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Abstract. In this paper, we study a class of Finsler metrics which contains the class
of Berwald metrics as a special case. We prove that every Finsler metric in this class is
a generalized Douglas—Weyl metric. Then we study isotropic flag curvature Finsler metrics
in this class. Finally we show that on this class of Finsler metrics, the notion of Landsberg
and weakly Landsberg curvature are equivalent.
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1 Introduction

For a Finsler metric F' = F(z,y), its geodesics curves are characterized by the system of diffe-
rential equations ¢ + 2G%(¢) = 0, where the local functions G* = G*(x,y) are called the spray
coefficients. A Finsler metric F is called a Berwald metric if G* = %ng(x)y] y* is quadratic in
y € T, M for any x € M. It is proved that on a Berwald space, the parallel translation along
any geodesic preserves the Minkowski functionals [7]. Thus Berwald spaces can be viewed as
Finsler spaces modeled on a single Minkowski space.

Recently by using the structure of Funk metric, Chen—Shen introduce the notion of isotropic
Berwald metrics [6, 16]. This motivates us to study special forms of Berwald metrics.

Let (M, F) be a two-dimensional Finsler manifold. We refer to the Berwald’s frame (¢, m?)
where ¢/ = y'/F(y), m® is the unit vector with £;m’ = 0, ¢; = g;;¢* and g;; is the fundamental
tensor of Finsler metric F'. Then the Berwald curvature is given by

Bijkl = ! (7217162‘ + Igmi)mjmkml, (1)
where [ is 0-homogeneous function called the main scalar of Finsler metric and Ip = I3 + I 1)
(see [2, page 689]). By (1), we have
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B = —3—}_’12 (mjhkl + myhj + mlhjk)y’ + 37F(h;‘hkl + hihj + h;hjk),
where h;; := m;m; is called the angular metric. Using the special form of Berwald curvature
for Finsler surfaces, we define a new class of Finsler metrics on n-dimensional Finsler manifolds
which their Berwald curvature satisfy in following

B' iy = (ihwt + phit + ey’ + M(shig + hihg + hihgy), (2)

where pu; = pi(x,y) and A = A\(z,y) are homogeneous functions of degrees —2 and —1 with re-
spect to y, respectively. By definition of Berwald curvature, the function p; satisfies p;3"=0 [12].
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The Douglas tensor is another non-Riemanian curvature defined as follows

. . 1 oG™ .
D', =G — — . 3
gkl ( n+1aym Y >yjykyz (3)

Douglas curvature is a non-Riemannian projective invariant constructed from the Berwald curva-
ture. The notion of Douglas curvature was proposed by Bacsé and Matsumoto as a generalization
of Berwald curvature [4]. We show that a Finsler metric satisfies (2) with vanishing Douglas
tensor is a Randers metric (see Proposition 1). A Finsler metric is called a generalized Douglas—
Weyl (GDW) metric if the Douglas tensor satisfy in thO‘jk”mym = 0 [10]. In [5], Bacs6-Papp
show that this class of Finsler metrics is closed under projective transformation. We prove that

a Finsler metric satisfies (2) is a GDW-metric.

Theorem 1. Every Finsler metric satisfying (2) is a GDW-metric.

Theorem 1, shows that every two-dimensional Finsler metric is a generalized Douglas—Weyl
metric.

For a Finsler manifold (M, F), the flag curvature is a function K(P,y) of tangent planes
P C T, M and directions y € P. F is said to be of isotropic flag curvature if K(P,y) = K(z)
and constant flag curvature if K(P,y) = const.

Theorem 2. Let F' be a Finsler metric of non-zero isotropic flag curvature K = K(z) on
a manifold M. Suppose that F satisfies (2). Then F is a Riemannian metric if and only if p;
1s constant along geodesics.

Beside the Berwald curvature, there are several important Finslerian curvature. Let (M, F)
be a Finsler manifold. The second derivatives of %Ff at y € T, My is an inner product g,
on T, M. The third order derivatives of %Fgf at y € T, My is a symmetric trilinear forms C,
on T,M. We call g, and C, the fundamental form and the Cartan torsion, respectively. The
rate of change of the Cartan torsion along geodesics is the Landsberg curvature L, on T, M

n
for any y € T, My. Set J,, := > Ly(ej, €, ), where {e;} is an orthonormal basis for (T, M, g,).
Jy is called the mean Landsbezlrg1 curvature. F' is said to be Landsbergian if L = 0, and weakly
Landsbergian if J = 0 [13, 14].

In this paper, we prove that on Finsler manifolds satisfies (2), the notions of Landsberg and
weakly Landsberg metric are equivalent.

Theorem 3. Let (M, F) be a Finsler manifold satisfying (2). Then L =0 if and only if J = 0.

There are many connections in Finsler geometry [15]. In this paper, we use the Berwald
connection and the h- and v-covariant derivatives of a Finsler tensor field are denoted by “|”
and “” respectively.

2 Preliminaries

Let M be a n-dimensional C*° manifold. Denote by T,M the tangent space at x € M, by
TM = UzepyTpM the tangent bundle of M, and by TMy = TM \ {0} the slit tangent bundle
on M. A Finsler metric on M is a function F' : TM — [0, 00) which has the following properties:
(1) Fis C* on T'My; (ii) F is positively 1-homogeneous on the fibers of tangent bundle T'M,
and (i47) for each y € T,; M, the following quadratic form g, on T, M is positive definite,

2

gy, 0) 1= 2 [F2(y+ s+ t0)] |

T M.
2 dsdt WU E e

s,t=0"
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Let x € M and F, := F|r, ). To measure the non-Euclidean feature of F,, define C,: T, M x
T.M xT,M — R by

Cy(u,v,w) == %%
The family C := {Cy }yeTM™m, is called the Cartan torsion. It is well known that C = 0 if and
only if F is Riemannian [14]. For y € T, My, define mean Cartan torsion I, by I, (u) := I;(y)u’,
where I; := gjkC’ijk, gjk is the inverse of gj; and u = uiazilx. By Deicke’s theorem, F' is
Riemannian if and only if I, = 0 [13].

Let a = +/a;;(z)y'y? be a Riemannian metric, and 8 = b;(z)y’ be a 1-form on M with
b= /ab;b; < 1. The Finsler metric F = a + 3 is called a Randers metric.

Let (M, F) be a Finsler manifold. Then for a non-zero vector y € T, My, define the Mat-
sumoto torsion My, : T,M ® T, M ® T, M — R by My (u, v, w) := M;jr(y)uiv/w* where

[Gy-+tw (U, V)] |1=0, u,v,w € T M.

Miji = Ciji = g Uih + Libar, + Ixhig},
hij := FFj iy = gij — %gipypgquq is the angular metric and I; := gjkC’Z-jk is the mean Cartan
tqrsion. By definition, we have h;;y* = 0, h% = 05 — F=2y'y,, yi = gy, hihj, = hji and
hi =n —1. A Finsler metric F' is said to be C-reducible if M, = 0. This quantity is introduced
by Matsumoto [8]. Matsumoto proves that every Randers metric satisfies that M, = 0. Later
on, Matsumoto—Hojo proves that the converse is true too.

Lemma 1 ([9]). A Finsler metric F' on a manifold of dimension n > 3 is a Randers metric if
and only if M, =0, Vy € T'Mj.

Let us consider the pull-back tangent bundle 7#*T'M over T'M defined by
7 TM = {(u,v) € TMy x TMy| m(u) = m(v)}.

Let V be the Berwald connection. Let {e;}"; be a local orthonormal (with respect to g) frame
field for the pulled-back bundle 7*T M such that e,, = ¢, where £ is the canonical section of 7*T' M
defined by ¢, = y/F(y). Let {w'}™_; be its dual co-frame field. Put Ve; = wji ®e;, where {wji}
is called the connection forms of V with respect to {e;}. Put w™ := W' + d(log F)6&}. Tt is
easy to show that {w’,w™ ™} is a local basis for T*(T'Mp). Since {sz} are 2-forms on T'My,
they can be expanded as
jS = %Rjiklw’C Awl + Bjiklwk Awn Tt

Let {&;,¢é;}"; be the local basis for T(T'Mjy), which is dual to {w’,w™™}2 . The objects R
and B are called, respectively, the hh- and hv-curvature tensors of the Berwald connection
with the components R(eg,€)e; = Rjiklej and P(eg,é))e; = Pjiklej [15]. With the Berwald
connection, we define covariant derivatives of quantities on 7'My in the usual way. For example,
for a scalar function f, we define fj; and f.; by

df = fiw' + fa™",

where “|” and “,” denote the h- and v-covariant derivatives, respectively.
The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature
Ly :T,M xT,M xT,M — R defined by

Ly(u7 v, w) = Lijk(y)uivjwka

— _ i 0 _ i 0 _ i 0 : -
where Lijx := Cyjpsy®, u = u' 55|z, v = v'55]e and w = w' 575 |, The family L := {Ly},er,

is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if L=0. The
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horizontal covariant derivatives of I along geodesics give rise to the mean Landsberg curvature
Jy(u) = Ji(y)u', where J; := ¢'%L;jx. A Finsler metric is said to be weakly Landsbergian if
J=0.

Given a Finsler manifold (M, F'), then a global vector field G is induced by F on T'Mj, which
in a standard coordinate (¢, y*) for TMj is given by

G= yz@xl - QGZ(x,y)@,

where G(y) are local functions on T'M given by

, 1, 0?[F?] o[F?

Gi(y) := ~g" b e T, M.

(y) = 19" ) {axkayl Wy = (y)} ,  yeT,
G is called the spray associated to (M, F'). In local coordinates, a curve c(t) is a geodesic if and
only if its coordinates (c!(t)) satisfy & + 2G¥(¢) = 0.

For a tangent vector y € T, My, define B, : T,M @ T,M @ T,M — T, M and E, : T, M ®

T,M — R by By(u,v,w) := Bijkl(y)ujvkwl%h and Ey(u,v) := Eji(y)u/vF where

7 . 83G2 . 1 om
B jkl(y) = W(y)v Ejk:(y) =3 jkm(y)'

B and E are called the Berwald curvature and mean Berwald curvature, respectively. Then F'
is called a Berwald metric and weakly Berwald metric if B = 0 and E = 0, respectively [14].
By definition of Berwald and mean Berwald curvatures, we have

B =y"B i =yB =0, yEx=y"Ep=0

a
oz’

The Riemann curvature R, = R kda:k ®
tangent spaces, defined by
oG" - 0%G" - 9%GY 0G" 0GY
2 -yl — + 2GY — — . .
oxk OxI Oyk Oyioyk Oyl Oyk
The flag curvature in Finsler geometry is a natural extension of the sectional curvature in

Riemannian geometry was first introduced by L. Berwald [3]. For a flag P = span{y,u} C T, M
with flagpole y, the flag curvature K = K(P,y) is defined by

gy(u, Ry (u))

8y (v, y)gy (u,u) — 8y (v, u)2 ‘
When F' is Riemannian, K = K(P) is independent of y € P, and is the sectional curvature of P.
We say that a Finsler metric F' is of scalar curvature if for any y € T, M, the flag curvature
K = K(z,y) is a scalar function on the slit tangent bundle T'Mj. If K = const, then F' is said to
be of constant flag curvature. A Finsler metric F' is called isotropic flag curvature, if K = K(x).

In [1], Akbar-Zadeh considered a non-Riemannian quantity H which is obtained from the
mean Berwald curvature by the covariant horizontal differentiation along geodesics. This is
a positively homogeneous scalar function of degree zero on the slit tangent bundle. The quantity
H, = H,-jda:i®da:j is defined as the covariant derivative of E along geodesics [11]. More precisely

lo : TuM — T,M is a family of linear maps on

Rik -

K(Pa y) =

Hij = Ejjjmy™.
In local coordinates, we have
oy =y G pgm OGN 0GM DGR 9Gm 0Gh
! Oyt Oyl Oyk o™ Oyt Oyl Oykoym Oyt Oyidykoy™ Oyl Oyidykoym

Akbar-Zadeh proved the following:

Theorem 4 ([1]). Let F be a Finsler metric of scalar curvature on an n-dimensional mani-
fold M (n > 3). Then the flag curvature K = const if and only if H = 0.
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3 Proof of Theorem 1

Lemma 2. Let (M,F) be a Finsler manifold. Suppose that the Cartan tensor satisfies in
Cijk = Bihji + Bjhg, + Bihij with y'B; = 0. Then F is a C-reducible metric.

Proof. Suppose that the Cartan tensor of the Finsler metric F' satisfies in

Cijk = Bihji + Bjhg, + Brhj. (4)
Contracting (4) with ¢% yields

Iy = Bihi, + B;hi 4 (n — 1)By. (5)

Using (5) and B;hi = thi = By, we get I; = (n + 1)B;. Putting this relation in (4), we
conclude that F' is a C-reducible Finsler metric. [ |

Lemma 3. Let (M, F) be a Finsler metric. Then F is a GDW-metric if and only if

Dijkusys = Tjklyia (6)
for some tensor T on manifold M.
Proof. Let F' be is a GDW-metric

Ry D715y = 0.
This yields

4 Ly A

Dzjkl|sy8 = (F ymDn;kus)yl'

Therefore T := F_QymD";.k”s. The proof of converse is trivial. |

Equation (6) is equivalent to the condition that, for any parallel vector fields U = U(t),
V =V (t) and W = W(t) along a geodesic c(t), there is a function T'= T'(¢) such that

d
7Dc' y Vo =Tec.
DUV, W)] = T

The geometric meaning of the above identity is that the rate of change of the Douglas curvature
along a geodesic is tangent to the geodesic.

Proposition 1. Let (M, F) be a Finsler manifold satisfies (2) with dimension n > 3. Suppose
that the Douglas tensor of F' vanishes. Then F is a Randers metric.

Proof. Since I satisfies (2), then by considering p;y* = 0 we get

2Ej1, = (n + 1)\hj. (7)
On the other hand, we have

hijk = 2Cik — F 2 (yjhik + yihjr),
which implies that

2Ejk0 = (n+ )X thjr + (n+ 1))\{20ij - F72(ykhjl + yjhkl)}~ (8)
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Putting (2), (7) and (8) in (3) yields

D'y = i + phje + phjr — 22C;}y" — (AuF =2 + Xg) by’ (9)
For the Douglas curvature, we have D? k= D! jik- Then by (9), we conclude that

M F2+ 2, =0. (10)
From (9) and (10) we deduce

D'y = {pihir + phji + puhjr — 22C;0 3y (11)
Since F' is a Douglas metric, then

Cir = px{iihm + prhji + b}
By Lemmas 2 and 1, it follows that F' is a Randers metric. |
Proof of Theorem 1. To prove the Theorem 1, we start with the equation (11):

D'y = {pihwr + phji + pihjr — 22C;0 3y (12)
Taking a horizontal derivation of (12) implies that

D' jyisy® = {thwt + pihji + pihjr — 2N Cjr — 2X Ly by
where X' = Aj,,,y™ and i = fi;),,,y™. By Lemma 3, F' is a GDW-metric with

Tir = pihir + pphj + pihje — 2X' Clrg — 2L
This completes the proof. |

The Funk metric on a strongly convex domain B™ C R" is a non-negative function on 7€) =
Q x R™, which in the special case 2 = B™ (the unit ball in the Euclidean space R") is defined
by the following explicit formula:

Fiy) e YIP (PP =09 | o)

T.B" = R"
[~ [ T Ep Ve ’

where |- | and (-,-) denote the Euclidean norm and inner product in R™, respectively [14]. The
Funk metric on B"™ is a Randers metric. The Berwald curvature of Funk metric is given by

B'jjg = gp{hihi + hihji + hihjk + 2C50y' }.

Thus the Funk metric is a GDW-metric which does not satisfy (2). Then by Theorem 1, we
conclude the following.

Corollary 1. The class of Finsler metrics satisfying (2) is a proper subset of the class of
generalized Douglas—Weyl metrics.
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4 Proof of Theorem 2

To prove Theorem 2, we need the following.

Lemma 4 ([7, 11]). For the Berwald connection, the following Bianchi identities hold:
Rijk:l|m + Rijlm\k + Rijmk\l =0,
B ik = B jrmin = B jrims (13)
B jpm =B

i i
Jkl,m jkm,l*

Proof of Theorem 2. We have:

Fiw =3 {aymyl - ayf'ay'f} | (14

Here, we assume that a Finsler metric F' is of isotropic flag curvature K = K(z). In local
coordinates, R, = K(x)F?h}. Plugging this equation into (14) gives

R' i = K{gj0; — g0} }- (15)

Differentiating (15) with respect to y™ gives a formula for R’ jki,m €xpressed in terms of K and
its derivatives. Contracting (13) with y*, we obtain

By = 2KCimy'. (16)
Multiplying (16) with y; implies that
By vi = 2KF?Clpny. (17)

Since F' satisfies (2), then we have

B jam¥™ = (hat + it + pihr)y’ + N (Wi + hihji + hihig). (18)
By contracting (18) with y;, we have

Bt yi = (Wihwt + pihji + pihie) F2. (19)
By (17) and (19) we get

by + pihg + pphge = 2KCjy.

Contracting with ¢g* yields

;2K
Hi=% T
Since K # 0, then by Deicke’s theorem F' is a Riemannian metric if and only if M; =0. |

Theorem 5. Let F' be a Finsler metric on an n-dimensional manifold M (n > 3) and satis-
fies (2). Suppose that F is of scalar flag curvature K. Then K = const if and only if N = 0.

Proof. Contracting ¢ and [ in (2) yields
2Ejk = (n + 1))\hjk-

By taking a horizontal derivative of this equation, we have
2ij = (n + 1)A/hjk.

Therefore H;, = 0 if and only if X = 0. By Theorem 4, we get the proof. |
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5 Proof of Theorem 3

In this section, we are going to prove Theorem 3.
Proof of Theorem 2. Let I’ be a Finsler metric satisfy in following
Bijkl = (wjhw + prhj + whie)y' + )\(h;hkl + hihj + hihjk), (20)

where p; = pi(x,y) and A\ = A(z,y) are homogeneous functions of degrees —2 and —1 with
respect to y, respectively. Contracting (20) with y; yields

YiB' i1 = F* (il + prhgt + pihje) + Ays (hshig + highgi + hihjg). (21)
On the other hand, we have

YiB' i = —2Ljk, (22)

yihy, = yi (60, — F 7%y ym) = 0. (23)
See [14, page 84]. Using (21), (22) and (23), we get

Lji = —3F*{pujhy + pehji + puhj}. (24)

By (24), it is obvious that if y; = 0 then Lji; = 0. Conversely let F' be a Landsberg metric.
Then we have

pihiy + pehg + phge = 0. (25)

Contracting (25) with ¢ yields p; = 0. Then F' is a Landsberg metric if and only if p; = 0.
Now, contracting (24) with g* yields

Jj = —%(n+1)F2,uj. (26)
By (26), J; = 0 if and only if 1; = 0. Then L = 0 if and only if J = 0. |

By using the notion of Landsberg curvature, we define the stretch curvature ¥, : T, M &
ToM T, M ®T,M — R by X(u,v,w, 2) := Zijkl(y)uivjwkzl where

Sijrt = 2(Lyjrp — Lijik)-

In [3], L. Berwald has introduce the stretch curvature tensor 3 and showed that this tensor
vanishes if and only if the length of a vector remains unchanged under the parallel displacement
along an infinitesimal parallelogram.

Theorem 6. Let (M, F) be a Finsler manifold on which (2) holds. Suppose that F is a stretch
metric. Then p; is constant along any Finslerian geodesics.

Proof. Taking a horizontal derivation of (24) yields

Lijen = —5F*{piphjn + pjphwi + prhig}-
Suppose that 3 = 0. Then by L;r; = Lyjx, we get

taphgr + b + prphi; = gl + pgehe 4 pgghi. (27)
Multiplying (27) with 3' implies that

pihk + pihis + prphig = 0. (28)
By contracting (28) with g/%, we conclude the following

(n+1)u; = 0.

Then on a stretch Finsler spaces, p; is constant along any geodesics. |
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