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Introduction. MgSOs is the most important leachate from chondritic Figure 1. Diffraction patterns of a-MgSO4 at 4.2 K.

materials which probably form the rocky cores of the solar system's large
icy moons [1]. We expect it to be strongly hydrated, crystallising salts
such as MgSO4+.7H>0 and MgS04.12H>O, which will comprise the ﬁ}:‘;gg;:;:c‘:&(eﬁng (100 pAhe)

mantles of these icy moons (see ISIS 2004 Science Highlight 'Epsom salt [

in the moons of Jupiter'). Our goal is to understand the structure and {
history of large icy moons from the physical properties of the constituent - {

salts; we have carried out a detailed neutron diffraction study of the 7-

and 12-hydrates (RB14491 & 15133). This experimental work is | | _
complemented by computational simulation. However, due to the % t
computational expense of high-level quantum mechanical (QM) ) P N 1 )
calculations, it is necessary to employ interatomic potential (IP) . ij ! ! . .k §£ " 4 1 iﬁfz i } i
calculations as well. We have therefore made detailed measurements of RIPY: §|’4.'\5:?El RIS M\JLLJW ;310 PR L ¥ W
the physical properties of two polymorphs of anhydrous MgSOs4 (0~ and a0 1 P _—
B-MgSOs4) thereby allowing us to fit Mg - O and S - O potentials, without
the added complication of bound water. Such potentials will greatly | ‘ | | ‘ ‘ | | ‘
extend our ability to understand the more complex MgSO4 hydrates that 0.8 1.0 1.2 1.4 1.6 1.8 20 22 24
are so important in the outer solar system. D—spacing, A

Experimental method. Anhydrous $-MgSOs was supplied by Sigma and B ‘ ‘ " ' _
dried at 400°C for 24 hours. Anhydrous 0-MgSOs was made by reacting ﬁ',;w,fos gg,a;:t‘jc’fors (100 pAhr) !

MgO with H2SOs in excess followed by drying at 200°C for 24 hours.

Both phases were characterised by X-ray diffraction prior to the
experiment. The dry powders (4.4095g of a-MgSOs, 5.006g of B-MgSO4)
were loaded into aluminium framed slab cans, attached to centre sticks o E i
and equilibrated in an OC50 cryostat at 4.2 K on the HRPD beamline. | b I I
For both phases, data were collected at 4.2 K for ~ 3 hours (100pAhr); i
subsequently, data were collected in 10 K intervals upon warming to 300
K, counting for 10uAhr. At 300 K, another low-noise data set was
collected for each phase (100uAhr for a- and 80pAhr for B-MgSOs). All
diffraction data were treated using the GSAS package, structure
refinement being started from the known structures of a- and B-MgSOs
(23]

Results. 0-MgSOs crystallises in space group Cmcm (Z=4); the unit cell
dimensions at 4.2 K are a = 5.168630(33) A, b = 7.867805(54) A, c
6.466745(54) A, and at 300 K, a = 5.174713(29) A, b = 7.875632(48) A, ¢
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6.495166(46) A. The linear and volume thermal expansion coefficients Figure 2. Variation of the unit cell dimensions of B-MgSOs as a
are positive at all temperatures and exhibit no unusual behaviour. function of temperature.

Structures were refined at 4.2 and 300 K to Rp < 3% (See Fig. 1), more

poorly determined structural parameters being extracted from the shorter ::: p-MgSO,, a-axis T mgs0,, braxis

counts during warming from 4.2 - 300 K. e -

B-MgSOs has a more complex structure, crystallising in space group g —:::

Pbnm (Z=4); the unit cell dimensions at 4.2 K are a = 4.734527(93) A, b = §uro %E%

8.581639(141) A, ¢ = 6.672507(115) A, and at 300 K, a = 4.746156(187) A, b 3

= 8.582944(124) A, ¢ = 6.709208(109) A. As shown in Fig 2, the linear ::j v :

expansion of the a- and c-axes, and the volume thermal expansion o oo

coefficient are positive at all temperatures and normally behaved. LT L e

However, the thermal expansion of the b-axis is both very small and
negative below ~ 150 K. Similar behaviour is seen in the g-axis of
epsomite (RB14491) and is attributable to rigid body motion of the SOs- -
tetrahedra. We suspect that the greater structural degrees of freedom in Lo
the B-phase, compared to the a-phase, allow for similar rigid body o
motion. LI
Work on fitting interatomic potentials to the wealth of structural data ssm
acquired during this experiment is in progress. sore
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