
Original Citation:

Efficient composite likelihood for a scalar parameter of interest

John Wiley
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as
described at http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3288567 since: 2020-12-07T17:45:10Z

10.1002/sta4.222

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ORIGINALARTICLE

Efficient composite likelihood for a scalar parameter of interest
Luigi Pace*1 | Alessandra Salvan2 | Nicola Sartori2

1Department of Economics and Statistics,
University of Udine, Italy
2Department of Statistical Sciences, University
of Padova, Italy
Correspondence
*Luigi Pace, Department of Economics and
Statistics, University of Udine, Via Tomadini
30/A, 33100Udine, Italy. Email:
luigi.pace@uniud.it

Funding Information
This research was supported by the Italian
Ministry of Education PRIN 2015 grant
2015EASZFS_003, by the University of Udine
grant PRID2017_DIES004 and by the
University of Padova grant BIRD185955.

Summary
For inference in complex models, composite likelihood combines genuine likelihoods based on
low-dimensional portions of the data, with weights to be chosen. Optimal weights in composite
likelihoodmay be searched following different routes, leading to a solution only in scalar parame-
ter models. Here, after briefly reviewing the main approaches, we show how to obtain first order
optimal weights when using composite likelihood for inference on a scalar parameter in the pres-
ence of nuisance parameters. These weights depend on the true parameter value and need to
be estimated. Under regularity conditions, the resulting likelihood ratio statistic has the stan-
dard asymptotic null distribution and improved local power. Simulation results in multivariate
normal models show that estimation of optimal weights maintains the standard approximate null
distribution and produces a visible gain in power with respect to constant weights.
KEYWORDS:
Asymptotic efficiency, composite likelihood, log likelihood ratio statistic, multivariate normal,
nuisance parameter.

1 INTRODUCTION
Complex models for high-dimensional data often entail that the full likelihood is difficult to specify or computationally intractable. In these cases,
inference can be based on possibly dependent genuine log likelihoods from selected low-dimensional portions of the data. Composite log likelihood
(Lindsay 1988; Varin et al. 2011) combines these individual log likelihoods through a linear combination with suitable weights.
In the literature, several contributions have considered the choice ofweights for a given set of log likelihoods to be combined. Although a popular

and straightforward option, equal weights may be inefficient. Unequal weights have been suggested aiming at computational and/or statistical
efficiency. Zero-one weights defined through an efficient tapering strategy have been extensively studied for spatial models, see Sang & Genton
(2014, Section 3.2) for a review, and also Castruccio et al. (2016).
For more general models, optimal weights have been investigated following two different routes. The first route exploits the theory of optimal

combination of estimating equations, as in Lindsay (1988, Section 4), McCullagh &Nelder (1989, Section 9.4.2), Heyde (1997, Chapter 6). Typically,
the weights in the optimal estimating equation are a function of the parameter, and therefore the corresponding optimal estimating function is not
the score of a composite log likelihood. See Kuk (2007) and Deng et al. (2014) for optimal estimating equations from composite likelihood. See also
Li & Sang (2018). A second route is proposed in Fraser & Reid (2018), where optimal weights are obtained for composite likelihood for a scalar
parameter, based on a first order asymptotic analysis using score variables. These optimal weights depend on a reference parameter value, which in
practice has to be estimated.
In this paper, after a brief review of optimal combination of estimating functions and log likelihoods, we focus on inference on a scalar parame-

ter of interest in the presence of nuisance parameters.We obtain expressions for first order optimal weights when combining individual profile log
likelihoods. For inference based on the composite likelihood ratio statistic with estimated optimal weights, we give examples of the optimal combi-
nation inmultivariatenormalmodelswith commonmarginalmeanof interest andvarious correlation structuresdependingonnuisanceparameters.
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Simulation results show that use of estimated optimal weights instead of equal weights maintains the standard approximate null distribution and
produces a visible gain in power.

2 OPTIMAL COMBINATIONOF ESTIMATING FUNCTIONSAND LOG LIKELIHOODS
Let y be the datamodelled as a realization of the random variableYwith density pY (y; θ), θ ∈ Θ ⊆ IRp. The full log likelihood is `(θ) = log pY (y; θ),
with score vector u(θ) = (∂/∂θ)`(θ). Let `j(θ), j = 1, . . . , q, be possibly dependent genuine log likelihoods based on low-dimensional portions of
the data. A composite log likelihood (Lindsay 1988; Varin et al. 2011) is

`C (θ) =

q∑
j=1

wj`j(θ) , (1)

wherew = (w1, . . . ,wq)> is a vector of weights to be chosen. Equal weights,wj = 1, j = 1, . . . , q, give

`I (θ) =

q∑
j=1

`j(θ) , (2)

the independence combination. This is the optimal combination of the `j(θ)’s when sources are independent.
Weights in (1) are assumed to be non-negative in most of the literature, as in Varin et al. (2011). This restriction guarantees that the Kullback–

Leibler information inequality propagates from each individual `j(θ) to `C (θ). See Lindsay et al. (2011, Section 4.7) for other reasons in favour
of non-negative weights. Use of possibly negative weights is explored in Harden (2013, Section 3.2). For what follows, the assumption wj ≥ 0,
j = 1, . . . , q, is unnecessarily restrictive.
Let Id denote the identity matrix of order d. Notation x = [xj] is used for a vector with entries xj. Similarly, A = [ajk] is a matrix with entries ajk.

For a squarematrixA = [ajk], we write x = diag(A) = [ajj]. Conversely,A = diag(x) is the diagonal matrix having x as its main diagonal.
The score function of `j(θ), j = 1, . . . , q, is denoted by uj(θ) = (∂/∂θ)`j(θ) = [ujr(θ)] = [(∂/∂θr)`j(θ)] , r = 1, . . . , p. The corresponding Fisher

information is Ijj(θ) = Varθ
{

uj(θ)
}
= Eθ

{
−(∂/∂θ>)uj(θ)

}, assumed to be of orderO(n). For the last equality, we require that each `j(θ) satisfies
the first and the second Bartlett identities.
Let uV (θ) be the qp-dimensional vector obtained by concatenating the score vectors uj(θ). The covariance matrix of uV (θ) is denoted byΣV (θ).

It is a square matrix of order pq with diagonal blocks Ijj(θ), and off-diagonal blocks Ijk(θ) = Covθ(uj(θ), uk(θ)), j, k = 1, . . . , q, accounting for
correlation between sources. We assume that ΣV (θ) has full rank. Moreover, let iV (θ) be the (qp, p)matrix obtained by stacking the information
matrices Ijj(θ). Under regularity conditions, iV (θ) = Eθ{uV (θ)u(θ)

>} (see e.g. Jørgensen &Knudsen 2004, formula (1)).
For an unbiased estimating function q(θ) = q(θ; y), i.e. a function such that Eθ{q(θ;Y)} = 0, the sensitivity and variability matrices areH(θ) =

Eθ{−(∂/∂θ>)q(θ;Y)} and J(θ) = Varθ{q(θ;Y)}, respectively. Godambe information is G(θ) = H(θ)>J(θ)−1H(θ). Under regularity conditions,
G(θ)−1 is the asymptotic covariance matrix of the estimator defined as a consistent root of q(θ) = 0. IfH(θ) = J(θ),G(θ)−1 = H(θ)−1 and q(θ) is
called information unbiased (Jørgensen &Knudsen 2004; Lindsay 1982).
The estimating function from (1), uC (θ) =

∑q
j=1 wjuj(θ), is unbiased.Writing

uC (θ) = (w1Ip, . . . ,wqIp) uV (θ) , (3)
sensitivity and variability of uC (θ) are

JC (θ) = (w1Ip, . . . ,wqIp)ΣV (θ)(w1Ip, . . . ,wqIp)
> , HC (θ) = (w1Ip, . . . ,wqIp) iV (θ) .

If a vector of weights is such thatHC (θ) is positive definite, then Eθ0
(`C (θ)) has a local maximum at θ = θ0. This condition is crucial for consistency

of themaximum composite likelihood estimator and can hold even ifwj < 0 for some j (see Example 1).
When p = 1, JC (θ) = w>ΣV (θ)w andHC (θ) = w>iV (θ), so that Godambe information is

GC (θ) =
{w>iV (θ)}2

w>ΣV (θ)w
=

Cov2
θ {uC (θ), u(θ)}

Varθ {uC (θ)}
. (4)

The theory of optimal combination of estimating functions (Lindsay, 1988, Section 4; McCullagh & Nelder, 1989, Section 9.4.2; Heyde, 1997,
Chapter 6), applied to uj(θ), j = 1, . . . , q, leads to

q∗(θ) = iV (θ)
>ΣV (θ)

−1uV (θ) . (5)
The combination q∗(θ) is the best linear predictor of u(θ) based on uV (θ). Indeed, iV (θ)> ΣV (θ)

−1 is thematrix of the regression coefficients of the
full likelihood score, u(θ), on uV (θ). The estimating function q∗(θ) is both unbiased and information unbiased.
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From (3), we see that uC (θ) is of the form (5) only if

(w1Ip, . . . ,wqIp) = iV (θ)
> ΣV (θ)

−1 (6)
for some w1, . . . ,wq not depending on θ. When p > 1, condition (6) is severely restrictive, and, even when p = 1, it requires that the vector of
optimal weights does not depend on θ.
For a scalar θ, Fraser & Reid (2018) obtain optimal weights for `C (θ) through a first order asymptotic analysis of the uj(θ)’s at a reference

parameter value θ0. The optimal weights depend on θ0. They are
w∗(θ0) = [w∗j (θ0)] = ΣV (θ0)

−1iV (θ0) (7)
and the optimally weighted composite log likelihood is

`∗
C
(θ) =

q∑
j=1

w∗j (θ0)`j(θ) . (8)

In practice, θ0 has to be estimated, e.g. from `I (θ).
The score u∗

C
(θ) = (∂/∂θ)`∗

C
(θ) is an unbiased estimating function. At θ = θ0 it is information unbiased and optimal, being u∗

C
(θ0) = q∗(θ0).

Writing the information unbiasedness condition JC (θ0) = HC (θ0) as
w>{ΣV (θ0)w − iV (θ0)} = 0 , (9)

we see that weightsw∗(θ0)make the vector in brackets equal to the zero vector. Supplementing illustrations in Fraser & Reid (2018, Section 3), we
give below three examples of optimal weights for composite likelihood for a scalar θ in some special settings.

Example 1Optimal weights need not all be positive.
Consider a ΣV (θ0) having Toeplitz, i.e. diagonal-constant, structure. Let q = 10 and first row entries of ΣV (θ0) be I1k = {(10 − k + 1)/10}1/2,
k = 1, . . . , 10. Then, using (7), w∗(θ0) = (1.942,−0.490,−0.258,−0.183,−0.156,−0.156,−0.183,−0.258,−0.490, 1.942)> . The symmetry
relationw∗(θ0)j = w∗(θ0)q−j+1 holds wheneverΣV (θ0) has Toeplitz structure. From (4), the asymptotic relative efficiency of the maximizer of (2)
with respect to themaximizer of (8) is 0.729.

Example 2 Two sources.
When q = 2, uV (θ)

> = (u1(θ), u2(θ)), iV (θ)> = (I11(θ), I22(θ)) and

ΣV (θ) =

(
I11(θ) I12(θ)

I12(θ) I22(θ)

)
.

Supposing, without loss of generality, I11(θ) ≥ I22(θ), and−1 < ρ(θ) < 1, where ρ(θ) = I12(θ)/
√

I11(θ)I22(θ), optimal weights are given by

w∗(θ0) =
1

1− ρ2(θ0)

(
1− ρ(θ0)

√
I22(θ0)/I11(θ0)

1− ρ(θ0)
√

I11(θ0)/I22(θ0)

)
.

From (4), the asymptotic relative efficiency of the maximizer of (2) with respect to the maximizer of (8) is equal to (1 − ρ2)/(1 − 4ρ2Q/(1 + Q)2),
where ρ = ρ(θ0),Q = I11(θ0)/I22(θ0) ≥ 1. It approaches zero as ρ2 approaches 1, the faster the largerQ− 1 is.

Example 3 Correlation exchangeable sources.
Suppose that the q sources are correlation exchangeable, i.e. Ijj(θ) = σ2(θ) and Ijk(θ) = ρ(θ)σ2(θ) for every j, k ∈ {1, . . . , q} with j 6= k. Then
ΣV (θ) = σ2(θ)RV (θ), where

RV (θ) = (1− ρ(θ))Iq + ρ(θ)1q1>q ,

where 1q is a q-dimensional vector of ones. The matrix RV (θ) is positive definite provided that ρ(θ) > −1/(q − 1). Equation (9) is satisfied if
RV (θ0)w = 1q. The sum of the entries of each row ofRV (θ0) is constant and equal to 1 + ρ(θ0)(q− 1). Therefore, the optimal weights are

w∗(θ0) =
1

1 + ρ(θ0)(q− 1)
1q ,

so that `∗
C
(θ) = `I (θ)/{1 + ρ(θ0)(q− 1)} and themaximizer of (8) coincides with themaximizer of (2).

The composite log likelihood ratio statistic from `∗
C
(θ),

W∗
C
(θ0) = 2

{
`∗

C
(θ̂∗

C
)− `∗

C
(θ0)

}
, (10)
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with θ̂∗
C
themaximizer of `∗

C
(θ), has aχ2

1 asymptotic null distribution under regularity conditions. Optimality of u∗
C
(θ0) translates into maximization

of the local power of (10).
In contrast, when JC (θ0) 6= HC (θ0), the log likelihood ratio statisticWC (θ0) from `C (θ0)has a rescaledχ2

1 asymptotic null distribution, νZ2, where
theZ ∼ N(0, 1) and ν = JC (θ0)HC (θ0)

−1 (see e.g. Molenberghs & Verbeke 2005, Section 9.3.3). Therefore,
WA (θ0) =

HC (θ0)

JC (θ0)
WC (θ0) (11)

is asymptotically χ2
1 under θ0. The local power of WA (θ0) is usually inferior to that of W∗

C
(θ0). Indeed, standard expansions show that the local

non-null asymptotic distribution ofWA (θ0), when the true parameter is θ = θ0 + δ/
√

n, is non-central chi-squared on one degree of freedom and
non-centrality parameter δ2GC (θ0)/n, which is maximumwhen `C (θ) is `∗C (θ). In the special case when the q sources are correlation exchangeable,
as in Example 3,W∗

C
(θ0) coincideswith themultiplicative adjustment (11) of the log likelihood ratio from `I (θ).Multiplicative adjustments ofWC (θ0)

when p > 1 are proposed in Chandler & Bate (2007) and Pace et al. (2011).

3 INFERENCEONA SCALAR PARAMETEROF INTEREST
Suppose that the log likelihoods to be combined are `j(ψ, λ), j = 1, . . . , q, where ψ is a scalar parameter of interest and λ is a nuisance parameter.
Let ujψ(ψ, λ) = (∂/∂ψ)`j(ψ, λ) and ujλ(ψ, λ) = (∂/∂λ)`j(ψ, λ) be the components of the score function of `j(ψ, λ).
The most straightforward route to obtain first order optimal weights for inference about ψ is to define a composite log likelihood for ψ by

combining profile log likelihoods from each source. This gives
`C (ψ) =

q∑
j=1

wj`j(ψ, λ̂jψ) , (12)

where λ̂jψ is themaximizer of `j(ψ, λ)with respect to λwithψ fixed.
First order optimal weights for (12) may be derived as a generalization of (7) because the log likelihoods `j(ψ, λ̂jψ) satisfy toO(1) the first two

Bartlett identities. In particular, they are obtained by replacingΣV (θ0) and iV (θ0) in (7) by a first order approximation,ΣVP , of the covariancematrix
of [ujψ(ψ, λ̂jψ)] and of its main diagonal, respectively. Off-diagonal entries of ΣVP involve correlation between sources that may depend on an
additional parameter ν . The overall parameter is then θ = (ψ, λ, ν), so that generally ΣVP = ΣVP (θ). We suppose that Θ = Ψ × Λ × N, where
ψ ∈ Ψ, λ ∈ Λ, ν ∈ N.
The first order approximationΣVP is obtained using the standard expansion

ujψ(ψ, λ̂jψ) = ujψ(ψ, λ)− Ijψ, jλ(ψ, λ)Ijλ, jλ(ψ, λ)
−1ujλ(ψ, λ) + Op(1) ,

where Ijψ, jλ(ψ, λ) = Eψ,λ
{

ujψ(ψ, λ)ujλ(ψ, λ)
>} and Ijλ, jλ(ψ, λ) = Eψ,λ

{
ujλ(ψ, λ)ujλ(ψ, λ)

>} are blocks of the Fisher information from
`j(ψ, λ), as well as Ijψ, jψ(ψ, λ) = Varψ,λ

{
ujψ(ψ, λ)

}, j = 1, . . . , q. The diagonal entries ofΣVP are then
(ΣVP )jj = Ijψ,jψ(ψ, λ)− Ijψ,jλ(ψ, λ) Ijλ,jλ(ψ, λ)

−1 Ijλ,jψ(ψ, λ) .

The off-diagonal entries ofΣVP are expressed using, for j, k = 1, . . . , q, j 6= k, the quantities
Ijψ,kψ(θ) = Eθ

{
ujψ(ψ, λ)ukψ(ψ, λ)

}
, Ijλ,kψ(θ) = Eθ

{
ujλ(ψ, λ)ukψ(ψ, λ)

}
,

Ijψ,kλ(θ) = Eθ
{

ujψ(ψ, λ)ukλ(ψ, λ)
>} , Ijλ,kλ(θ) = Eθ

{
ujλ(ψ, λ)ukλ(ψ, λ)

>} .
Weobtain

(ΣVP )jk = Ijψ,kψ(θ)− Ikψ,kλ(ψ, λ)Ikλ,kλ(ψ, λ)
−1Ikλ,jψ(θ)− Ijψ,jλ(ψ, λ)Ijλ,jλ(ψ, λ)

−1Ijλ,kψ(θ)

+Ijψ,jλ(ψ, λ)Ijλ,jλ(ψ, λ)
−1Ijλ,kλ(θ)Ikλ,kλ(ψ, λ)

−1Ikλ,kψ(θ) .

Hence, denoting by θ0 the true value of θ, first order optimal weights in (12) are
w∗

P
(θ0) = ΣVP (θ0)

−1diag(ΣVP (θ0)) .

When ψ and λ are orthogonal for all sources, i.e. when, for j = 1, . . . , q, Eψ,λ {ujψ(ψ, λ) ujλ(ψ, λ)
}

= Ijψ, jλ(ψ, λ) = 0, we have ΣVP (θ0) =

[Ijψ,kψ(θ0)], where Ijψ,jψ(θ0) = Ijψ,jψ(ψ0, λ0). Therefore, first order optimal weights become
w∗

P
(θ0) = [Ijψ,kψ(θ0)]

−1[Ijψ,jψ(θ0)] . (13)
Moreover, under orthogonality, first order inference based on `j(ψ, λ̂jψ) is equivalent to first order inference based on `j(ψ, λ̂j) or even on `j(ψ, λ̃),
where λ̂j is the unconstrained maximum likelihood estimate of λ from `j(ψ, λ) and λ̃ is a √n-consistent estimate of λ. A first order optimal
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combination is, therefore,

`∗
C
(ψ) = w∗

P
(θ0)
>`V (ψ, λ̃) , (14)

with `V (ψ, λ) = [`j(ψ, λ)].
To use `∗

C
(ψ) in practice, weightsw∗

P
(θ0) are to be estimated by a√n-consistent estimate w̃∗

P
, giving `∗

EC
(ψ) = (w̃∗

P
)>`V (ψ, λ̃). The composite log

likelihood `∗
EC
(ψ) satisfies toO(1) the first two Bartlett identities. As a consequence, log likelihood ratio statistic

W∗
EC
(ψ0) = 2

{
sup
ψ∈Ψ

`∗
EC
(ψ)− `∗

EC
(ψ0)

}
(15)

has an asymptoticχ2
1 null distribution.

4 ILLUSTRATIONS: INFERENCEONACOMMONMEAN INMULTIVARIATENORMALMODELS
LetY1, . . . ,Yn be independent random variables withYi = (Yi1, . . . ,Yiq)

> ∼ Nq(µ1q, σ2R), where µ ∈ IR is the parameter of interest, σ2 > 0 is a
nuisance parameter, and the correlationmatrixR is provisionally supposed to be known. Univariate margins provide the log likelihoods

`j(µ, σ
2) = −

n

2
log σ2 −

1

2σ2

n∑
i=1

(yij − µ)2 , j = 1, . . . , q .

The parameter of interest µ is orthogonal to covariance parameters. To compute first order optimal weights (13), only covariances of scores
ujµ(µ, σ

2) =
∑n

i=1(yij − µ)/σ2, j = 1, . . . , q, are needed.We have Ijµ,kµ(µ, σ
2) = nCov(Y1j,Y1k)/σ

4, j, k = 1, . . . , q, so thatΣVP (µ0, σ
2
0) = nR/σ2

0

and
w∗

P
(θ0) = w∗

P
= R−1diag(R) = R−11q .

Log likelihood (14) for µ is then
`∗

C
(µ) = −

n

2
(1>q w∗

P
) log σ̃2 −

1

2σ̃2

q∑
j=1

(w∗
P
)j

n∑
i=1

(yij − µ)2

= −
n

2
(1>q R−11q) log σ̃

2 −
1

2σ̃2

n∑
i=1

1>q R−1diag
{
(yi − 1qµ)(yi − 1qµ)

>
}
,

where σ̃2 is a moment estimate σ2, and is maximized by
µ̂C =

(w∗
P
)>ȳV

(w∗
P
)>1q

,

where ȳ>
V

= (ȳ1, . . . , ȳq), with ȳj =
∑n

i=1 yij/n. A direct check shows that µ̂C is also themaximum of the full log likelihood

`(µ) = −
nq

2
log σ2 −

n

2
log |R| −

1

2σ2

n∑
i=1

(yi − 1qµ)
>R−1(yi − 1qµ) .

The likelihood ratio statistic from `∗
C
(µ) is

W∗
C
(µ0) =

n

σ̃2
(1>q w∗

P
)(µ̂C − µ0)

2 . (16)
Wewill useW∗

EC
(µ0) to denote the likelihood ratio statistic (16) computedwith estimatedweights w̃∗

P
, that is with estimatedR.

Because of orthogonality, σ2 in the independence log likelihood
`I (µ, σ

2) = −
nq

2
log σ2 −

1

2σ2

q∑
j=1

n∑
i=1

(yij − µ)2

may be replacedwith a consistent estimate σ̃2. Adjustment of `I (µ, σ̃
2) requires

HI = HI (µ0, σ
2
0) = 1>q iV (µ0, σ

2
0) =

nq

σ2
0

and
JI = JI (µ0, σ

2
0) = 1>q ΣV (µ0, σ

2
0)1q =

n

σ2
0

1>q R1q .

The adjustment factorHI/JI is q/(1>q R1q) and the corresponding adjusted likelihood ratio statistic is
WA (µ0) =

nq2

σ̃2 1>q R1q
(µ̂I − µ0)

2 (17)
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TABLE1Equicorrelatedmultivariate normalmodelwith commonmarginalmeans. Empirical rejection probabilities (%) forW∗
EC
(µ) for testingµ = 0

at nominal levels 10%, 5%, 1%, 104 replications, n = 5, 10, 20, q = 5, true values σ2 = 1 and ρ = 0.1, 0.5, 0.9, (a) µ = 0, (b) µ = 0.5.

n = 5 n = 10 n = 20

ρ 10 5 1 10 5 1 10 5 1
0.1 13.10 7.75 2.82 11.72 6.82 2.09 11.34 6.36 1.75

(a) 0.5 17.61 11.95 5.87 13.55 8.18 2.93 11.43 6.75 2.15
0.9 17.43 12.33 6.37 13.85 8.20 2.88 11.22 6.33 2.07

0.1 66.65 55.42 36.38 89.69 83.22 65.26 99.32 98.41 93.87
(b) 0.5 46.78 37.56 23.61 65.94 55.03 35.23 88.86 82.21 63.35

0.9 38.14 29.34 17.44 51.81 40.81 23.24 75.64 65.49 42.86

with µ̂I = ȳ = (nq)−1∑n
i=1

∑q
j=1 yij. Wewill denote byWEA (µ0) the likelihood ratio statistic (17) computedwith estimatedR.

The asymptotic efficiency of µ̂I relative to µ̂C depends onR only and is
ARE =

q2

(1>q R1q) (1>q R−11q)
. (18)

In the following, we consider three correlation structures with parameters to be estimated. Simulation results are given to compare the null
distribution and power ofW∗

EC
(µ) andWEA (µ).

Example 4 Equicorrelated multivariate normal model.
LetR = (1− ρ)Iq + ρ1q1>q , with ρ ≥ 0. The process generating data yij, i = 1, . . . , n, j = 1, . . . , q, can be seen asYij = µ+ ξi + εij ,where ξi and εij

are independent random variables havingmarginal distributions ξi ∼ N(0, σ2
ξ) and εij ∼ N(0, σ2

ε). Then σ2 = σ2
ξ + σ2

ε , ρ = σ2
ξ/(σ

2
ξ + σ2

ε) .

Sources `j(µ, σ
2) are correlation exchangeable, being ujµ(µ, σ

2) =
∑n

i=1(yij − µ)/σ2 , and Ijµ,jµ(µ, σ
2) = nσ2, Ijµ,kµ(µ, σ2, ρ) = nσ2ρ. Results

of Example 3 apply, so that `∗
C
(µ) = 1/(1 + ρ(q− 1))`I(µ, σ̃

2) and
W∗

EC
(µ0) =

nq

σ̃2(1 + ρ̃(q− 1))
(ȳ − µ0)

2 ,

that coincideswithWEA (µ0) computed using the same estimates σ̃2 and ρ̃. Moment estimates σ̃2 and ρ̃ ofσ2 and ρmay be used (see e.g. Searle et al.
1992, Section 3.5) given by

σ̃2 =
SSB

(n− 1)q
+

SSE

nq
, ρ̃ = max

(
SSB/(n− 1)− SSE/(n(q− 1))

SSE/n + SSB/(n− 1)
, 0

)
,

where
SSE =

n∑
i=1

q∑
j=1

(yij − ȳi)
2 , SSB = q

n∑
i=1

(ȳi − ȳ)2 ,

with ȳi =
∑q

j=1 yij/q.
The empirical distribution of W∗

EC
(µ) for testing µ = 0 has been evaluated through a simulation study. The results with 104 replications,

n = 5, 10, 20, q = 5, true values σ2 = 1, ρ = 0.1, 0.5, 0.9, and (a) µ = 0, (b) µ = 0.5, are displayed in Table 1. The null distribution ofW∗
EC
(µ)

approaches the nominal χ2
1 as n increases or ρ gets closer to zero. From n = 20, empirical power is reasonably close to values, not shown in the

table, obtainedwith known σ2 and ρ using the statisticW∗
C
(µ0) = nq(ȳ − µ0)

2/{σ2
0(1 + ρ0(q− 1))}whose null distribution is exactlyχ2

1.

Example 5 AR(1) model.
Let us consider an autoregressive specification of order 1, i.e. R = [ρ|j−k|], where |ρ| < 1. Let εij be independent random variables with marginal
distribution εij ∼ N(0, σ2

ε), σ2
ε > 0. The data generating process for yij, i = 1, . . . , n, j = 1, . . . , q, can be seen as Yi1 ∼ N(µ, σ2

ε/(1 − ρ2)) and
Yij − µ = ρ(Yij−1 − µ) + εij, j = 2, . . . , q. Here, σ2 = σ2

ε/(1− ρ2). From

R−1 =
1

1− ρ2



1 −ρ 0 · · · 0 0

−ρ 1 + ρ2 −ρ 0 · · · 0

0 −ρ 1 + ρ2 −ρ · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 −ρ 1
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TABLE2AR(1)model. Empirical rejectionprobabilities (%) forWEA (µ) andW∗
EC
(µ) for testingµ = 0 at nominal levels 10%, 5%, 1%,104 replications,

q = 10, true values σ2 = 1, ρ = −0.8, µ = 0 and µ = 0.5with n = 1, µ = 0 and µ = 0.25with n = 5, µ = 0 and µ = 0.20with n = 10.

µ = 0 µ = 0.5

10 5 1 10 5 1
n = 1 WEA (µ) 13.75 8.29 3.12 77.85 68.59 48.77

W∗
EC
(µ) 14.50 9.14 3.72 84.31 76.49 57.67

µ = 0 µ = 0.25

10 5 1 10 5 1
n = 5 WEA (µ) 10.82 5.97 1.25 84.67 76.36 54.46

W∗
EC
(µ) 10.78 5.76 1.42 91.02 84.33 66.38

µ = 0 µ = 0.20

10 5 1 10 5 1
n = 10 WEA (µ) 10.40 5.24 0.97 91.48 85.79 67.46

W∗
EC
(µ) 10.26 4.97 0.97 96.02 92.35 79.40

we get
(w∗

P
)> =

1

1− ρ2

(
1− ρ, (1− ρ)2, . . . , (1− ρ)2, 1− ρ

)
.

We see that, as q diverges, `∗
C
(µ) = {(1− ρ)/(1 + ρ)}`I (µ) + O(1). Moment estimates of ρ and σ2

ε are

ρ̃ =
q
∑n

i=1

∑q−1
j=1 (yij − ȳ)(yij+1 − ȳ)

(q− 1)
∑n

i=1

∑q
j=1(yij − ȳ)2

,

σ̃2
ε =

1

n(q− 1)

n∑
i=1

q−1∑
j=1

{
(yij+1 − ȳ)− ρ̃(yij − ȳ)

}2
.

Simulation results based on 104 replications for testing µ = 0with n = 1, 5, 10 and q = 10 usingW∗
EC
(µ) andWEA (µ) are summarized in Table

2. Covariance parameters have been set to σ2 = 1 and ρ = −0.8. These values give ARE in (18) equal to 0.786, so that a tangible gain in power
is expected when usingW∗

EC
(µ) in place ofWEA (µ). Samples were generated with µ values µ = 0 and µ = 0.5 for n = 1, µ = 0 and µ = 0.25 for

n = 5, µ = 0 and µ = 0.20 for n = 10. Empirical rejection probabilities displayed in Table 2 show a satisfactory agreement with nominal levels
when n ≥ 5 both forW∗

EC
(µ) and forWEA (µ), while the power of the former is visibly larger.

Example 6General correlation model.
WithR unstructured and n > q, first order optimal weights can be estimated from the sample correlationmatrix R̃ of data yij. Reasonable accuracy
requires n to bemuch larger than q.
ForW∗

EC
(µ) andW∗

EA
(µ)with µ = 0, simulation results based on 104 replications are summarized in Table 3. Data with n = 50, 100, 200, q = 5,

were generated from an AR(1)model having σ2 = 1, ρ = −0.8, and µ values µ = 0 and µ = 0.1 for n = 50, µ = 0 and µ = 0.075 for n = 100,
µ = 0 and µ = 0.05 for n = 200. Although empirical rejection probabilities displayed in Table 3 show a faster convergence to nominal levels for
WEA (µ), the power gain usingW∗

EC
(µ) is clearly seen.
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TABLE 3General correlation model. Empirical rejection probabilities (%) forWEA (µ) andW∗
EC
(µ) for testing µ = 0 at nominal levels 10%, 5%, 1%,

104 replications, q = 5, data generated from AR(1) with true values σ2 = 1, ρ = −0.8, µ = 0 and µ = 0.1 for n = 50, µ = 0 and µ = 0.075 for
n = 100, µ = 0 and µ = 0.05 for n = 200, .

µ = 0 µ = 0.1

10 5 1 10 5 1
n = 50 WEA (µ) 9.47 4.68 0.97 61.81 49.07 25.98

W∗
EC
(µ) 12.81 7.14 1.95 83.43 74.99 54.81

µ = 0 µ = 0.075

10 5 1 10 5 1
n = 100 WEA (µ) 9.94 5.11 1.09 65.25 53.42 29.48

W∗
EC
(µ) 11.25 6.00 1.40 86.07 78.54 57.63

µ = 0 µ = 0.05

10 5 1 10 5 1
n = 200 WEA (µ) 9.66 5.02 0.89 60.33 47.82 25.21

W∗
EC
(µ) 10.28 5.41 1.16 83.40 73.62 50.43

5 DISCUSSION
In this paper, we obtain first order optimal weights when combining individual profile log likelihoods for inference on a scalar parameter in the
presence of nuisance parameters. The examples in Section 4 indicate that replacing nuisance parameters with moment estimates preserves gains
due to optimal weights. These results are in line with findings in Fraser & Reid (2018, in particular, Example 7).
Practical implementationof (15), especially outsideorthogonality, requires computationofΣVP (θ0). Apart fromspecial cases as those considered

in Section 4 for illustration, exact calculations are generally unfeasible. One possibility is to evaluateΣVP (θ0) via simulation from the full model with
estimated parameters, as done in Cattelan & Sartori (2016) for multiplicative adjustments of composite likelihood ratio. Parameter estimates can
be obtained from an independence combination of marginal likelihoods from low-dimensional portions of the data allowing estimation of θ0.
As an alternative to combining profile log likelihoods fromeach source, a starting point for finding first order optimalweights for inference about

ψ is the overall profile from∑q
j=1 wj`j(ψ, λ), that is

`OC (ψ) =

q∑
j=1

wj`j(ψ, λ̂ψC) ,

where λ̂ψC is the constrainedmaximizer of∑q
j=1 wj`j(ψ, λ)with respect to λ for a givenψ. The corresponding score uOC (ψ) = (∂/∂ψ)`OC (ψ) is

uOC (ψ) =

q∑
j=1

wjujψ(ψ, λ̂ψC) .

Standard asymptotic calculations show that, to first order, sensitivity and variability of uOC (ψ) are

HOC = Eψ {−(∂/∂ψ)uOC (ψ)} =

q∑
j=1

wjIjψ, jψ −

 q∑
j=1

wjIjψ, jλ

 q∑
j=1

wjIjλ, jλ

−1 q∑
j=1

wjIjλ, jψ
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and

JOC = Varθ {uOC (ψ)} = w>Varθ
(
[ujψ ]

)
w

+

 q∑
j=1

wjIjψ, jλ

 q∑
j=1

wjIjλ,jλ

−1

Varθ

 q∑
j=1

wjujλ

 q∑
j=1

wjIjλ, jλ

−1 q∑
j=1

wjIjλ, jψ


−2

 q∑
j=1

wjIjψ,jλ

 q∑
j=1

wjIjλ, jλ

−1 q∑
j=1

q∑
k=1

wjwkIjλ, kψ

 .

Above, for ease of notation, arguments of u and I quantities are suppressed.Moreover,Varθ([ujψ ]) denotes the covariancematrix of the vectorwith
entries ujψ and Varθ(

∑q
j=1 wjujλ) is the covariance matrix of the vector∑q

j=1 wjujλ. Under orthogonality of ψ and λ for all sources, the condition
HOC = JOC may be written in the form (9) and is satisfied by the weights w∗

P
(θ0) in (13). Outside orthogonality, search for optimal weights would

require numerical maximization of the Godambe information fromHOC and JOC at θ0.
Examples in Section 4 are limited to one-wise log likelihoods, so that q is not large. Pairwise log likelihoods from d-dimensional observations Yi

would involve q = d(d − 1)/2 dependent sources, and q rapidly becomes large, making optimal combination unfeasible. A reduction may arise
when a structured covariance matrix induces equality constraints on the component ofw∗

P
, as happens whenΣVP (θ0) has a Toeplitz structure, like

in Examples 4 and 5. The number of sources could thus be reduced by first adding the log likelihoods having equal weights, and then optimally
combining the resulting sources. Preliminary computation of ΣVP (θ) at some trial parameter values might be useful to detect sources having the
sameweight in the combination, at least approximately.
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