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h i g h l i g h t s

• An information-based multi-asset artificial stock market is modeled and simulated.
• The artificial market is populated by heterogeneous agents.
• Agents are characterized by sentiments and organized in sparsely connected networks.
• Single stock price processes exhibit the principal stylized facts.
• Multivariate price process shows the presence of static factors and common trends.
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a b s t r a c t

An information-based multi-asset artificial stock market characterized by different types
of stocks and populated by heterogeneous agents is presented. In the market, agents trade
risky assets in exchange for cash. Beside the amount of cash andof stocks owned, each agent
is characterized by sentiments and agents share their sentiments by means of interactions
that are determined by sparsely connected networks. A central market maker (clearing
house mechanism) determines the price processes for each stock at the intersection of the
demand and the supply curves. Single stock price processes exhibit volatility clustering and
fat-tailed distribution of returns whereas multivariate price process exhibits both static
and dynamic stylized facts, i.e., the presence of static factors and common trends. Static
factors are studied making reference to the cross-correlation of returns of different stocks.
The common trends are investigated considering the variance–covariancematrix of prices.
Results point out that the probability distribution of eigenvalues of the cross-correlation
matrix of returns shows the presence of sectors, similar to those observed on real empirical
data. As regarding the dynamic factors, the variance–covariance matrix of prices point out
a limited number of assets prices series that are independent integrated processes, in close
agreement with the empirical evidence of asset price time series of real stock markets.
These results remarks the crucial dependence of statistical properties of multi-assets stock
market on the agents’ interaction structure.

Introduction

The increasing interest towards complex systems characterized by a large number of simple interacting units has carried
to the birth of co-operations between the fields of engineering, physics, mathematics and economics [1–10]. According to
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the classical approach, simple analytically tractable models with a representative, perfectly rational agent have been the
main corner stones and mathematics has been the main tool of analysis. Conversely, a complexity science approach, where
markets are populated by boundedly rational, heterogeneous agents using rule of thumb strategies, fits much better with
agent-based simulation models and computational and numerical methods have become an important tool of analysis.

The large availability of financial data has allowed to improve the knowledge about the price processes andmany so-called
stylized facts have been discovered, e.g., the fat tails of return distributions, the absence of autocorrelation of returns, the
autocorrelation of volatility, the distribution of trading volumes and of intervals of trading, etc. [11–16].

In particular, focusing on the distribution of intertrade time between different financial transactions, previousworks have
demonstrated the presence of Weibull distribution [17,18]. Moreover, empirical study has demonstrated that the dynamics
of price and volume of transactions, including the volatility over different time horizons, are influenced by the correlations
and temporal patterns of the intertrade times. The rules that regulate the interactions among agents strongly depends on
the regulatory mechanisms of each individual market [19].

Furthermore, it is worth noting that, as many biological and physical system, financial markets exhibit multifractal
dynamics [20–22].

Generally speaking, these features cannot be reproducedwithin the theoretical framework of single representative agent.
Over the last 20 years, a number of computer-simulated, artificial financial markets have been put forward. Following

the pioneering work done at the Santa Fe Institute [23–25], a large number of researchers have proposed model for artificial
markets populated with heterogeneous agents endowed with learning and optimization capabilities [2,26].

This led to a great interest in developing of artificial financial markets based on interacting agents. Several examples of
artificial stock markets have been proposed in the literature, e.g., Santa Fe Institute Artificial Stock Market [24] and Genoa
Artificial Stock Market [27–38]. While early attempts at microscopic simulations of financial markets appeared unable to
account for the ubiquitous scaling laws of returns (and were, in fact, not devised to explain them), the recent models seem
to be able to explain some of the statistical properties of financial data, but in most cases the attention is focused only to a
single stylized fact. Generally speaking, the objective of artificial markets is to reproduce the statistical features of the price
process with minimal hypotheses about the intelligence of agents [39]. Several artificial markets populated with simple
agents have been developed and have been able to reproduce some stylized facts, e.g., fat tails of returns and volatility
autocorrelation [40,27,41–43,30].Moreover, also the role of fraudulent agents andof corruption in financialmarkets has been
investigated [38,44]. In particular, empirical analysis show that corruption influences the economic growth rate and foreign
investment [45]. Furthermore, the artificial financial markets are a useful framework to study how the fraudulent agents
impact on the markets [38]. For a detailed review on microscopic (’’agent-based‘‘) models of financial markets see [46,47].
Generally speaking, in the framework of artificial stock markets, attention has been focused on single asset artificial stock
markets. This in order to understand and to reproduce the main stylized facts of an univariate price process. Computational
experiments pointed out the possibility to reproduce some stylized facts in terms of the single price process but, results
suggested a reduced capability in reproducing the well known unitary root stylized fact, as it was obtained only in the
presence of exogenous cash inflow.

This limitation can be overcome employing recent results on a single-asset artificial stock market based on information
propagation [32]. Starting from the model proposed in [32], generalizations for the multi-assets framework have been
proposed, where some statistical properties of univariate and multivariate price processes have been reproduced, but the
models resulted unable to reproduce the endogenous presence of common trends [33,34]. This paper presents an extension
of theGenoa Artificial StockMarket (GASM) that addresses such topic bymeans of an information-basedmulti-asset artificial
stock market model. The market is populated by heterogeneous agents that are seen as nodes of sparsely connected graphs.
Themarket is characterized by different types of stocks and agents trade risky assets in exchange for cash. Beside the amount
of cash and assets owned, each agent is characterized by sentiments. Moreover, agents share their sentiments by means of
interactions that are determined by graphs. The allocation strategy is based on sentiments and wealth. A central market
maker (clearing house mechanism) determines the price processes for each stock at the intersection of the demand and
the supply curves. The validation method followed in this paper is the capability of the information-based artificial stock
market to reproduce static and dynamic stylized facts for univariate andmultivariate price processes. Concerning univariate
processes, the three main stylized facts are taken as reference, i.e., unitary root of price processes, fat-tails distribution
of returns and volatility clustering. The multi-assets environment offers a new set of stylized facts for validation, i.e., the
statistical properties of cross-correlation matrices of returns [48–50] and of variance–covariance matrices of prices [51],
that make reference to static and dynamic factors, respectively.

The computational experiments discussed in this paper show that concerning univariate price processes, the proposed
model is able to reproduce unit root, volatility cluster and fat tails of returns. Concerning themultivariate price process, they
exhibits both static and dynamic stylized facts, i.e., the presence of static factors and common trends. Thus, results show
that themain statistical properties of univariate andmultivariate price processes are reproduced, thus remarking the crucial
role covered by the interaction structure among the agents. The paper is organized as follows: Section 1 presents the model,
Section 2 the empirical data, Section 3 shows the computational experiments and Section 4 the discussion of results. Finally,
Section 5 provides the conclusion of the study.
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1. The model

Heterogeneous and informed agents trade risky assets in exchange for cash depending on the interactions among agents.
They are modeled as liquidity traders, i.e., decisionmaking process is constrained by the finite amount of financial resources
(cash and stocks) they own. Let N be the number of traders and K the number of assets. Let L be the number of sectors
that characterize the economy, e.g., construction, information technology, manufacturing, etc. Let l denote the particular
economic sector and the pair l,m the asset m in the sector l. Let Ml be the number of assets of sector l and S l,mi be the
sentiment about the asset l,m of agent i.

For each asset, the traders in the market are organized according to a directed random graph, where the agents are the
nodes and the branches represent the interactions among agents. The graphs are directed, i.e., the interactions are assumed
unidirectional (i.e., agent j influences agent i but not necessarily vice versa) and characterized by a strength g l,m

ji , assumed
a positive real number. Generally speaking, due to the presence of a directed graph, both an output node degree, related to
the output branches of a given node, and an input node degree, related to the input branches, should be defined.

The agents are ranked according to a Zipf law, i.e., the importance of each agents is approximately proportional to its rank.
That model the evidence that the most important agents have larger amount of cash owned, larger number of assets owned.
All the parameters of the agents are calculated according to such a ranking. Moreover, for each stock an agent is randomly
connected to a set of other agents whose number and strength g l,m

ij are inversely proportional to his rank, i.e., richer agents
influences a larger number of agents with a higher strength. Consequently, the output degree distributions over the nodes
are set to power laws and the input degree distributions result power laws too.

Agent i is characterized by a sentiment S l,mi (i.e., real number in the interval [−1,1]) that represent a propensity to invest
in asset m of sector l. The graphs are responsible of the changes in agent’s sentiments. At each time step h, information is
propagated through the market and sentiments of agent i is updated. For each assets, belonging to the chosen sectors, a
positive average sentiment denotes a propensity to buy, whereas a negative average sentiment corresponds a propensity to
sell.

Letℑl,m
i the set of agents that influence the behavior of trader i for the assetm belonging to the sector l and pl,m themarket

price of the risky asset l,m. The new sentiment S l,mi of agent i at time h + 1 is functions of her previous sentiment at time t ,
of the influence of neighbor agents, of market feedback and of the average sentiments of the agent, i.e.,

S l,mi (h + 1)

= tanh
[
αP,iS

l,m
i (h) + αN,iŜ

l,m
i (h) + αM,ir l,m(h) + αG,iS̃i(h) + αS,iS li (h)

]
(1)

where

Ŝ l,mi (h) =

∑
j∈ℑ

l,m
i

g l,m
ji S l,mj (h)∑

j∈ℑ
l,m
i

g l,m
ji

(2)

represents the influence of neighbor agents,

r l,m(h) = log
[
pl,m(h)

]
− log

[
pl,m(h − 1)

]
(3)

represents the market feedback,

S̃i(h) =

∑
l,m S l,mi
K

(4)

models the vision of agent i on the global market, and

S li (h) =

∑
m∈l S

l,m
i

Ml
(5)

is the average sentiment of agent i on sector l. Eq. (1) generalizes themodel proposed in [33], by introducing the agent vision
for each sector (see Eq. (5)). It is worth remarking that the αP,i coefficient in Eq. (1) are inversely proportional to agent’s
rank,i.e., richer agents have stronger believes. Moreover a constraint on graph interaction is considered

|αN,i| = (η − |αP,i|) (6)

i.e., self-interaction is a counterpart of graph interactions, with randomly (i.e., based on an uniform distribution) changes
in sign at each time step. Eq. (6) models a specific behavior of agents, i.e., the fact that sometimes an agent changes idea
about the sentiments of neighbor, and so she changes her reaction. In fact, Eq. (6) points out that agent that are strongly
influenced by their previous sentiment (e.g. big traders, banks, mutual funds, etc.) are poorly influenced by the neighboring
agents’ sentiments (e.g., small single investors) and η represents the self-neighboring sentiment balance coefficient [32,33].

The amplitude ofmarket feedback depends on rank, so that the coefficients αM,i are inversely proportional to agent ranks,
that is agents with higher ranks are less sensitive to the single asset trends. Moreover, the S̃i(h − 1) term is a stabilizing
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element for the sentiment, so that the coefficient αG,i in Eq. (1) is always negative. Finally, the S li (h) term emphasize the
sector l sentiment with respect to the global market vision and αS in Eq. (1) is always positive.

Agent’s trading decision is based on cash and stocks owned and on sentiment. In particular, the stock price processes
depend on the propagation of information among the interacting agents, on budget constraints and on market feedbacks. In
this respect, also the αP,i coefficient in Eq. (1) is proportional to agent’s rank, i.e., richer agents have stronger beliefs.

Let ci(h) the amount of cash, ql,mi (h) the amount of asset l,m owned by the trader i at time h.
The risky wealthW r

i (h) owned by trader i at time step h is:

W r
i (h) =

∑
l,m

ql,mi (h)pl,m(h) (7)

whereasWi(h) = ci(h) + W r
i (h) represents the total wealth of agent i.

At each simulation step, trader i issues orders in a subset of sectors. Let us assume that trader i chooses sector l, then she
invests in the assets belonging to this sector. Moreover, trader i tries to allocate in risky assets a fraction γr of his total wealth
related to his vision of the market trend, i.e.,

Ŵ r
i (h + 1) = γr (h)Wi(h), (8)

where γr =
1+S̃i(h)

2 .
˜Si(h) is the average sentiments on all assets at time t described by Eq. (4). The symbol .̂ denotes that Ŵ r

i (h + 1) is the
amount that agent i− th desires to allocate in the risky investment, whereas the real amountWi(h+ 1) effectively allocated
in stocks will depend on the market result. It is worth remarking that markets are assumed imperfect, i.e., rationing appears
for both demand and supply. In this model only long positions are allowed. Thus, if the agent i is characterized by a positive
average sentiment on the risky asset l,m, the desired quantity is given by:

q̂l,mi (h + 1) =

⌊
γ l,m
a Ŵ r

i (h + 1)
pl,m(h)

⌋
(9)

where γa is:

γ l,m
a =

S l,mi∑
l,m∈Ai

S l,mi
, (10)

and Ai is the set of assets with positive sentiments in sector l. The symbol ⌊..⌋ in Eq. (9) denotes the integer part. Conversely,
if the sentiment relatives to asset l,m is negative, the agent i is characterized by a desired quantity q̂l,mi (h + 1) = 0.

The quantity ∆
l,m
i (h + 1)

∆
l,m
i (h + 1) = q̂l,mi (h + 1) − ql,mi (h) . (11)

is the difference between the desired quantity of stock l,m at time step h + 1 and the quantity of stock l,m in the portfolio
by agent i at time step h. If ∆

l,m
i > 0 the order is a buy order. Conversely, if ∆

l,m
i < 0 the agent issues a sell order. Finally,

every order is associated with a limit price as discussed in the following subsection.

1.1. Clearinghouse mechanism

According to previous models [27–30,32–34], we stipulate that buy (sell) orders cannot be executed at prices above
(below) their limit price dl,mi , i.e.,

dl,mi (h + 1) = pl,m(h) · Ni(µ
l,m
i , σ

l,m
i ) , (12)

Ni(µ
l,m
i , σ

l,m
i ) is a random draw from a Gaussian distribution with average

µ
l,m
i =

(
1 + sgn(∆l,m

i )|S l,mi |

)
. (13)

It is worth noting that for a buy order (i.e., ∆l,m
i > 0) in average dl,mi (h+ 1) > pl,m(h), whereas for a sell order (i.e., ∆l,m

i < 0)
in average dl,mi (h + 1) < pl,m(h). Furthermore, the standard deviation σ

l,m
i is proportional to the historical volatility σ l,m(Ti)

of the price pl,m(h) of stock l,m through the equation σ
l,m
i = ξσ l,m(Ti). Linking limit orders to volatility takes into account a

realistic aspect of trading psychology: when volatility is high, uncertainty on the ‘‘true’’ price of a stock grows and traders
place orders with a broader distribution of limit prices. In our model, ξ is a constant for all agents, whereas σ l,m(Ti) is the
standard deviation of log-price returns of asset l,m, computed in a time window Ti proper for agent i. In particular, Ti is
randomly drawn from a uniform distribution of integers in the range from 10 to 100 for each trader at the beginning of
the simulation [27]. All buy and sell orders issued at time step h + 1 are collected and the demand and supply curves are
consequently computed. The intersection of the two curves determines the new price (clearing price) pl,m(h + 1) of stock
l,m (see [27] for more details on market clearing).

Buy and sell orders with limit prices compatible with pl,m(h + 1) are executed. After any transactions, traders’ cash,
portfolio and sentiments are updated. Orders that do not match the clearing price are discarded.
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Table 1
Economic scenarios considered in the computational experiments.

Scenario Sector Context Allocation Universe αS,i

i No exogenous sectors The whole market = 0
ii Exogenous sectors The whole market = 0
iii Exogenous sectors The sector with largest average sentiment S li (h) = 0
iv Exogenous sectors The sector with largest average sentiment S li (h) > 0

2. Empirical data

The data set used for this paper consists of daily close prices taken from a subset of the assets belonging to the S&P500,
i.e., themost capitalized US assets traded at the NYSE and NASDAQmarkets.We considered the time period from 2, Jan, 2009
to 2, Jan, 2012 and the resulting database was composed by 500 time series, 800 points long each. The subset of S&P500
employed in our computational experiments is composed by 100 assets randomly chosen among the 500 composing the
S&P500. In order to find the number of sectors in which the 100 assets are distributed, the Inverse Participation Ratio (IPR),
as explained in [50], has been used. In particular, the IPR quantifies the reciprocal of the number of eigenvector components
that contribute significantly. In our case the significant components represent the assets belonging to the same sectors. We
found the presence of four sectors, whereas each asset belongs to at least one sector.

3. Computational experiments

Generally speaking, themain objective of an artificial market is to reproduce the statistical features of the price processes
with minimal hypotheses about the intelligence of agents. In this paper we adopted this approach in order to validate the
model. The computational experiments have been performed on amarket characterized by 100 different stocks, each related
to a specific firm. At the beginning of each simulation, cash and stocks are distributed randomly among agents. Starting from
the results obtained by the IPR analysis on real data, we define the number of market sectors presented in our model and
which firms belong to each sector. According to empirical data, all stocks are divided in four sectors and each asset may
belong to one or more sectors. Two different economic situations are considered:

(a) absence of exogenously-defined sectors
(b) exogenously-defined sectors with randomly assigned assets.

In the case of exogenous sectors, the allocation universe is a single sector including either the whole market (i.e., all 100
assets) or the sector characterized by the largest average sentiment S l,mi (h) (see Eq. (5)). Conversely, in the case of absence
of exogenous sectors, the allocation universe is the whole market (i.e., all 100 assets). Finally, two cases are considered
for coefficient αS,i (see Eq. (1)), i.e., (1) αS,i = 0 and (2) αS,i > 0. It is worth remarking that αS,i > 0 results in a distinctive
presence of the sentiment update rule on the average sentiment S li (h) of sector lwith respect to the other sectors, as discussed
in Section 1.

Table 1 summarizes the main characteristics of the four scenarios considered in the computational experiments.

4. Results

In all simulations, the market is characterized by 100 different assets and the number of iteration is equal to 1920 time
step (i.e., 8 years). Using the results of the IPR analysis on 100 assets chosen randomly among the S&P500 index, the number
ofmarket sectors considered is 4. The number of agentsN is set equal to 2,278 initially characterized by a randomdistribution
of cash and number of stocks. Each agent is also characterized by the following values: αP ranging between 0.22 and 0.50, αN
between −0.38 and 0.38, αM between -6.00 and 6.00, αG between −0.10 and 0.04 and αS between 0 and 0.3. The sentiment
S l,mi (see Eq. (1)) ranges between −1 and 1. Furthermore, time window Ti for the calculation of the historical standard
deviation is randomly chosen by a uniform distribution in the range (10, 100).

Fig. 1 shows the prices processes for the k = 100 assets for the scenarios described in Table 1. The price processes exhibit
relevant differences, depending on the specific nature of the asset. Indeed, after a transient (not shown in Fig. 1 for the sake
of compactness) price levels result significantly different. This suggest a possible herding behavior induced by the graphs
that drives the agent propensities to buy/sell the assets.

A statistical analysis on single asset is performed so to verify the univariate stylized facts. Fig. 2 shows the prices and
the returns process of asset number 27 and the corresponding autocorrelation function of raw returns, of absolute value of
returns and of the square returns for scenario (i). Volatility clusters and long memory effect in the autocorrelation function
of absolute value of returns and square returns are pointed out. As clearly shown in Fig. 2(c) autocorrelation of raw returns
shows immediate decay within noise level of the correlation after just one lag, whereas absolute value of returns and square
returns exhibits slow decay of the autocorrelation. These properties are robust features of the proposed artificial market, as
remarked by the same results obtained for the other scenarios in Table 1 not included for the sake of compactness.
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(a) (b)

(c) (d)

Fig. 1. Price processes of k = 100 assets for all scenarios.

Fig. 2. Price process, returns and autocorrelation function of returns process of stock number 27 for scenario (i).

Focusing attention on statistical tests, the normal distribution, the unitary root of returns and the presence of het-
eroscedastic effect have been checked by Jarque–Bera, Augmented Dickey–Fuller and ARCH tests, respectively, at the
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Table 2
Augmented Dickey–Fuller test, Jarque–Bera test and ARCH test for GASM and real (RND100(S&P500)) data.

Data ADF test not rejected J–B test rejected Arch test rejected

Scenario (i) 98 100 93
Scenario (ii) 98 100 93
Scenario (iii) 74 99 92
Scenario (iv) 70 100 65
RND100(S&P500) 80 100 71

Table 3
Number of static and dynamic factors determined using RMT and co-
integration respectively (see text).

Static factors Dynamic factors

Scenario (i) 3 20
Scenario (ii) 4 20
Scenario (iii) 3 5
Scenario (iv) 5 2
RND100(S&P500) 5 11

significance level of 5%. Table 2 summarizes the results of the computational experiments together with those obtained
from the S&P500 (that are included for the sake of comparison). Table 2 reports the number of assets that do not reject the
hypothesis of unitary root (ADF test), the number of assets whose returns process does not follow a normal distribution
(J–B test) and the number of asset that present heteroscedastic effects. It is worth noting that the value of GASM data and
the real data are in very good agreement i.e., the GASM reproduced the main stylized facts of univariate processes in most
of the cases. Moreover, these results are in good agreement with the observations of market dynamics in historical and
archaeological data [52]. This confirm the quality of the information-based artificial stock market allowing us to conclude
that the interactions networks are able to reproduce the univariate stylized facts also in the presence of a large number of
assets.

Stated these results, the attention has been focused on the statistical properties of the multivariate process of prices and
returns. Generally speaking, the analysis of multivariate stylized facts leads to the definition of factor models. Furthermore,
in the context of factor models, two main classes can be identified, i.e., static and dynamic factors. Concerning the former
class, attention is paid to returns as the return processes result (in the first approximation) quasi-stationary. In particular,
the risk of a security can be described as superposition of different source of risks (also described by stationary processes)
and this general formulation is the basic for classical portfolio theory and risk management, e.g., CAPM, multifactors CAPM,
APT, etc. [53–56].

Conversely, in the case of dynamic factors attention is paid to asset prices and the main employed concept is co-
integration. In particular, statistical analysis on empirical data points out that in a large market it is not possible to reject
the hypothesis of integrated univariate price processes, but at the aggregate level the price processes are not independent.
Indeed, only few independent integrated processes can be identified,whereas all the others price processes are co-integrated
with them, i.e., it is possible to identify linear combinations of I(1) price processes that result stationary I(0) processes (so
called co-integration equations) [53–56].

In this paper, the static factors are studied according to the cross-correlation matrix of returns. In particular, following
the approach introduced in the econophysics literature by [48–50], the cross-correlations of returns have been studied by
means of the random matrix theory (RMT). Fig. 3 shows the probability density function (PDF) of eigenvalues of the cross-
correlation matrix for the different scenarios in Table 1. Furthermore, for the sake of comparison, the theoretical PDF of a
randommatrix (represented by the continuous line) as well as the PDF of eigenvalues for the 100 stocks of the S&P 500 index
(i.e., those used to evaluate the IPR and number of sectors) are also shown. Table 3 summarizes the presence of outliers in the
computational experiments well above the bounds determined according to RMT (i.e., eigenvalues larger than the largest
eigenvalue determined by the RMT), in close agreement to the empirical evidence shown by S&P500 data.

It is worth noting that the largest outlier (i.e., the eigenvalue representing the market) is always present within the
proposed scenarios. This suggest that the presence of the market factor is a strong feature of the information-based artificial
stockmarket,mostly due to finiteness of the context (i.e., limited cash amount and share numbers). Conversely, the allocation
universe and strategy of the agents result critical so to obtain the outliers representing the other economic sectors. In
particular, only the introduction of constraints in the sentiment dependencies are able to reproduce the static factor stylized
fact, thus confirming the crucial role of the interaction networks. Furthermore, it is worth remarking that the term αS,i in
Eq. (1) play a critical trade-off role as the larger the αS,i the larger the number of economic sectors (i.e., the number of
outliers), but the larger the αS,i the smaller the market eigenvalue (i.e., the largest eigenvalue). It is worth remarking that in
Fig. 3 the PDF of eigenvalues of GASM data in scenarios from (i) to (iv) are presented in blue, electric blue, green, brown and
yellow respectively and the theoretical PDF for random matrices is represented by the black continuous line. In this case,
i.e., 100 series of returns and 800 time steps, the largest eigenvalue results equal 1.83. For the sake of comparison, the yellow
colored histogram in Fig. 3 shows the PDF of eigenvalues for the random sample of 100 stocks included in the S&P500 index
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Fig. 3. Probability density function (PDF) for eigenvalues cross-correlation matrix of returns.

in a time window of 800 business days (i.e., closed prices from the year 2009 to the year 2012 are considered). As shown in
Table 3, also Fig. 3 confirms the presence of outliers representing the market and the business sectors.

As regarding the dynamic factors, they have been studied by means of the variance–covariance matrix of prices.
According to empirical analysis, only a reduced number of assets prices series in a large market are independent integrated
processes [51]. In fact, the analysis of prices processes shows that financial assets are random walk, i.e., I(1) processes,
but aggregate of financial assets exhibits co-integration. The analysis of this property has been performed following the
procedure described by Stock and Watson [51]. In particular, the PCA analysis on the variance–covariance matrix of
prices allows one to identify portfolios with minimum variance. Conversely to price processes, these portfolios, i.e., linear
combination of prices, generally accept the hypothesis of stationarity [51] that can be verified by the ADF test at significance
level of 5%. Fig. 4 shows the results of the ADF test for the GASM computational experiments and for the series of the 100
randomly selected assets of S&P500 index. As clearly stated in Fig. 4, in the case of the assets of S&P500 data only a reduced
number of portfolios (i.e., equal to 11) reject the hypothesis of stationarity. These time series are the only independent I(1)
processes, i.e., the common trends of the aggregate, whereas there exist 89 cointegration equations (i.e., the I(0) portfolios).
Table 3 summarizes the results of the co-integration analysis and point out that also in the case of GASM data, only a
reduced number of portfolios reject the hypothesis of stationarity. These series are the only independent I(1) processes,
i.e., the common trends of the aggregate. It is worth remarking that the evidence of dynamic factors directly originate by the
interaction of agent, i.e., the information-based decision process taking place by means of the network interconnections.
Furthermore, the presence of the common trends of the aggregate is a strong features that is present in all considered
scenarios, thus remarking the crucial role played by information-based interactions.

These results allow us to conclude that the proposed information-based artificial stock market is able to reproduce the
statistical properties of single-asset environment as well as the stylized facts of multi-assets. It is worth noting that both the
stylized facts on returns and on prices (i.e., static and dynamic factors) are in close agreement with empirical evidences for
real data. This points out that interactions process governed by the networks is themain driving and explanationmechanism.

5. Conclusion

An artificial stockmarket characterized by heterogeneous and informed agents has been studied. In this complex system,
agents are characterized by cash, stocks and sentiments. Sentiments denote propensities to buy or to sell. Agents are seen as
nodes of sparsely connected graph, so that each agent is influenced by a subset of other agent, the only ones that are ‘‘near’’
to him. The statistical properties (i.e., stylized facts) of the univariate and the multivariate process of prices and returns
have been investigated. In particular, concerning univariate price processes, the proposed approach was able to reproduce
unit root, volatility cluster and fat tail distribution of returns. Furthermore, concerning the multivariate price process, the
cross-correlations between returns of different stocks have been studied using methods of Random Matrix Theory (RMT)
and the variance–covariance matrix of price using the Principal Component Analysis (PCA). The computational experiments
pointed out the ability to reproduce both static and dynamic stylized facts of uni- and multi-variate processes. In particular,
results confirmed the crucial role played by the interaction networks for the univariate properties. Furthermore, finiteness
of the market was shown to be responsible for the evidence of the largest static factors whereas the presence of sectors
arise only as consequence of sentiment dependencies in the allocation universe of the traders. Finally, the network based
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Fig. 4. ADF test statistics of the cointegration portfolios in the case of RND100 (S&P500) and GASM data.

information approach was able to endogenously reproduce the presence of dynamic factors in the artificial stock market.
It is worth remarking that for the first time all static and dynamic features at uni- and multi-variate level presented in the
paper has been reproduced in a single framework.
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