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Spatiotemporal regulation of the biochemical information is often linked to supramolecular organizations proteins and nucleic
acids, the driving forces of which have yet to be elucidated. Although the critical role of multivalency in phase transition has
been recognized, the organization principles of higher-order structures need to be understood. Here, we present a fuzzy
mathematical framework to handle the heterogeneity of interactions patterns and the resultant multiplicity of conformational
states in protein assemblies. In this model, redundant binding motifs can establish simultaneous and partial interactions with
multiple targets. We demonstrate that these multivalent, weak contacts facilitate polymer formation, while recapitulating the
observed valency-dependence. In addition, the impact of linker dynamics and motif binding affinity, as well as the interplay
between the two effects was studied. Our results support that fuzziness is a critical factor in driving higher-order protein
organizations, and this could be used as a general framework to simulate different kinds of supramolecular assemblies.

1. Introduction

Proteins can form a wide variety of assemblies, in terms of
composition, size, and dynamics. In addition to simple
binary, ternary complexes, and middle-size oligomers, pro-
teins may also assemble into higher-order organizations.
These supramolecular assemblies are implicated in different
biological processes ranging from normal physiology to dis-
ease [1, 2]. For example, to minimize signaling noise for
low-afhinity effectors, signaling complexes frequently increase
the local concentration of binding sites via higher-order pro-
tein assembly [3]. Recent discoveries revealed that supramo-
lecular organizations of proteins and nucleic acids can
generate functional cellular compartments [4, 5], which lack
a membrane boundary [6]. Such membraneless organelles
appear at various points on the biological landscape, for
example, can serve as biomolecular storages upon stress and
bioreactors to accelerate chemical reactions as well as signal-
ing devices, whose assembly/disassembly is regulated by a
variety of pathways [7-9]. Seminal works by Brangwynne,
Hyman, and Parker labs revealed that these organelles are

created by a process of liquid-liquid demixing, once the com-
ponent concentration exceeds the saturation limit [10, 11].
This process, which was termed as a phase transition, could
be described by the Flory-Huggins theory [12].
Higher-order protein organizations exhibit a wide spec-
trum of states with distinct dynamics. Prions/amyloids are
stabilized by p-zippers, resulting in static and solid-like
inheritable entities [13]. Signalosomes, such as inflamma-
somes or necrosomes could resemble prion-like stable struc-
tures [14] or be dynamic, for example, the autophagosome
[15]. Ribonucleoproteins (RNP) generate dynamic granules
or liquid-like droplets [16]. Nuclear pore complexes (NPCs)
are somewhat more stable and form hydrogels [17]. Intrigu-
ingly, the very same protein could be organized into different
higher-order states with distinct dynamics. Pathological
mutations may induce conversion of the material state, for
example, liquid-like droplets to solid fibrils. In the case of
the hnRNPA and Fus protein, familial mutations appear in
Amyotrophic lateral sclerosis (ALS) [1, 2]. Interestingly,
pathological mutations often affect intrinsically disordered
linker regions [18] and not the interacting motifs themselves,


http://orcid.org/0000-0003-3217-9204
http://orcid.org/0000-0003-1316-4832
http://orcid.org/0000-0002-4463-6727
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6360846

suggesting the importance of conformational dynamics in
organizing higher-order structures [19].

These experimental observations are in agreement with
the recently proposed framework for higher-order protein
organizations [20]. This model suggests that the material
state of higher-order structures could be decomposed into
three factors. First, low-affinity elements/motifs such as
cation-pi, pi-pi, aromatic hydrogens bonds [21, 22] medi-
ate weak contacts with fast off-rates. Second, multivalency
of binding elements increases the number of microstates
in the bound state [23]. Third, conformational flexibility/
dynamics or disorder must be retained to enable different
topologies and reduce the entropic penalty of binding [16].
Along these lines, NMR data indicates similar conforma-
tional heterogeneity of Fus in its free and bound states
[16]. Polymer physics approaches recapitulated the effect
of multivalency of interacting motifs [23]. Monte Carlo
simulations shed light on linker solvation [24, 25]. How-
ever, the problem of degenerate interaction patterns by
weak affinity motifs [22] and how the resultant heteroge-
neous conformations impact higher-order protein organi-
zations have not been addressed so far.

Our model considers the supramolecular assembly as a
fuzzy complex [26-32]. These protein assemblies are char-
acterized by structural multiplicity or dynamical disorder
in their bound states, and the conformationally heteroge-
neous region is demonstrated to have a considerable
impact on the biological function. This phenomenon is
referred to as “fuzziness” in proteins, which concept has
been supported by experimental evidence on a wide range
of examples [33]. Fuzziness originates in transient and
ambiguous interactions, which lead to redundant contact
patterns in protein complexes [27, 34]. Although the view
on degenerate alternative contacts in specific complexes
contradicts to the traditional concept on specific molecular
recognition, it is corroborated by a wide range of experi-
mental data [35, 36] (and references therein). Further-
more, a variety of regulatory mechanisms are linked to
protein fuzziness [29], which might also contribute to the
organization of higher-order assemblies [20].

Fuzziness is known as a mathematical concept, where
the membership in given sets is described by a function,
varying between [0,1] instead of a single [0 or 1] value.
Fuzziness has been derived from the seminal work of
Zadeh [37] and has been implicated in the electronic con-
trol of ~3000 artificially intelligent devices [38]. We have
developed a simulation method based on the mathematical
concept of fuzziness to describe how weak degenerate
motifs connected by flexible linkers can be organized into
higher-order polymers. In this model, a single binding site
can simultaneously interact with multiple binding motifs
to different extents. We show that these partial and multi-
ple contacts facilitate polymer formation as compared to
the one-to-one binding models. Independently of the fuzzy
description, the algorithm allows to study the influence of
linker dynamics, motif affinity, and their interplay on
molecular associations. Our results support the previous
proposal [20] that fuzziness is a critical factor in driving
higher-order protein organizations.
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2. Methods

2.1. Model System. The simulations were run on 100 hypo-
thetically identical proteins, which were placed into 64
periodic simulation boxes. All units are given in residues.
The separate proteins can associate, the resultant polymers
can dissociate, and both can diffuse with probabilities
given below.

2.2. Protein. The model is a hypothetically biological chain,
which is composed of N residues (depending on the valence,
Figure 1). Each residue is characterized by two values: bind-
ing affinity and dynamics. Binding affinity characterizes the
interaction preference, and this value could be derived from
experimental studies or theoretical estimates of binding free
energies. Here, dynamics refers to a conformational
exchange in the bound state. That is, upon molecular interac-
tion, to what extent flexibility or dynamical disorder can be
retained in the assembly. If this value is high, the residue
can interconvert between multiple states, generating multiple
interaction patterns and heterogeneous conformations. If
D=1, linkers preserve their conformational heterogeneity
similarly to their unbound state, while in case of D=0, the
linkers collapse and become rigid in the assembly. The value
for dynamics could be derived from bioinformatics studies,
as it can be predicted based on the protein sequence or from
NMR measurements. In this work, the values for binding
affinity and dynamics are hypothetical and not derived from
observed or computed data on specific model systems.

Values for binding affinity and dynamics vary in a [0,1]
range and were kept fixed during simulation. Binding affinity
>0.3 designates residues involved in binding; fuzziness values
>0.3 correspond to linker residues. Binding elements («) are
defined as a continuous stretch of at least 5 residues with
binding affinity >0.3. Linkers (1) are defined as all other seg-
ments connecting the binding elements. In case of the hypo-
thetical protein, the length of each binding site was 7 and the
length of each linker was 10 residues. The size of the molecule
was varied between 34 and 102 residues.

2.3. Molecular Association/Polymer. If two molecules are
linked by one or more nonzero fuzzy interactions, they
are considered to form a complex. Interacting sites must
be spatially close (i.e., their distance should be below a given
threshold). Bound molecules move together in case of diffu-
sion to the neighboring box. Parameters for binding (affinity,
probability to associate/dissociate) are described below. Large
polymers (higher-order assemblies) were defined as inter-
connected m > 25 molecules.

2.4. Simulation Box. 64 cubic simulation boxes were used,
with lengths between 20 and 70 residues (units are given in
residues). The molecules were placed randomly into the
boxes, with no steric overlap.

2.5. Parameters. Binding preference of a binding element («;)
is obtained as an average of the residue binding preferences.
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F1GURE 1: Schematic representation of the model system with one (a) and three interacting molecules (b). s, is the binding preference of a

binding element («), which is computed as the average of the residue-based binding affinities (equation (1)). D; is the dynamics of the
linker (A) with length [, which is obtained as the average of the residue-based values (equation (5)). The local concentration of the
available binding sites is computed within a volume V/;, which is scaled by the linker dynamics (D;, equation (6)).

where s, is the binding preference of residue k and the bind-
ing element contains 7, residues.

The affinity between two binding elements is defined as
the average of the binding preferences [0,1].

Koo =——> (2)

where s, and s, are the binding preferences of the interact-
ing o; and o, elements

As the f]uzzy framework allows one binding element to
interact with multiple other elements, the number of possible
binding elements available for interaction needs to be deter-
mined. All binding elements within the volume, which is
defined by the neighboring linkers are considered (see
below).

n
maxmt o Z & > (3)

j=1

where a; € V,, and n is the maximum number of
1

maxint,a;
interaction sites around the binding element «;. The available
volume for «; interactions is defined by the length of the lon-
ger neighboring linker (/;), which is measured from the cen-
ter of the binding element. In the default case, V; is a

spherical volume with a radius of [;.
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This volume could be rescaled according to linker
dynamics, which is defined as the average of the residue
dynamics.

1
Di — Zk:lldk , (5)

where d, is the dynamical value of residue k, and /; is the
length of the linker.

If the linker dynamics (D;) is 1, all the available binding
sites are considered within the volume as defined in equation
(4). If D; < 1, the sphere radius is reduced proportionally to
the linker dynamics.

11{ =D; * 1, (6)

where D; is the linker dynamics and [; is the length of the
linker. I is used to obtain the volume by equation (4).

2.6. Computed Quantities. The association probability line-
arly depends on the binding affinity (K, a“a}_) and reciprocally
on the available binding sites (1,,yintq,)-

int _ pint
p(e)if _ pon * (1 poff) * Kot,,txj , (7)

nmaxint,zxi + nmaxint,tx i

where the intrinsic association probability pi™*=0.6,the
intrinsic dissociation probability pif =0.1, similarly to
the reference [23]. The association probability is compared
to a random number (rnd), and if pif > rnd, the binding
is realized.

Once interactions are formed in the first step, we
define an occupancy value for each binding elements
[0,1]. It is calculated with an algebraic sum, which is the
fuzzy union (s-norm) operator.

e Ky o)
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where n is the number of the binding elements in the
polymer. The algebraic sum was chosen because of its
super idempotent property s(a,a)>a. Equation (8) con-
siders all binding sites within the polymer, but only the
connected sites (where Ka,.,aj >0) are taken into account
in the algebraic sum.

From the second step, the affinity of a given interaction

between «; and «; also depends on the local concentration



of the bound binding elements. The binding affinity between
two elements must be weighted by the occupancies of the
neighboring binding sites.
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where y, and y,, occupancies are summarized for all binding
elements within the available volume for «; and «;. If the local

concentration is considered from the second step, the modi-
fied affinities (K',, , ) are used to determine the occupancies
L)
in equation (8).
The association probability is also modified accordingly.

int int !
eff_pon’k (l_poff) *K(Jt;,(x}- N 1
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, (10)
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!
where K',
tion (9), and n;,, and Minta,
ing elements, which are bound to «; and «a;, respectively.

The dissociation probability has an inverse relationship
to the binding affinity.

s the modified binding affinity defined in equa-
are the actual number of bind-

eff _ Phte * (1 —Piorif) 1
Pott = ————5— > (11)
Ka,-,a]

int : Fat] int
on) and dissociation (p¢;)

probabilities are the same as in equation (7), and Kla,.,aj is

where the intrinsic association (p

the modified binding affinity defined in equation (9).

From the second step, the molecules could be present as
individual chains, or chains organized into oligomers or
larger polymers. Here, we need to define the interaction
capacity (“freedom”) of the binding elements within the
molecular assembly/polymer.

n

F=Y1-4 (12)

where (1 — ;) is the available interaction capacity of a given
«; binding element, which is summarized for all binding ele-
ments in the polymer.

Any molecule types in the system: individual molecules,
oligomers, or larger polymers can diffuse to another box.
Diftfusion means repositioning into another box, in case of
polymers molecules move together. The probability of the
diffusion is defined as

1 1
Pat = ¢ ¥ = (13)
Zi:mf<1 - )

Complexity

where the square root of F (equation (12)) is used in the
denominator.

2.7. Comparison of Fuzzy and Nonfuzzy Simulations. As in
the fuzzy simulations, a partial binding is also considered to
be a potential interaction (depending on the association
probabilities as computed by equations (7) or (10)), we
ensured that the probabilities of forming large polymers in
the fuzzy and nonfuzzy simulations are comparable. First,
the binding affinities in the fuzzy simulation are derived from
equations (2) and (9), while in the nonfuzzy simulations they
are always 1. Therefore, the association probabilities (equa-
tion (10)) of the nonfuzzy simulations are higher, unless the
local concentration effect is considered. Fuzzy simulations
only produce large polymers >4 valencies (binding elements)
without considering the local concentration. Second, the
association probability (equation (10)) is inversely propor-
tional to the current number of binding interactions, so a
potential to contact simultaneously via multiple sites does
not necessarily increase the probability of polymer forma-
tion. Third, the dissociation probability (equation (11)) is
inversely related to the binding affinity. Therefore, a weak
(partial) binding in the fuzzy model is more likely to dissoci-
ate than a full binding (with K =1) in the nonfuzzy model.
Overall, the fuzzy simulations without the local concentra-
tion effect are comparable to the nonfuzzy simulations.
Please note that the nonfuzzy simulations in this work are
not equivalent to those in the reference [23], as our simula-
tions also account for spatial dimensions, linker dynamics,
and motif affinity.

2.8. Computational Protocol. A periodic system was defined,
which contained 64 boxes, with dimensions from 20 to 70
residue units (length was varied in separate simulations).
The system was comprised of 100 molecules, each composed
of 34 to 102 residues. The simulated molecules were placed
randomly in the boxes. The simulation protocol was similar
to the stochastic rule-based simulation in reference [23].

In the first simulation step, the molecules could associate
according to the probabilities given in equation (7). From the
second iteration step, the molecules had three options: asso-
ciate (i), dissociate (ii), and diffuse to another randomly cho-
sen neighboring cell (iii). Occupancies (equation (8)) and the
interaction capacities (equation (12)) are determined in each
step, and affinities were modified accordingly (equation (9)).
Association probabilities (equation (10)) and dissociation
probabilities (equation (11)) were also scaled by the modified
affinities (equation (9)) to account for the local concentration
and binding status of the available sites. Diffusion was
inversely proportional to the interaction capacity, so larger
polymers have less chance to move to the neighboring box.

3. Results

All previous simulations of higher-order assemblies assumed
that interactions are well-defined and each site contacts only
one partner at the same time (one-to-one) [23, 24]. In con-
trast, the fuzzy model allows multiple interactions for the
same site to different extents. In principle, the potential to
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FIGURE 2: Probability of large polymers as a function of valency and length of the simulation box (in residue units) in one-to-one (a) and fuzzy
(b) binding models. Valency is defined as the number of binding elements. Concentration is the number of molecules/volume (L?). Binding

element affinity = 1.0; linker dynamics = 1.0.

form multiple partial contacts can increase the probability of
polymer formation. To compare fuzzy and the one-to-one
(nonfuzzy) binding models, however, we eliminated the arte-
fact that increased binding potential which causes polymer
formation (Methods). First, we studied the impact of valency
on the generation of higher-order assemblies. The model
system contained one molecule type, the size of which has
been systematically varied between 2 to 6 binding elements
and linkers, and the length of which were arbitrarily defined
as 7 and 10 residues, respectively (Figure 1). Concentration
was modulated by varying the size of the simulation box,
while the number of molecules was kept fixed. The topol-
ogies and the parameters considered for interactions are
shown in Figure 1 (for explanation see Methods). Three
types of stochastic movements were performed, which are
similar to reference [23]: (i) association, (ii) dissociation,
and (iii) diffusion to a neighboring box. The results were
averaged for 10 parallel simulations (10,000 steps) for each
parameter combinations.

Multivalency is considered as the major driving force
of phase transition [6, 23]. The impact of valency and
concentration on the probability of formation of large
polymers is shown in Figure 2. Concentration is varied
by changing the size of the simulation box. Both one-to-
one and fuzzy simulations show a strong dependence on
the number of binding elements, recapitulating previous
experimental observations [23].

Fuzzy interactions seem to facilitate the formation of
higher-order molecular associations (Figure 2). The same
number of molecules with the same valency generate poly-
mers in an order of magnitude larger simulation box in

the fuzzy simulations than in the nonfuzzy model. This
suggests that weak partial interactions with multiple part-
ners may enhance assembly at lower valency. This is con-
sistent with recent experimental data on highly dynamical
interacting partners [39]. Along these lines, in simulations,
which were conducted using lower binding element affini-
ties (0.35) and linker dynamics (0.35), no higher-order
oligomers (m>25) were observed in the one-to-one simu-
lations, while polymers were formed in the case of >4
binding elements in the fuzzy model (Figure 3).

We also studied the impact of binding affinity on
polymerization. Intuitively, higher affinity between the
interacting elements increases the association probability
(equation 10). In accord, in both fuzzy and nonfuzzy models,
polymerization takes place at lower valency at higher
binding affinity (Figure 4). Using the same simulation
conditions, where no polymerization was observed in the
nonfuzzy model (Figure 3), we have observed higher-
order assembly at increased affinity. In the fuzzy model,
polymerization occurs at lower affinity (Figure 4(b)) as
compared to the one-to-one binding, illustrating that
partial and heterogeneous contacts may compensate for
weaker interactions [22]. Obviously, above a certain
limit, increasing affinity and valency may induce the for-
mation of aggregates or amyloid structures and not
dynamical assemblies.

In the fuzzy model, we assume that the local concentra-
tion of the binding elements also influences affinity, which
is in agreement with earlier theoretical [40] and experimen-
tal [41] results. This effect was taken into account via equa-
tion (9), and the modified affinities were incorporated into
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FIGURE 3: Probability of large polymers as a function of valency and length of the simulation box (in residue units) in one-to-one (a) and fuzzy
(b) binding models. Valency is defined as the number of binding elements. Concentration is the number of molecules/volume (L?). Binding

element affinity = 0.35; linker dynamics =0.35.
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FIGURE 4: Probability of large polymers as a function of valency and binding element affinity in one-to-one (a) and fuzzy (b) binding models.
Valency is defined as the number of binding elements, which affinity (s, ) is computed as the average of the residue-based values (equation

(1)). Linker dynamics = 0.35; box length = 20.

the association (equation (10)) and dissociation probabili- (Figure 5). This could be one of the reasons why fuzzy
ties (equation (11)). Considering the local concentration simulations produce higher-order states more frequently
of the binding sites generates polymers at lower valency  (see Figures 5(b) and 6(a)).
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Intrinsically disordered regions play important roles in
organizing higher-order structures [18, 42]. These proteins
segments, while lacking a well-defined structure, exhibit
enhanced plasticity that enables a large number of contact
combinations [20, 24]. However, intrinsically disordered
regions are not infinitively flexible; they exhibit a given range
of dynamics, which certainly affects the available topologies.

In our fuzzy model, we take this effect into account via
equation (6), which modifies the affinities and association/
dissociation probabilities. Systematic increase of linker
dynamics increases the probability of polymer formation
(Figure 6). In agreement with experimental studies [16, 39],
these results reflect that linker dynamics is a critical element
of higher-order assembly, which is independent of motif
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affinity. We might hypothesize that sticky chains, with low
number of valencies, are also capable to generate higher-
order structures [39].

In the nonfuzzy binding model, the impact of linker
dynamics is comparable to that of increasing interaction
affinity (Figure 4), illustrating that either stronger or more
heterogeneous binding can promote assembly formation.
Fuzzy simulations are more sensitive to linker dynamics
(Figure 6), as it affects the number of possible interaction pat-
terns, which could be generated at a given time point. This
observation underscores that degenerated contacts and the
resultant conformational heterogeneity are important driv-
ing forces of higher-order assembly.

In the fuzzy model, the interplay between the motif affin-
ity and linker dynamics was studied systematically using
models with different valencies (Figure 7). For any combina-
tions of binding affinity and linker dynamics, the critical role
of valency is observed.

In addition to the effect of valency, interaction affinity
and linker dynamics act in synergy to promote polymeriza-
tion. Lower affinity elements with more flexible linkers as
well as high-affinity elements with less dynamical linkers
can produce higher-order assembly. Obviously, these two
scenarios are expected to result in distinct supramolecular
assemblies along the dynamical continuum [20]. This is an
important issue for pathological mutations, which studies
are currently ongoing in our laboratory.

4. Discussion

Protein function is usually interpreted within the determinis-
tic framework of the classical structure-function paradigm.
This relationship establishes a connection between a well-
defined three-dimensional organization of amino acid resi-
dues and the biological activity of the resultant conformer.
The classical description also involves the assumption that
the intra- or intermolecular interactions generate a well-
defined pattern. Increasing experimental evidence contra-
dicts this simple picture and demonstrates that biological
function may require conformation and interaction hetero-
geneity [32, 33]. Sequences of proteins composing membra-
neless organelles, for example, are enriched in redundant/
degenerate motifs [22], which appear to contact in multiple
ways resulting in a heterogeneous assembly [16]. Indeed,
structural and interaction heterogeneity is an intrinsic feature
of higher-order protein assemblies, ranging from static to
highly dynamical structures [20].

Developing computational approaches to describe
heterogeneous systems is a challenge. Until now, a one-to-
one binding model has been employed in both coarse-
grained and lattice simulations [24], which could not
account for the effect of heterogeneity, resulted by multiple
alternative configurations. A fuzzy mathematical framework
allows coexisting alternative structures or interaction pat-
terns in the system, which are realized to different extents.
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Within the fuzzy model, a binding element may interact
with multiple partners simultaneously, and the contribution
to alternative states are expressed via membership func-
tions. The membership of a binding element varies in each
configuration, and the system remains heterogeneous
throughout the trajectory.

Here, we applied the fuzzy framework to a hypothetical
polymer characterized by binding affinity and dynamics.
The simulations recapitulate the observation that multiva-
lency is a prerequisite for phase transition [23]. As compared
to the one-to-one (nonfuzzy) binding model, the fuzzy simu-
lations predict a lower phase boundary (Figures 2 and 3).
This illustrates that weak partial interactions lead to degener-
ate patterns favor assembly. The partial contacts increase the
probability of productive interactions via local concentration
effects (Figure 5). We demonstrate that—in addition to motif
affinity—linker dynamics is a critical factor in driving higher-
order assembly. This effect is especially pronounced in the
fuzzy model (Figure 6). Systematic studies on the interplay
between binding affinity and linker dynamics outline two
alternative ways to promote higher-order organization of
proteins (Figure 7): higher affinity for the binding motifs or
increasing dynamics in the bound system. This hypothesizes
that weak interaction networks in fuzzy systems are capable
to organize higher-order associates.

5. Conclusion

Understanding the driving forces of higher-order protein
assembly is challenging, owing to the complexity of these
systems. Here, we developed a fuzzy mathematical model to
simulate associations of biological polymers. In this
approach, the system is described by multiple coexisting
states, capturing the inherent heterogeneity of higher-order
assemblies. We propose that the fuzzy model provides a
general framework to study higher-order systems along the
structural and dynamical continuum.
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