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In a pair of linked articles (called Papers I and II, respectively), we apply the concept of Lagrangian

Coherent Structures (LCSs) borrowed from the study of dynamical systems to magnetic field

configurations in order to separate regions where field lines have a different kind of behaviour. In the

present article, Paper I, after recalling the definition and the properties of the LCSs, we show how

this conceptual framework can be applied to the study of particle transport in a magnetized plasma.

Furthermore, we introduce a simplified model that allows us to consider explicitly the case where the

magnetic configuration evolves in time on time scales comparable to the particle transit time through

the configuration. In contrast with previous works on this topic, this analysis requires that a system

that is aperiodic in time be investigated. Published by AIP Publishing.
https://doi.org/10.1063/1.5020163

I. INTRODUCTION

The understanding of transport phenomena in magne-

tized plasmas is notoriously one of the most challenging

tasks in the investigation of both laboratory and space plas-

mas. This is particularly the case in low collisionality plas-

mas where particles are essentially free to stream along

magnetic field lines while their transport in the perpendicular

direction is governed by collective electric and magnetic

fluctuations and not by binary interactions. As a conse-

quence, transport is generally anisotropic, nonlocal and,

most likely, not described by simple diffusion equations.

In recent years, the concept of Lagrangian Coherent

Structures (LCSs) has been introduced by Haller in the context

of transport processes in complex fluid flows, see Ref. 1. In a

two-dimensional configuration, these structures are now

defined as special lines which are advected by the fluid and

which organize the flow, e.g., see Refs. 2 and 3. The impor-

tance of the LCS stems from the fact that they are a generaliza-

tion of the dynamical structures observed in autonomous and

periodic systems, e.g., invariant manifolds, to temporally aperi-

odic flows, see, e.g., Ref. 2. Analogously to these structures,

they separate the flow domain into macro-regions inside which

fast mixing phenomena take place. Over the finite time span

which characterizes the LCSs, these macro-regions do not

exchange fluid elements and thus act as transport barriers. The

LCS concept provides a very effective tool that is being

increasingly used in order to describe transport processes in a

wide range of conditions: the pollutant transport on the ocean

surface,4 blood flow,5 the spreading of plankton blooms,6 jelly

fish predator-prey interaction,7 atmospheric dataset analysis,8

transport features of the beam-plasma instability,9 solar photo-

spheric flows,10 saturation of a nonlinear dynamo,11 and in

magnetized plasmas.12–14 A different kind of LCS, called

invariant-torus-like LCS, has been used in Ref. 15 for

Hamiltonian systems in which the perturbations vanish at some

defined positions. In this context, we recall that other types of

indicators, such as orbit stickiness, finite time rotation number,

and braiding exponents, have also been used in the literature in

order to delineate regions with different dynamical properties

in Hamiltonian systems.12,13,16–18

Since their introduction, different mathematical defini-

tions of LCS have been proposed with the aim of providing a

tool capable of giving a concise representation of the trans-

port processes. The earlier definition involved second deriva-

tive ridges of the finite time Lyapunov exponent field, e.g.,

see Ref. 19, but was later corrected and reformulated in

terms of most repulsive or attractive material lines (see in

Sec. V A). In addition, numerical procedures have been

devised in order to extract such structures from fluid simula-

tion results or, even more interestingly, from actual experi-

mental data (Refs. 20 and 21).

In a number of recent articles, Refs. 22–24, the descrip-

tion of transport phenomena in magnetized plasmas has been

addressed using LCS as a tool aimed at identifying transport

barriers in a toroidal magnetic configuration in the presence

of magnetic reconnection events. In a very recent article, see

Ref. 25, the LCS tool has been used to show how applying

boundary magnetic perturbations with different helicities

gives rise to different transport barriers.

Both the second derivative ridges and the most repulsive

or attractive material lines definitions have been adopted in

Ref. 22 and in Ref. 24, respectively, and results obtained

with the two different approaches have been compared in

Ref. 24.

In these articles, the structure of the magnetic field lines

has been used as a proxy for the structure of the particle tra-

jectories, assuming that particles move along magnetic field

lines as obtained from a “snapshot” of the magnetic configu-

ration taken at a fixed time, neglecting finite particle orbit

1070-664X/2018/25(5)/052306/8/$30.00 Published by AIP Publishing.25, 052306-1

PHYSICS OF PLASMAS 25, 052306 (2018)

https://doi.org/10.1063/1.5020163
https://doi.org/10.1063/1.5020163
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5020163&domain=pdf&date_stamp=2018-05-25


size effects, secular drifts, and assuming that the magnetic

configuration does not evolve significantly on the particle

transit time through the configuration.

In the present paper, the first one of a linked pair (called

Papers I and II, respectively), after briefly revisiting the

“snapshot” results, we formulate a generalization of the

method that, while still not addressing the full particle

dynamics, takes nevertheless into account the fact that the

magnetic configuration may evolve on time scales compara-

ble to the particle transit time. A consequence of this gener-

alization is that the system becomes intrinsically aperiodic.

We define velocity dependent LCS, i.e., introduce a rudi-

mentary kinetic treatment that addresses the fact that par-

ticles with different energies can be expected to experience

different transport barriers, as has been recently proved by

means of test particles simulations in Ref. 26. After these

definitions are established, we will use this generalization in

the accompanying Paper II62 in order to identify the LCSs in

a magnetic configuration where magnetic reconnection

evolves by referring to the same numerical simulation results

that were used in Refs. 22 and 24. We remark that our choice

of using the magnetic field lines as a proxy for the particle

trajectories, along the lines, e.g., Ref. 27, is motivated by the

aim to provide a tool that depends on as few physical param-

eters as is meaningful and that can be used in a general set-

ting for an easy detection of barriers to the particle transport

enhanced, as is the case considered here, by the growth of

multiple island chains due to the onset of magnetic reconnec-

tion. A more quantitative justification of such a choice for

the magnetic configuration studied here will be given in Sec.

VI. More exact treatments that properly distinguish between

particle trajectories and magnetic field lines and that involve

the particle Hamiltonian, or the particle gyro-center

Hamiltonian, are available (see, e.g., Refs. 28 and 29) but

their application requires in a general setting a less straight-

forward procedure.

This paper is organized as follows. In Sec. II, the

Hamiltonian nature of the magnetic field line equations is

briefly rederived in order to illustrate the relationship with

the dynamics of one-dimensional nonautonomous dynamical

systems having in mind, as will be repeated later in the text,

that the “time” entering in the Hamilton equations for the

magnetic field lines is not the physical time but a properly

chosen coordinate along field lines. A simplified planar mag-

netic configuration with a strong magnetic field component

out of the plane (the so-called guide field) is considered. The

fact that it corresponds to a non-autonomous dynamical sys-

tem is related to the effect of a process of magnetic recon-

nection that has broken the underlying structure of magnetic

surfaces. This latter configuration would have corresponded

to an autonomous (and thus integrable) one dimensional sys-

tem. Then the connection with particle transport is recalled

and some related early references are mentioned.

In Sec. II, the distinction between time periodic and ape-

riodic dynamical systems is made in connection with the dif-

ferent mathematical tools that are best suited to describe

their dynamics. The role of the Poincar�e map is recalled

together with a short overview of the so called lobe dynam-

ics. The Poincar�e map approach makes it possible to

partition the phase space of the time periodic dynamical sys-

tem into macro-regions distinguished by a qualitatively dif-

ferent behaviour of the trajectories they contain, e.g.,

periodic or chaotic trajectories.

In Sec. IV, the concept of LCSs is introduced. We close

this section by briefly contrasting the initial definitions of

LCSs in terms of second derivative ridges, e.g., see Ref. 19,

and the definition in terms of maximal repelling and maxi-

mal attracting material lines.

In Sec. VI, we first describe (Sec. VI A) the time periodic

dynamical system related to the magnetic configuration that

we choose (see also Refs. 22 and 30) for the study of particle

transport in the presence of magnetic reconnection. Then in

Sec. VI B, we introduce a time nonperiodic dynamical system

obtained by including in a simplified way the effect of the

change of the magnetic configuration during the particle tran-

sit through it. This is done by combining the coordinate-like

“time” entering in the Hamilton equations for the magnetic

field lines mentioned above with the physical time that

describes the change of the magnetic configuration caused, in

our case of interest, by the onset of magnetic reconnection.

The resulting “effective” time depends on the velocity of the

specific particle that is considered and can be thought as the

physical time of change of the local value of the magnetic

field seen by the particle along its trajectory because of the

combined effect of the magnetic field spatial inhomogeneity

and physical time evolution. The numerical investigation of

both the time periodic and the non-periodic systems will be

described in the accompanying paper, Paper II.

II. MAGNETIC FIELD AS A DYNAMICAL SYSTEM

As is well known,31–36 due to their solenoidal nature,

the field lines of a magnetic field in three-dimensional space

that does not vanish within the domain of interest can be

described at any fixed physical time t ¼ �t as trajectories of a

non-autonomous Hamiltonian system with one degree of

freedom. The role of time is played by a spatial coordinate

taken to label the points along a field line. A simple deriva-

tion in terms of a general set of (curvilinear) coordinates vi,

i¼ 1, 2, 3 can be given by choosing a gauge condition for

the vector potential A such that one of its components, e.g.,

A3, vanishes, i.e.,

A ¼ A1rv1 þ A2rv2; and

B ¼ rA1 �rv1 þrA2 �rv2: (1)

Since B 6¼ 0 within the considered spatial domain, we can

set B � rv1 6¼ 0. It follows that the Jacobian ðrA2 �rv2Þ
�rv1 6¼ 0, i.e., that the coordinate transformation to the new

set of spatial coordinates A2; v2; v1 is invertible.

Using B ¼ rA1ðv1; v2;A2Þ � rv1 þrA2 �rv2, from

the field line condition dl� B ¼ 0, we obtain the Hamilton

equations

dA2

dv1

¼ @A1

@v2

;
dv2

dv1

¼ � @A1

@A2

together with
dA1

dv1

¼ @A1

@v1

: (2)
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In the above equations, v1 plays the role of the “time” vari-

able, and v2 and A2 that of the two canonical coordinates:

dA2 $ dq and dv2 $ dp, and A1ðv2;A2; v1Þ of the

“Hamiltonian” H. We anticipate here that in the following we

will consider a simple magnetic field configuration often used

in the study of magnetically confined plasmas where

B ¼ Bzez þrw� ez, with Bz spatially uniform and ez ¼ rz.

It corresponds, after an appropriate rescaling, to v1¼ z, v2¼ x,

A2¼ y and A1(x, y, z) the so-called “poloidal” flux function

wðx; y; z; t ¼ �tÞ.
The importance of this Hamiltonian formulation stems

from the fact that it establishes a direct connection between

magnetic configurations and dynamical systems, see, e.g.,

Refs. 28 and 37–40, and thus makes it possible to describe

the topology of the magnetic field lines in terms of that of

the trajectories of a dynamical system. Furthermore, if we

assume that in the considered magnetic configuration an adi-

abatic approximation holds for the motion of the charged

plasma particles, in the limit where their Larmor radius is

negligible and disregarding the particle drifts, we can

approximate their motion as occurring along magnetic field

lines. Such an approximation allows us to study the particle

advection and diffusion by using the same set of equations

that determine the magnetic field lines, see, e.g., Ref. 27.

This approach requires in addition that, as a first approxima-

tion, the change of the magnetic configuration during the

particle motion be neglected.

The equivalence between the magnetic field lines and

the trajectories of non-autonomous Hamiltonian systems

with one degree of freedom has been widely used in the liter-

ature by adopting the concepts that are proper of dynamical

systems; see, in particular, Ref. 31 and more recently Refs.

41–43.

In the case of magnetically confined plasmas, this equiv-

alence has been used, in particular, in order to assess the

effects of magnetic field lines reconnection events on the

particle transport. In the context of the present article, we

will refer to Ref. 30 and more specifically to Refs. 22 and 24

where dynamical system tools are used in order to character-

ize transport processes associated with the magnetic field

lines topology. This approach makes it possible to partition

the magnetic configuration into sub-domains characterized

by different transport phenomena and, in particular, to iden-

tify the domains where they are either fastest or slowest.

III. TRANSPORT PHENOMENA IN NON-
AUTONOMOUS, TIME PERIODIC, DYNAMICAL
SYSTEMS WITH ONE DEGREE OF FREEDOM

Non-autonomous dynamical systems may have a periodic

or non-periodic time dependence, see, e.g., Refs. 44–46, and

the techniques used to study these two cases may differ. In

particular, the Poincar�e section (stroboscopic map) method

can be used to reduce the dimensionality of the problem by

studying, see, e.g., Ref. 47 and references therein, a 2 N
dimensional map instead of a 2Nþ 1 continuous-time dynam-

ical system. For a periodic system, this map is constructed by

associating with an initial condition its evolution after one

period. The main advantage obtained by using this technique

is to filter out redundant dynamical phenomena and reveal the

underlying nature of the motion, e.g., whether it is regular or

chaotic. Furthermore, invariant curves of the Poincar�e map

can be used to partition the phase space into regions where tra-

jectories have a qualitatively different behaviour on a given

time scale, e.g., bounded or unbounded.48–50 These structures

play a fundamental role in governing transport processes in

non-autonomous dynamical systems and, in particular, they

determine the so-called lobe dynamics. Here we will briefly

recall a few definitions, in particular, the definition of invari-

ant manifolds that are needed in the following in connection

with the LCSs, while extensive presentations can be found in

Refs. 51–54. In view of the present application to the study of

the topology of magnetic field lines at fixed physical time, we

consider explicitly systems with one degree of freedom

(N¼ 1). Following Ref. 54, a lobe is defined as a region of the

extended (2Nþ 1 dimensional) phase space enclosed by seg-

ments of the intersection between stable and unstable mani-

folds and a t¼ const surface (i.e., here, at a z¼ const surface,

this remark will not be repeated in the rest of the section and

in the following ones until the true physical time is reintro-

duced in Sec. VI B). Stable and unstable manifolds are defined

with respect to a distinguished hyperbolic trajectory (DHT),

i.e., with respect to a special trajectory that shares the property

of being a solution of the non-autonomous Hamiltonian equa-

tions and of connecting instantaneous (i.e., at fixed time)

hyperbolic points (so called X-points), see, e.g., Refs. 30 and

45. It has the property that all neighbouring field lines

approach such a trajectory exponentially either forward or

backward in time. Stable and unstable manifolds are invariant

surfaces defined as the set of trajectories that converge

towards the DHT forward or backward in time, respectively.

The intersection of these manifolds with a t¼ const surface

defines one dimensional curves. A sketch of these curves and

of the lobes produced by the convoluted shape of the stable

and the unstable manifolds in the proximity of two DHTs is

shown in Fig. 1.

It can be shown, along the lines of Refs. 48, 55, and 56

that, the boundary P2OP1, taken along the unstable manifold

of P2 and the stable manifold of P1 after selecting the inter-

section point O, partitions the phase space represented in

Fig. 1 into macro-regions where trajectories have a qualita-

tively different behaviour. How fast mixing can occur

FIG. 1. Sketch of the lobes produced by the convoluted shape of the stable

and the unstable manifolds in the proximity of two DHTs.
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through this boundary depends on the shape of the intersect-

ing invariant manifolds.

IV. TRANSPORT PHENOMENA IN
NON-AUTONOMOUS, NON PERIODIC, DYNAMICAL
SYSTEMS WITH ONE DEGREE OF FREEDOM

In Sec. III, we have briefly recalled how it is possible to

characterize transport processes in periodic systems using

the geometry of stable and unstable manifolds. These struc-

tures can be calculated knowing the trajectories and the

velocity field of the dynamical system for the finite time

interval given by the system periodicity.

This is not the case of non-periodic-systems. In fact, in

the most general case, knowledge of the velocity field is

required for an infinite time interval in order to define invari-

ant manifolds and lobes. For this reason, a different tech-

nique, based on the definition and identification of the

so-called Lagrangian Coherent Structures (LCSs), e.g., see

Refs. 2, 3, and 19, has been developed in order to study

transport processes for the most general non-periodic flows.

As in the periodic case, the aim is to identify domains in

phase space with a different dynamical behaviour and, even-

tually, transport features. The LCSs are the boundaries of

these regions of coherence. In contrast to the invariant mani-

folds, LCSs are defined over a finite amount of time, s,

related to the characteristic time of coherence of the motion.

As s increases, LCS converges to the invariant manifolds

mentioned above, see Ref. 2. We note in passing that,

although not directly relevant to our problem, the concept of

LCS does not require the system to be Hamiltonian.

Following Refs. 22 and 24, in this work, we consider

only hyperbolic LCSs which organize the Hamiltonian flow

by attracting or repelling volume elements of phase space

over the finite time span s. For the sake of simplicity, we

will refer to these structures simply as LCS. The rigorous

definition of these structures has been subject to debate: see,

e.g., Refs. 3, 19, and 24. The first way of finding LCS was

based on constructing the field of the finite time Lyapunov

exponents (FTLE), see Refs. 19, 22, and 23. Since at a given

phase space position the largest positive FTLE measures the

exponential separation between two neighbouring initial con-

ditions after a given interval of time, within this formulation

LCSs have been defined as second-derivative ridges of the

FTLE-field. Several counter examples to this heuristic defini-

tion have been found by Haller who introduced the definition

of hyperbolic LCS, see Ref. 3, as the most repulsive or

attractive material lines, where material lines are defined as

lines of initial conditions advected by the Hamiltonian flow.

V. LAGRANGIAN COHERENT STRUCTURES (LCSs)

In this section, we briefly recall the definition of LCSs

(see Refs. 3 and 24). As mentioned before, we consider a

dynamical system in 2D phase space x ¼ ðx; yÞ

dx

dt
¼ vxðt; x; yÞ;

dy

dt
¼ vyðt; x; yÞ (3)

with continuous differentiable flow map

/t
t0
ðx0Þ ¼ xðt; t0; x0Þ: (4)

Two neighbouring points x0 and x0 þ dx0 evolve into the

points x and xþ dx under the linearized map

dx ¼ $/t
t0

dx0: (5)

Let us consider a curve c0 ¼ fx0 ¼ rðsÞg and at each point

x0 2 c0 let us define the unit tangent vector e0 and the normal

vector n0. In the time interval ½t0; t�, the dynamics of the sys-

tem advects the material line c0 into ct and x0 2 c0 into

xt 2 ct. The linearized dynamics maps the tangent vector e0

into et which is tangent to ct and is given by

et ¼
$/t

t0
ðx0Þ e0

e0 Ct
t0
ðx0Þ e0

� �1=2
; (6)

where Ct
t0
ðx0Þ � ð$/t

t0
ÞT $/t

t0
is the Cauchy-Green strain

tensor and T stands for transposed. This symmetric tensor

describes the deformation of an arbitrary small circle of ini-

tial conditions, centered in x0 caused by the flow in a time

interval ½t0; t�. Taking, for example, a circle centered in x0

with radius kdx0k, after the time interval [t0, t] it will be

deformed into an ellipse with major axis in the direction of

nmax and minor axis in the direction of nmin, where nmax and

nmin are the two eigenvectors of Ct
t0
ðx0Þ. The corresponding

real and positive eigenvalues are kmax and kmin. The curves

with tangent vector along nmin and, respectively, nmax are

called strain lines of the Cauchy-Green tensor. In general,

the mapping does not preserve the angle between vectors

and therefore usually nt differs from $/t
t0

n0.

Using the orthogonality condition n0 � e0 ¼ n0$/t0
t $/t

t0
e0

¼ 0 and inserting Eq. (6), we obtain the expression for nt which

is given by

nt ¼
$/t0

t

� �T
n0

n0 C�1ðx0Þ n0

� �1=2
; (7)

where C�1ðx0Þ ¼ Ct0
t ðx0Þ and the time interval marks have

been suppressed as will be the case in the following formulae

when not explicitly needed.

We define the repulsion ratio qt
t0
ðx0; n0Þ as the ratio at

which material points, in other words points advected by the

flow, initially taken near the point x0 2 c0, increase their dis-

tance from the curve in the time interval ½to; t�

qt
t0
ðx0; n0Þ ¼ ntr/t

t0
ðx0Þn0: (8)

Using the previous definitions, qt
t0
ðx0; n0Þ can be expressed

either in terms of n0 or of nt as

qt
t0
ðx0; n0Þ ¼ n0 C�1ðx0Þn0

� ��1=2 ¼ nt Cðx0Þ nt½ �1=2: (9)

Similarly, the contraction rate Lt
t0
ðx0Þ is proportional to the

growth in time of the vector tangent to the material line

Lðx0; e0Þ ¼ e0 Cðx0Þ e0½ �1=2: (10)
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A. LCS as maximal repulsion-attraction material lines

Here, we adopt the definition of a Hyperbolic LCS as

given in Ref. 3. An LCS over a finite time interval ½t0; t0 þ T�
is defined as a material line along which the repulsion rate is

pointwise maximal. This leads, as shown in Refs. 3 and 24,

to the following definitions.

A material line satisfying the following conditions at

each point:

aÞ kmin < kmax; kmax > 1; (11)

bÞ e0 ¼ nmin; (12)

the tangent vector is along the eigenvector associated with

the smallest eigenvalue

cÞ nmax � $kmax ¼ 0; (13)

the gradient of the largest eigenvalue is along the curve, is

called a repulsive Weak Lagrangian Coherent Structure

(WLCS).

A WLCS which satisfies at each point the additional

condition

nmax � $2kmax � nmax < 0 (14)

is called a repulsive Lagrangian coherent structure. Attractive

LCSs are defined as repulsive LCS of the backward time

dynamics.

Finally, we note that in the case of a Hamiltonian non-

autonomous system with one degree of freedom phase space

conservation implies

kmin kmax ¼ 1: (15)

We note that a major difference with respect to the defi-

nition of LCS based on the second derivative ridges in Ref.

19 is that the definition of LCS as maximal repulsion-

attraction material lines involves the eigenvectors and eigen-

values of the Cauchy-Green strain tensor C while the defini-

tion in terms of the second derivative ridge is governed by

the eigenvectors and eigenvalues of the Hessian R of FTLE

field r defined as

rðx0; t0; tÞ ¼
1

2jt� t0j
ln kmaxðx0; t0; tÞ: (16)

In Ref. 24, an elementary example is discussed where a

WLCS is explicitly shown not to be a second derivative

ridge.

VI. RECONNECTING MAGNETIC CONFIGURATION

As mentioned in the Introduction, the aim of this and its

accompanying paper is to obtain information about particle

transport due to the onset of magnetic reconnection from the

behaviour of the magnetic field lines. The reconnection set-

ting that we adopt is the same as that used in Ref. 22, which

is based on a numerical simulation where reconnection is

made possible by the effect of electron inertia, Ref. 57. The

reconnecting magnetic field has only components in the x–y

plane but depends on all the three spatial coordinates. In this

numerical simulation, the magnetic field evolution starts

from a static equilibrium, expressed in terms of a magnetic

flux function weq as

Beq ¼ B0ez þrweqðxÞ � ez; (17)

with weq ¼ 0:19 cos ðxÞ. Periodicity is assumed in all three

directions and the configuration is restricted to the domain

½�Lx; Lx� � ½�Ly; Ly� � ½�Lz; Lz� with Lx ¼ p; Ly ¼ 2p; Lz

¼ 16p.

In Ref. 57, a “double helicity” perturbation (i.e., in the

considered planar geometry, a perturbation made of two

components with different phase planes) is initially imposed

ŵðx; y; z; tÞ ¼ ŵ1ðx; tÞ cos ðk1yyþ k1zzÞ
þŵ2ðx; tÞ cos ðk2yyþ k2zzÞ; (18)

where k1y ¼ k2y ¼ 2p=Ly and k1z ¼ 0 while k2z ¼ 2p=Lz.

The eigenfunctions of the initial perturbations, ŵ1ðx; 0Þ and

ŵ2ðx; 0Þ, are localized functions on the resonant surfaces and

the initial amplitude of ŵ1 was chosen to be of order 10–4

and ten times bigger than that of ŵ2 . The resonant surfaces

x ¼ xi are defined by the condition Beq � k1;2 ¼ 0 and, disre-

garding the mirror-doubling of the configuration caused by

the assumed periodicity along x, are located at x1¼ 0 and

x2¼ 0.71, respectively.

As is well known, perturbations with different

“helicities” are required in order to make the Hamiltonian

system described in Sec. II non-integrable, i.e., to generate a

chaotic magnetic configuration. In the following, we will

denote by wðx; y; z; tÞ ¼ weqðxÞ þ ŵðx; y; z; tÞ the complete

magnetic flux function that includes the equilibrium and the

physical time evolving perturbations. At each fixed physical

time t, it plays the role of the Hamiltonian for the magnetic

field lines while the space coordinates x and y that of canoni-

cal variables with x the momentum and y the position. The

field line Eq. (2) becomes

dx

dz
¼ � @w

@y
;

dy

dz
¼ @w
@x

: (19)

In the linear phase, when the two components of the pertur-

bation evolve independently without interacting with each

other, two chains of magnetic islands are formed around

their own resonant surfaces.

During their evolution, the magnetic islands expand and

start to interact making the linear approximation invalid. The

dynamics of the magnetic configuration becomes rapidly non-

linear and higher order modes are spontaneously generated.

The most relevant of these nonlinear modes turn out to have

the same helicities of the two components of the imposed per-

turbation. At this stage, the magnetic field topology exhibits

regions where field lines are stochastic, and these regions tend

to spread as the reconnection process evolves. A detailed

description of the chaos inception and spread all over the

domain of the configuration can be found in Refs. 30 and 57.

In the numerical investigation in Paper II, we will focus

on two different normalized physical times, t¼ 415 and
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t¼ 425 Ref. 30 (normalized respect to the Alfv�en time

defined in terms of weq), in which the chaos, initially devel-

oped only on a local scale (at t¼ 415), starts to spread on a

global scale (at t¼ 425). At the normalized physical times

t¼ 415 and t¼ 425, the amplitude of the perturbed magnetic

field is of the order of the shear equilibrium field given by

the second term in Eq. (17) and particles following the per-

turbed magnetic field lines experiment large excursions

along the x direction. In this advanced phase of the reconnec-

tion process with almost overlapping island chains, as indi-

cated by the Poincarè map in Fig. 2, the x-component of the

particle velocity, as obtained by projecting on the x–y plane

the particle velocity along field lines, is much larger than the

particle drift velocities that are proportional to the ratio

between the particle gyroradius and the scale length of the

magnetic field inhomogeneity. This scale separation is even

more evident in the case of electrons and in general of par-

ticles with velocities along field lines larger than in the per-

pendicular directions, i.e., of the particles whose transport

properties are most affected by magnetic fluctuations.

A. Time periodic dynamical system

First, we consider the dynamical system that is obtained

by taking a snapshot at a given physical time t ¼ �t of the

reconnecting magnetic configuration following the procedure

introduced in Sec. II, where the flux function wðx; y; z; t ¼ �tÞ
is the Hamiltonian and z is the magnetic Hamiltonian time.

Since the configuration is periodic in z with periodicity 32p,

we adopt the Poincar�e map technique and compare it with

the LCS approach.

The magnetic configuration in Sec. VI is symmetric

under the space-time reflection symmetry y! �y; z! �z
since wðx; y; z; t ¼ �tÞ ¼ wðx;�y;�z; t ¼ �tÞ. This property

can be exploited when computing attractive LCSs as they

can be seen as repulsive LCSs with respect to the inverted

“time” – z. Because of the above reflection symmetry, this

time inversion is equivalent to setting y! �y, i.e., the

attractive LCSs are mirror images of the repulsive LCSs

with respect to y¼ 0.

B. Time nonperiodic dynamical system

A rudimentary way to take into account the fact that the

magnetic configuration changes during the particle transit time

is to adopt a model where the particle gyromotion and drifts are

neglected and the particles dynamics is only included through

their streaming velocity V along the guide field B0, i.e., along z.
Furthermore, V is assumed to stay constant. As mentioned in

the Introduction, this model oversimplifies the description of

the particle transport caused to the onset of magnetic reconnec-

tion. However, it allows us to describe LCSs in a time nonperi-

odic dynamical system and, most importantly, to include

kinetic-type effects by defining LCSs that depend explicitly on

the different particle velocities.

With this in mind, we introduce a family of nonautono-

mous dynamical systems in the extended phase space x, y, z,

with z playing again the role of time and each system being

characterized by a different velocity V, by introducing the

Hamiltonian

wVðx; y; zÞ � wðx; y; z; t ¼ ðz� zoÞ=VÞ: (20)

Here t is taken to be positive and, in fact, it is defined at t – t1
where t1 is the physical time at which we start our investiga-

tion of the particle trajectories while, for convenience, we set

the starting magnetic Hamiltonian time zo¼ 0. In the follow-

ing, we will restrict the range over which the physical time t
varies to the interval t1< t< t2. As mentioned above, at

t1¼ 415, i.e., in the early stage of the nonlinear reconnection

process, the regions of chaoticity of the magnetic field lines

are still separated. At the later stage t2¼ 425 chaotic regions

merge and the system experiences a transition from local to

global chaoticity.

1. Positive and negative velocities

For positive velocities, the physical time t¼ z/V that

appears in the Hamiltonian wðx; y; z; t ¼ ðz� zoÞ=VÞ
increases as z increases and the new Hamilton equations read

dx

dz
¼ � @wV

@y
;

dy

dz
¼ @wV

@x
: (21)

On the contrary for negative velocities, z decreases as t
increases. Thus for negative velocities, it is convenient to

refer to the variables f ¼ �z and g ¼ �y and write

w�jVjðx; y; zÞ � wðx; y; z; t ¼ �z=jVjÞ
¼ wðx; g; f; t ¼ f=jVjÞ; (22)

where we have used the symmetry at fixed time t, so that

w�jVjðx; y; zÞ � wjVjðx; g; fÞ.
Then for negative velocities the Hamilton equations (22)

can be rewritten in the form

dx

df
¼ �

@wjVj
@g

;
dg
df
¼
@wjVj
@x

: (23)

which shows that the trajectories for positive and negative

velocities differ since they are determined by the same

Hamiltonian but involve different spatial and time domains.

2. Repulsive and attractive velocity dependent LCS

As shown above, the time periodic Hamiltonian attrac-

tive LCSs are simply mirror images of the repulsive LCSs
FIG. 2. Poincar�e map at z¼ 0 and t¼ 425 showing the chaoticity region

between the two island chains.
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with respect to y¼ 0. In the case of the time nonperiodic

Hamiltonian, this result is no longer valid.

Here, for the sake of clarity we consider only positive

velocities V. For attractive LCS, we start from t¼ t2 and

zfin ¼ zþ ðt2 � tÞV and find it convenient to define a new

Hamiltonian function (with a reversed sign because of the

inversion of the time variable z)

�wðx; y; zfin � z; t2 � tÞ ¼ �wðx; y; z; tÞ; (24)

and the variable �f ¼ zfin � z; (shifted with respect to the vari-

able f defined in Sec. VI B 1). At fixed physical time t we

have

dx

dz
¼ � @w

@y
! dx

d�f
¼ � @

�w
@y

;
dy

dz
¼ @w
@x
! dy

d�f
¼ @

�w
@x

: (25)

Proceeding as for Eq. (20) we write

�wVðx; y;�fÞ ¼ �wðx; y;�f;�f=VÞ; (26)

and obtain

dx

d�f
¼ � @

�wV
@y

;
dy

d�f
¼ @

�wV
@x

; (27)

which shows that the equations for the attractive LCS are the

same in form as those for the repulsive LCS but with a dif-

ferent “time” variable, �f, and a different Hamiltonian, �wV .

VII. CONCLUSIONS

In the first (Paper I) of a pair of linked papers, we have

presented the theoretical framework that will be used in

Paper II for the numerical investigation of the Lagrangian

Coherent Structures (LCSs) seen by plasma particles

restricted to move along the magnetic field lines of a mag-

netic configuration that evolves in physical time because of

magnetic reconnection. Our aim is to identify macro-regions

distinguished by a qualitatively different behaviour of the

particle motion. The main limitation of this simplified model

arises from this restriction on the particle motion that, how-

ever, it plays a very convenient role as it allows us to extend

the scope of the well-known relationship between field line

equations and the dynamics of a non-autonomous dynamical

system with one degree of freedom.

Clearly this restriction can be overcome by inserting

into Eq. (3) a more realistic expression for the particle

motion, as obtained, e.g., in the gyrocenter approximation

(see Refs. 58 and 59) once the magnetic and electric field

configurations and their time evolution are known. In order

to maintain a description that is two-dimensional in space

plus time, as in the simplified treatment described above, the

particle trajectories need to be expressed with respect to a

coordinate along field lines that plays the role of time. This

reparametrization may require that the particles be first

divided into different classes depending on their orbit topol-

ogy as is the case, for a toroidal plasma, of passing and

trapped particles (see Ref. 60). Finally, we stress that a wide

range of application of the LCS approach to different plasma

configurations is easy to envision. For example, LCSs can

offer a new approach for the study of anomalous particle

transport in space or astrophysical plasmas where this tech-

nique may complement investigations performed with differ-

ent tools, see, e.g., Ref. 61 for heliospheric plasmas.

Conversely, LCS may be looked for in a kinetic plasma

description in order to identify transport structures in particle

phase space. An investigation of this type was performed in

the case of a beam plasma instability in Ref. 9 in terms of a

one dimensional Vlasov-Poisson system.
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