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ABSTRACT
Hepatocellular carcinoma (HCC) is a highly vascularized neoplasm. In the tumor niche, abundant angiogenesis is fundamental in providing 
nutrients for tumor growth and represents the first escape route for metastatic cells. Active angiogenesis, together with metastasis, are 
responsible for the reduction of recurrence-free survival of HCC.

MicroRNAs (miRNAs) are small non-coding RNAs that have recently drawn attention in molecular targeted therapy or as diagnostic and 
prognostic biomarkers. MiRNA expression in HCC has been widely studied in the last decade. Some miRNAs have been found to be up- or 
down-regulated, besides association with apoptosis, metastasis progression and drug resistance have been found. This review article aims to 
summarize the angiogenetic process in tumor diseases and to update on what has been found in the vast world of HCC-related-miRNAs and, 
eventually, to report the latest finding on several miRNAs involved in HCC angiogenesis. We searched the state of the arts for the 12 miRNAs 
found to be involved with angiogenesis in HCC (miR-29b, miR-126-3p, miR-144-3p, miR-146a, miR-195, miR-199a-3p, miR-210-3p, miR-338-
3p, mir-491, mir-497, mir-638, mir-1301) and reported their main molecular targets and their overall effect in the sprouting of new vessels. 

Introduction
MiRNAs are a subclass of non-coding RNAs, ~22-nucleotides 

long, firstly discovered in C. elegans [1,2], they participate in the 
post-transcriptional gene regulation by inhibiting the translation or 
determining the degradation of the target messenger RNA (mRNA) 
(Figure 1) [3]. MiRNAs are found in most eukaryotes, including 
humans, and they are present in all cell types and tissues. Even if 
miRNAs account for a small portion of the human genome (1-5%), 
they regulate around 30% of protein-coding genes. 

It has been known that miRNA dysfunction is associated 
with apoptosis resistance and uncontrolled cellular proliferation. 
Emerging evidence also suggests that miRNAs dysregulation may be 
central in tumor angiogenesis and metastasis [4].

Hepatocellular carcinoma (HCC) represents the most frequent 
hepatic malignant neoplasm and is one of the leading causes of 
cancer-related deaths worldwide [5], with approximately 800,000 
new cases and 745,500 death occurring each year [6]. Most of the 
new cases (85%) occur in Asia and sub-Saharan Africa, while the 
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remaining 15% occur in western and European countries. 

HCC is a highly vascularized neoplasm with frequent intrahepatic 
metastasis. In the tumor niche, abundant angiogenesis is fundamental 
in providing nutrients for tumor growth and represents the first 
escape route for metastatic cells. Active angiogenesis, together with 
metastasis, are responsible for the reduction of recurrence-free 
survival of HCC [7].

Although HCC treatment options have improved over the last 
decade, the survival rate of patients remains low. Hence, it is urgent to 
explore new therapies and to detect new and more accurate markers 
for early diagnosis, treatment, and prognosis in HCC. Nucleic acid-
based therapies such as microRNAs (miRNAs) may have promising 
therapeutic potential for HCC treatment. 

This review article aims to briefly overview the angiogenetic 
process in tumor and to update on the current knowledge of HCC-
related-miRNAs and, eventually, to report the latest finding on 
miRNAs involved in angiogenesis in HCC.

Tumor Angiogenesis
Tumor angiogenesis is divided into three macro-stages: 

avascular, vascular and metastatic. During the avascular stage, 
the tumor mass (1-2 mm) gains nutrients by passive diffusion [8]. 
Thus, neo-angiogenesis plays an essential role in the growth of 
uncontrolled tumors. Tumor angiogenesis is a process that mimics the 
physiological one. New blood vessels are generated by proliferation, 
migration and subsequent differentiation of endothelial cells using 
pre-existing vascular architectures [9]. Parallel to the tubulogenesis 
of neo-vasculature, a process of demolition destroys the limits of the 
old vessels. This process involves degradation of vascular basement 
membrane and extracellular matrix. 

In the beginning, both pro- and anti-angiogenic factors are 
counterbalanced. However, in response to the hypoxic stimulus, 
neoplastic cells undergo into an angiogenic switch. The production 
of pro-angiogenic mediators such as vascular endothelial growth 
factor (VEGF) and proteolytic enzymes [10] is increased with a side-
by-side decline in anti-angiogenic factors such as angiostatin [11], 

Figure 1: The biogenesis of miRNAs. MiRNA genes are transcribed by RNA polymerase II into a pri-miRNA, that may contain one to six 
miRNA precursors. The double strand RNA structure is recognized by a nuclear protein called Pasha (DGCR8) which binds the enzyme 
Drosha to release the pre-microRNA. Pre-miRNA are exported from the nucleus to the cytoplasm using the shuttle of Exportin-5. 
Once in the cytoplasm, the pre-miRNA is cleaved by the RNase III Dicer which interacts with the 3’-end and cuts the loop joining the 
3’- and 5’- arms, producing a yet-not-final miRNA duplex (about 22 nucleotides in length). One strand of the mature miRNA is usually 
degraded, whereas one strand will become a mature miRNA which will be bound to an RNA-mediated silencing complex (RISC). In this 
complex, the mature miRNA targets the 3’-UTR region of its target mRNA to regulate its translation.
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endostatin [12] and angiopoietin 2. VEGF is one of the most effective 
cytokines in the angiogenic process [13]. It is a family of structurally 
related molecules, which consists of VEGF-A, VEGF-B, VEGF-C, 
VEGF-D, and PGF (placental growth factor). The primary mediator 
in the angiogenetic process is VEGF-A (usually referred to as VEGF) 
[14,15]. 

VEGF is widely-expressed in most human cancers, and its 
increased expression is often associated with a less favorable prognosis. 
Induction of VEGF expression can be caused by a multitude of 
environmental factors such as hypoxia (HIF-1α), inflammatory 
cytokines (e.g., IL-6), low pH, growth factors, sex hormones, and 
chemokines (e.g., stromal-cell-derived factor 1). 

VEGF interacts with cells essentially through VEGF Receptor 2 
(VEGFR-2), which is expressed at a high level by endothelial cells 
undergoing angiogenesis. On the other hand, the role of VEGF 
Receptor 1 (VEGFR-1) regarding VEGF-mediated angiogenesis 
remains unknown. The VEGFR-1 binds to VEGF with approximately 
ten times the affinity of VEGFR-2, but its post-signaling effects are 
extremely weak [16].

The binding of VEGF to its receptor leads to a cascade of different 
signaling pathways. This binding results in the up-regulation of 
genes involved in cellular proliferation and migration of endothelial 
cells, promoting their survival and increasing vascular permeability. 
When VEGF binds to VEGFR-2, the receptor dimerizes, and 
activates the PLCγ-PKC-Raf kinase-MEK-MAPK pathway with the 
consequent initiation of DNA synthesis and cell growth driving the 
cell machinery to proliferation. At the same time, the activation of the 
phosphatidylinositol 3-kinase (PI3K)-Akt pathway leads to increased 
endothelial-cell overall survival. The activation of the src-pathway 
leads to the modification of actin cytoskeleton and the induction of 
cell migration [17]. These are the most relevant pathway involved 
in VEGF signal transmission. Several secondary intracellular 
interactions may occur simultaneously [18]. 

Regarding the role of the miRNAs in tumor angiogenesis, it has 
been demonstrated that several miRNAs can influence VEGF-A 
action. Some of them have been experimentally proven to directly 
target the 3’-UTR region of VEGF-A mRNA in different types of 
tumor. Further, several miRNAs have been identified as direct 
regulators of both VEGF-A and VEGF-C [19]. Besides, miRNAs can 
modulate VEGF expression by targeting VEGF inducers such as the 
HIF, PI3K/Akt mTOR and IGF1R pathways [20].

MiRNA and Hepatocellular Carcinoma
MiRNAs control several key-regulatory pathways in cells. Their 

aberrant expression may contribute to cancer tumorigenesis and 
progression. In particular, several miRNAs have been found to be 
up- or downregulated in HCC [47]. HCC usually originates from a 
cirrhotic liver, which may be the result of different liver injuries: each 
etiology causes a different miRNA expression profile in HCC cells [48]. 
For example, miR-217 could promote ethanol-induced fat storing in 
hepatocytes [49] and miR-126 was found to be downregulated in 
alcohol-induced cirrhosis (and HCC consequently) [50].

Considering the potential of miRNAs, several scientists are 
assessing their utility in HCC diagnosis, prognosis, and treatment. 

Since laboratory biomarkers (such as AFP and des-γ-carboxy-
prothrombin) have proven their lack of reliability, miRNAs have 

been investigated as possible diagnostic markers. More than twenty 
miRNAs can differentiate a healthy liver from one with chronic 
hepatitis or cirrhosis [51,52].

Altered miRNAs expression may lead to aberrant programmed 
cell-death. In HCC tissues, reduced expression of miR-101-3p and 
increased expression of miR-224-5p and miR-438-5p were associated 
with resistance to apoptosis. At the same time, apoptotic resistance 
was correlated with reduced expression in blood of miR-101-3p, 
miR-16-5p, miR-195-5p, miR203a-3p and miR-221-3p [53-56]. The 
measurement of these miRNAs in blood serum may help in assessing 
HCC prognosis. 

Macroscopically, several miRNAs have been recognized to 
precisely stage patients with HCC [57]. In addition, miRNAs 
expression profile of primary HCC may predict early venous 
metastatic route [58].

Aberrantly expresses miRNAs signature in HCC make them 
potential diagnostic and prognostic tools, and may help in providing 
information on how the disease will progress or metastasize. 

MiRNAs Involved in HCC Angiogenesis 
Several miRNAs have been discovered involved in HCC 

angiogenesis. In the following section, we will report the most recent 
findings in miRNA-related angiogenesis in hepatocellular carcinoma.

Xiong et al. [59] discovered that miR-29b is down-regulated 
in HCC tissues and it was correlated with a worse recurrence-free 
survival period. In a sequent study they verified that miR-29b has the 
capability of suppressing HCC tube formation of endothelial cells and 
extracellular matrix invasion. 

A human HCC clinical study discovered that miR-126-3p 
can predict  the recurrence rate after liver transplantation and the 
reduction of metastasis rate in HCC [60]. An in vitro study also showed 
the importance of both gain and loss of function in miR-126-3p, 
while in vivo assay, miR-126-3p had an inverse correlation with vessel 
marker CD34. Further, tumor masses of miR-126-3p overexpressing 
cells had a smaller diameter of vessels, which may be related to the 
low-rate formation of new micro-vessels. It was demonstrated that 
the overexpression of miR-126-3p significantly inhibited PI3KR2/P-
Akt pathway.MiR-144-3p has also been found to influence the PI3K 
proto-oncogenic pathway by the suppression of SG3K activity, thus 
modulating angiogenesis [61]. Two other miRNAs have been found 
to both influence the PI3K pathway and the VEGF expression from 
liver cancer cells: miR-199a-3p which suppressed tumor angiogenesis 
by directly reducing VEGF-A secretion from cancer cells and 
suppressing the expression of VEGFR1 and VEGFR2 on endothelial 
cells [62]; whereas miR-497 directly suppressed VEGF-A expression 
by binding to the 3’-UTR of VEGF-A mRNA. [63,64].

Several miRNAs have been proven to interact with VEGF and 
VEGF-R. For example, miR-195 directly inhibits expression of VEGF 
and other factors (e.g., VAV2 and CDC42) with pro-metastatic activity. 
MiR-195 down-regulation resulted in increased VEGF concentrations 
in the tumor niche, thus allowing more VEGF molecules to bind 
with their receptor to proceed with signal transmission [26]. MiR-
451 suppresses VEGF production in HCC cells by targeting IL-6R-
STAT3 signaling, as well as inhibiting the VEGFR2 signaling in vitro 
[65]. IL-6/STAT-3 signaling is also modulated by SMAD3 which is 
the target of miR-491, whose overexpression leads to a reduction 
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in VEGF secretion [66]. MiR-1301 reduced tumor angiogenesis by 
down-regulation of VEGF-A expression [67]. MiR-638 was able to 
suppress HCC angiogenesis by reducing VEGF expression; however, 
the exact mechanisms remain unknown [31].

Other miRNAs influenced VEGF expression through one of its 
stimulants: HIF-1α. MiR-210-3p has been found to be upregulated 
in HCC and to be associated with increased microvessel density 
(MVD). This miRNA is induced by low oxygen levels and modulates 
angiogenesis via HIF-1α/3α regulatory feedback circuit [68]. The 
overexpression of miR-338-3p has been correlated with decreased 
VEGF, GLUT-1 and MDR1, which are all regulated by HIF-1α [69]. 
At the same time, suppression of miR-338-3p showed increased 
VEGF expression in HCC cells [70].

Zhu et al. [71] demonstrated that miR-146a enhances the 
angiogenic activity of endothelial cells, by promoting the expression 
of platelet-derived growth factor receptor α (PDGFRA) and the 
involvement of BCRA-1 gene. MiR-146a was found to inhibit HCC 
invasion and metastasis through the upregulation of APC and the 
downregulation of VEGF [72].

Challenges in miRNA Delivery
The therapeutic application of miRNAs involves two main 

strategies. Administration of miRNA antagonists downregulates 
the gain of function in an oncogenic miRNA [73]. The miRNA 
antagonists are oligonucleotides targeting the endogenous miRNA 
and blocking them into a configuration unable to be processed by 
RISC, resulting in an accelerated degradation. Another strategy 
involves the replacement of a tumor suppressor miRNA to restore 
the loss of function through the so-called miRNA mimics [74].

One of the significant challenges in the use of miRNA as 
therapeutics is represented by the successful delivery of miRNA to 
the target tumor tissue. This may not be effective due to the leaky 
endothelial barrier [75] and the complexity of the extracellular matrix 
surrounding the tumors [76]. Another challenge that remains is to 
preserve the stability and integrity of miRNAs in circulation. Naked 
miRNAs are degraded within seconds after entering the bloodstream 
because of the presence of a serum RNase A-type nuclease in the 
circulating blood [77]. Besides, naked miRNAs are rapidly cleared via 
renal excretion [78].

However, much work has been done in exploiting and evaluating 
the characteristics of tumor microenvironment to improve miRNA 
delivery. It was shown that effective in vivo gene-silencing had been 
accomplished by intratumoral injection or local administration 
without carriers [79]. In systemic route delivery, several significant 
progress has also been demonstrated. For example, miRNAs can be 
tailor-modified to be resistant to degradation by blood RNase [80], 
they can be enveloped by “smart” nanoparticle coats whose retention 
could be tissue-specific [81], or they can be delivered using viral 
vectors [82].

MiRNA in HCC Treatment
The recent success of a human trial using miravirsen, a miR-122 

inhibitor, in the treatment of HCV infection has witnessed significant 
interest in miRNA therapeutics [83]. Up to now, several clinical trials 
involving miRNA analogous or antagonist are under evaluation [84]. 
Unfortunately, none of the proposed drugs are focused on HCC. 

However, clinical trials for miR-145, miR-451, miR-195, and miR-
107 have been already established for vascular disease targeting. Other 
pre-clinical phase trials against HCC are under evaluation in murine 
models. In healthy liver tissue, miR-26a exhibits high expression, and 
it is downregulated in both human and murine HCC tumors. MiR-
26a directly target cyclins D2 and E2 inducing G1 arrest of liver cancer 
cells. In the experiments performed by Kota et al. the administration 
of miR-26a, through adenovirus vectors, resulted in drastic inhibition 
of cancer cell proliferation with induction of tumor-specific apoptosis 
[85].

Other evidence proved the anti-cancer effects of miRNA-
antagonists. Callegari et al. [86] created a murine model of miR-221 
overexpression leading to spontaneous liver multiple tumors. Three 
intravenous doses of anti-miR-221 oligonucleotide (AMO) separated 
by a 15-days interval induced a reduction in the size of liver tumor 
nodules in treated mice. In addition, intratumoral subministration of 
miR-520e oligonucleotides repressed HCC growth [87].

No direct evidence linking those miRNA mimics/inhibitors to 
angiogenesis are reported in the aforementioned studies, however, 
considering the pathways targeted by those miRNAs further 
investigations are needed to clarify the role of these candidate miRNA 
therapeutics on tumor angiogenesis. 

Discussion
HCC is the fifth most common cancer in men, and the ninth in 

women worldwide [88]. The median survival following the diagnosis 
is poor, ranging from four to twenty months [89]. Potentially 
therapeutic approaches (e.g., liver transplantation or ablation) can 
result in 5-year overall survival > 70% but apply to less than 30% of 
patients with HCC [90]. Currently, viable treatment for those patients 
who are in an intermediate or advanced cancer is limited and is 
considered as a palliative. 

Over the last decade antiangiogenic molecules that inhibit 
VEGF or its receptor have been approved for HCC treatment, for 
example, sorafenib for advanced-stage HCC [91] or chemotherapy in 
combination with bevacizumab for metastatic colorectal cancer [92]. 
Sorafenib, a multi-kinase inhibitor, is currently the only systemic 
drug approved for use as a first-line treatment in advanced HCC 
by the FDA. According to Llovet et al. [91] patients in the sorafenib 
group had a median survival higher than the placebo group (10.7 
v.s. 7.9 months respectively). Besides, sorafenib is a safe and well-
tolerated drug, the most common adverse effects include diarrhea, 
fatigue, hand-foot skin reaction, and hypertension. Most of these 
effects are considered mild and manageable; however cardiovascular 
events may be fatal [93].

The utilization of anti-VEGF/R molecule has seemed to be 
fundamental following transcatheter arterial chemoembolization 
(TACE). TACE occludes inner vessel within the tumor mass, in the 
meanwhile tumor progression may occur due to neovascularization 
at the edge of the tumor, where the procedure can increase the 
angiogenesis rate secondary to hypoxia [94]. Hypoxia-induced factors 
upregulate VEGF inducing a surge of VEGF. After embolization 
VEGF rises up to 160% of the baseline on day 1, reverting back to 
130% on day 2 and 120% on day three [95]. For this reason, there has 
been considerable interest in combining TACE with sorafenib [96], 
weighing that high serum levels of VEGF had been associated with 
poor prognosis after TACE in HCC [97].
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Oral regorafenib is as a second-line drug and is the first 
systemic agent approved for treatment of patients who had diseases 
progression during sorafenib treatment [98]. As well as sorafenib, 
regorafenib is a multiple kinase inhibitor, targeting kinases involved 
in angiogenesis (VEGFR) and oncogenesis (KIT, RET, c-RAF). In 
the RESORCE trial, administration of regorafenib resulted in overall 
survival of 10.6 months (v.s. 7.8 months in the placebo group) and 
doubled progression-free survival and time to progression (3.1 and 
3.2 months respectively) in comparison to the placebo group [99]. 
Adverse effects include hand-foot skin reaction [100], hypertension 
[101], stomatitis [102], diarrhea, hyperbilirubinemia and fatigue 
[103,104].

That being said, even if sorafenib and regorafenib appear to be 
important tools in the hands of the clinicians, the overall survival is 
not comparable to more therapeutic approaches such the ones applied 
to early-diagnosed HCC. Thus, there is still a constant need for the 
development of novel therapeutic tools. The ability of miRNAs to 
regulate fundamental cellular processes by concurrently intervening 
in multiple pathways illustrates their potential role. MiRNA-based 
therapy holds great hope as highly specific, target-delivery for cancer 
treatment. Nevertheless, to reach superior sensitivity and specificity, 
and accelerate their adoption in the every-day clinical scenario, 
there is still much work to do. For example, it is compelling to 
better define the tangled network of interactions between miRNAs 
and the human genome and its products. Besides, a full assessment 
of their toxicological activity needs to be performed (nucleic acid 
administration can trigger the immune system promoting immuno- 
and neuro-toxicity) [105,106].

MiRNAs hold a great responsibility in the future of target therapy. 
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Table 1: miRNA and its associated target/pathway. In the table are 
reported miRNAs that interfere with VEGF-A, VEGF-C, HIF, PI3K/Akt, 
mTOR, and IGF1R. 

Target miRNAs

3’-UTR of 
VEGF-A

MiR-20 [21], miR-29b[22], miR-93 [23], miR-126[24], 
miR-190 [25], miR-195[26], miR-200[27], miR-203 
[28], miR-497 [29], miR-503 [30]and miR-638[31]

3’-UTR of 
VEGF-C MiR-27b [32]and miR-128[33]

HIF Pathway miR-22[34], miR-107[35], miR-519c [36], 
miR-145 [37]

PI3K/Akt 
Pathway miR-26a[38], miR-145 [39]

mTOR Pathway miR-18a[40], miR-128[41], miR-145 [42]
miR-218 [43]

IGF1R Pathway miR-126 [44], miR-181b [45], miR-148a and 
miR-152 [46]

Exciting results have been obtained in murine models of HCC and 
in human trials of HCV infection. Considering the importance 
of angiogenesis in HCC, we believe that miRNAs involved in neo-
vasculature formation will lead the investigation in the discovery of 
new anti-angiogenetic drugs that might result in better therapeutic 
outcomes.
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