (respectively i ∈ [[3]]), both ai and bi are adjacent to ai+1 and bi+1

We define the sets Br = {a1, b1} and Cr = {ai | i ∈ [[2r + 1]]} (respectively C1 =
{a1, a2, a3, a4}). The triple (Hr, Br, Cr) is called the r-local 0-layered gadget (see Fig. 5).

For each positive integer r, r-LD and r-MD are r-local 0-layered problems, whereas r-IC
is not 0-layered. We define a specific gadget for this remaining problem.

I Definition 27 (The r-IC gadget). Given a positive integer r, let Hr be the bipartite planar
graph of size 6r + 4 such that:

its vertices are denoted ai−1 and bi−1 for i ∈ [[r+ 2]], and aj
i and bj

i for i ∈ [[r]] and j ∈ [[2]].
We also denote a0 as a1

r+1 and a2
r+1 and we denote b0 as b1r+1, b2r+1, a1

0 and a2
0.

the edges are all included in the six following paths
from a0 to ar+1 such that d(a0, ai) = i for i ∈ [[r + 1]].
from b0 to br+1 such that d(b0, bi) = i for i ∈ [[r + 1]].
from a1

0 to a1
r+1 such that d(a1

0, a
1
i ) = i for i ∈ [[r + 1]].

from a2
0 to a2

r+1 such that d(a2
0, a

2
i ) = i for i ∈ [[r + 1]].

from b11 to b1r+1 such that d(b11, b1i ) = i− 1 for i ∈ [[r + 1]].
from b21 to b2r+1 such that d(b21, b2i ) = i− 1 for i ∈ [[r + 1]].

We define the sets Br = {b11, b21} and Cr = {ar+1, br+1} ∪
⋃

i∈[[r+1]]
{a1

i , b
1
i }.

The triple (Hr, Br, Cr) is called the r-IC gadget (see Fig. 6).

As expected, we have the following propositions:
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I Proposition 28. The 1-layered gadget is a bipartite planar (f, r)-gadget for any
1-layered distance identifying function f and r ∈ [[∞]].

I Proposition 29. Given a positive integer r, the r-local 0-layered gadget is a local bipartite
planar (f, r)-gadget for every r-local 0-layered distance identifying function f .

I Proposition 30. Given a positive integer r, the r-IC gadget is a local bipartite planar
(f, r)-gadget for the identifying function f associated with r-IC, where fG[w](u, v) = true if
w ∈ Nr[u]∆Nr[v] for relevant inputs G, u, v and w.

With Propositions 28 to 30, we can now prove the Theorems 9 to 12. We focus here on
1-layered distance identifying functions and show the other reductions in [4].

Proof of Theorems 9 and 12 for each 1-layered identifying function f and r ∈ [[∞]].
We first suggest a reduction from Planar Hitting Set to (f, r)-DIS based on the bipartite
planar 1-layered gadget (H,B,C). Let (Ω,S) be an instance of Planar Hitting Set with
|Ω| = n and |S| = m such that m = O(n). According to Proposition 18, the bipartite
apex graph G = Φ∗[H,B](Ω,S) has size n′ linear in n + m = O(n) and may be built in
polynomial-time in its size. Recall that (H,B,C) is a (f, r)-gadget by Proposition 28. By
Theorem 21, G admits a (f, r)-distance identifying set of size k′ = k + |C|(n+m) if an only
if S admits an hitting set of size k. Thus, an algorithm solving (f, r)-DIS in 2o(

√
n′) would

solve Planar Hitting Set in time 2o(
√

n), a contradiction to Theorem 3 (assuming ETH).
We adapt the previous argumentation to get a reduction from Hitting Set to (f, r)-DIS,

the instance (Ω,S) belonging now to the Hitting Set problem. According to Proposition
23, the bipartite graph G = Ψ[H,B, 1](Ω,S) has size n′ linear in n+m = O(n) and may also
be built in polynomial-time in its size. By Theorem 24, G admits a (f, r)-distance identifying
set of size k′ = k + |C|(lgn+1 + lgm) if an only if S admits an hitting set of size k. Thus, an
algorithm solving (f, r)-DIS in 2o(n′) would solve Hitting Set in time 2o(n), contradicting
Theorem 2 when assuming ETH. Moreover, a parameterized algorithm solving (f, r)-DIS in
2O(k) · n′O(1) would be in contradiction with Theorem 1 when assuming W[2] 6= FPT. J

5 Conclusion

In this paper, we showed generic tools to analysis identifying problems and their computational
lower bounds. This study opens some new questions. First of all, we observe that our toolbox
does not contain a r-local gadget. Does one exist? Furthermore, there is still a gap between
the computational lower bound provided by Theorem 12 and the elementary upper bound
from Proposition 14 in the local cases. We wonder if local problems may be solved in
kO(k) · nO(1). Notice that a polynomial kernel would imply such a complexity (but the
reciprocal is not true). For non-local problems, an FPT upper bound is globally unknown. In
particular, W[2]-hard problems like MD cannot admit FPT algorithms unless W[2] = FPT.
Then, which non-local problem is W[2]-hard? We mention that we actually get a FPT
reduction from Hitting Set to some scarce non-local problems (however including MD)
proving their W[2]-hardness, but the family of involved problems is not precise nor wide.
Nevertheless, we remark that most of our reductions may be generalized to the oriented
version of Distance Identifying Set sometimes even for the strongly connected graphs
–this is due to the fact that the paths in our distance identifying graphs and gadgets may
often be seen as oriented–. Thus, we inform the community that the oriented version of MD
(studied for Cayley graphs in [15]) remains W[2]-hard.
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