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Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of 
Doctor of Philosophy (Plant Pathology) 

 

Botryosphaeria dieback in vineyards: conidial dispersal, infection, disease 
development and control 

By 

Amna Shafi 

Botryosphaeria dieback is a major trunk disease of grapevines worldwide that has been 

recognised for its importance during the last 15-20 years. This disease causes direct losses by 

killing canes, arms and vines, which ultimately reduce yields in the vineyards. There are five 

Botryosphaeriaceae species that commonly infect grapevines in New Zealand vineyards, 

although many more species have been reported worldwide. Reports on pathogenicity and 

epidemiology overseas have shown large variation between the predominant species in 

different countries and so this research aimed to improve understanding of spore production, 

dispersal and infection dynamics for the most common species within a Marlborough 

vineyard setting.   

Pathogenicity testing with multiple isolates of Neofusicoccum luteum and N. parvum showed 

that all isolates caused disease of different grapevine stem tissues, with great differences in 

symptoms and conidial release between isolates of each species. Overall trends showed that 

N. luteum caused longer lesions and produced more conidia than N. parvum and isolates of 

both species released conidia at all temperatures (10-25ºC) and relative humidities (80-

100%), although maximum conidial release occurred at 25ºC and 100% RH. Cirrhi were also 

observed in vineyards in moist conditions.  

Rainwater run-off and Burkard spore traps collected Botryosphaeriaceae conidia in three 

Marlborough vineyards in 2013 and 2015. The conidia were found only during rainfall and 

up to 2 h after rainfall ceased, release occurring after as little as 0.2 mm rain and conidial 

numbers were generally greater for greater rainfall. Identification of species trapped by single 

stranded conformational polymorphism (SSCP) indicated presence of N. luteum, N. 

parvum/ribis, N. australe, D. mutila and D. seriata. Within vineyards, conidia of a marker 

isolate of N. parvum were shown to disperse during 2 days rain, up to 10 m in the wind 

direction and up to 5 m in other directions. Further, these conidia caused many infections of 

newly trimmed shoots up to 2 cm from the conidial source.   
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Conidia of N. luteum and N. parvum were able to infect 100% of wounds on green shoots and 

trunks of potted vines for 7 days after wounding. Incidence decreased with increasing age of 

wounds, with hard shoots being susceptible until 56 days old and trunk wood until 28 days 

old. Incidences and colonisation distances were also affected by the seasons, being highest in 

autumn and spring, and lowest in winter and summer. Also different conidial numbers (2-

100) affected incidences and colonisation distances on wounded stems of vines with as little 

as 2 conidia causing 100% infection incidence of wounded green shoots and 67% incidence 

of trunks. The pathogen infected the underlying tissues after spray application of conidia onto 

non-wounded cane and trunk bark, and progressed rapidly towards nearby wounds made 

later. Also infection through lenticels was observed by fluorescence microscopy. Wounded 

leaf buds, and berries on potted vines and in the vineyards were able to be infected at all 

stages of growth tested, but non-wounded buds and berries also become infected at late stages 

of development. Infection progressed from the buds into the developing green shoots and 

supporting canes, and from berries into the bunch stems and supporting canes.  

Experiments using a range of treatments to prevent infection of wounds in stem and trunk 

tissues of vines grown in pots and a in a vineyard showed that Cheif®, Megastar® and 

Folicur® were most effective at reducing infection by N. luteum and N. parvum, when 

inoculation was carried out 2 h, 7 and 14 days after treatment and with 2-600 conidia.  The 

biological control product, TRI D25, was as effective as Megastar® when inoculation occurred 

7-14 days after treatment, but only on potted vines.  These treatments also reduced 

colonisation distances greatly within inoculated tissues which indicated potential for control 

by pruning.   

This research has provided new information on the disease cycle of Botryosphaeriaceae 

diseases in vineyards. It has elucidated effects of environmental conditions on release and 

dispersal of conidia. These studies also demonstrated the effects of some host, environmental 

and pathogen factors on infection of pruning and trimming wounds and disease development 

in the various types of stem tissues, and that infection may take place in non-wounded shoots 

of living vines. The potential infection of leaf buds and berries and sporulation from berries 

were also demonstrated.  Some control products were shown to be effective in preventing 

infection but limitations on their use indicates the need for integrated control methods which 

also aim to reduce inoculum sources in vineyards.  

Keywords: Diplodia, Neofusicoccum, spore traps, environmental factors, wounding, 

fungicides and biocontrol agents. 
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Chapter 1 

General introduction 

1.1 Viticulture industry in New Zealand 

Grapes for wine production are one of the most economically important crops in New 

Zealand, with about $1.42 billion worth of wine being exported in 2015 (New Zealand 

Winegrowers Annual Report, 2015). Further, the 2014 report indicated that the New Zealand 

wine industry had provided $700 million annual contribution to GDP and employment for 

more than 7,700 people on a full time basis (New Zealand Winegrowers Annual Report, 

2014). In 2015 there were 35,859 hectares in vineyards which provided the grapes for 673 

wineries (New Zealand Winegrowers Annual Report, 2015). The varieties grown in New 

Zealand are predominantly of white wine grapes, with Sauvignon blanc and Chardonnay 

covering 66% and 8.3%, of the total producing hectares, respectively, while Pinot noir is the 

dominant red wine variety (8%) followed by Merlot (2.7%) (Figure 1.1) (New Zealand 

Winegrowers Annual Report, 2015). 

  
Figure 1.1 Percentage production of different grapevine variety during the 2015 vintage 
(New Zealand Winegrower Annual Report 2015). 

The very quick expansion of about 60% in the overall industry during the last 15 years is 

reflected by a relatively young national vineyard (Figure 1.2); about 70% of New Zealand 

vines are now estimated to be aged 8–25 years (New Zealand Winegrowers Statistical 

Annual, 2015). Overseas experience has shown that as vines enter this age profile they 
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1.2 Grapevine trunk diseases 

Worldwide, significant economic losses to the wine industry result from grapevine trunk 

diseases (Eutypa, Botryosphaeria dieback, Esca and Phomopsis blight), which are caused by 

different wood-infecting fungi. Symptoms of these diseases include dead spurs, arms and 

cordons and eventual vine death due to canker formation which occludes the vascular tissue. 

Until recently, Eutypa lata was thought to be responsible for most canker development in 

vineyards. However, recent findings showed that the Botryosphaeriaceae were also recovered 

from many cankers, and they were determined to be the main cause of canker diseases in 

vineyards overseas (Phillips, 2002; van Niekerk et al., 2004; Savocchia et al., 2007) and in 

New Zealand (Baskarathevan et al., 2012). 

1.2.1 Eutypa dieback 

Eutypa dieback of grapevines, formerly referred to as “dead arm”, was for many years 

thought to be caused by Phomopsis viticola. However, Carter and Price (1974) reported that 

the pathogen which commonly caused cankers and dieback in Australian grapevines was 

Eutypa armeniacae.  More recently other diatrypaceaous fungal species such as Eutypa lata, 

Cryptosphaeria pullmanensis, Cryptovalsa ampelina and Diatrype oregonensis have been 

shown to cause similar cankers and dieback symptoms (Trouillas et al., 2010). The symptoms 

of this disease usually appear 4-10 years after infection (New Zealand Winegrowers Fact 

Sheet, 2013). The obvious symptoms on infected vines are the clusters of stunted shoots with 

small deformed chlorotic leaves which often develop as new growth in spring. The pathogen 

however is present in the trunks and arms where necrosis, often visible as cankers, often 

develops surrounding old pruning wounds. Cross-sections through the cankers on infected 

trunks reveal typical wedge shaped wood necrosis (Figure 1.3a) (Carter, 1988). 

The pathogen produces perithecia on the surface of infected dead wood. When moistened, 

they release air-borne ascospores which spread the disease (Carter et al., 1983). When these 

ascospores land on pruning wounds they germinate and grow into the xylem vessels and 

surrounding wood tissues, which results in the formation of cankers and death of vines 

(Figure 1.3b) (New Zealand Winegrowers Fact Sheet, 2013).  
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Figure 1.3 (a) A typical wedge shaped necrosis in wood that has extended annually and (b) 
death of the whole vine caused by Eutypa lata (Photographs: Marlene Japers). 

1.2.2 Esca 

Esca disease of grapevine is believed to be caused initially by Phaeomoniella chlamydospora 

and Phaeoacremonium species, leading to Petri disease which is associated with declining 

symptoms in young vines. The characteristic symptom of this disease is seen in cross-sections 

of infected wood as black spots which ooze a tar like substance soon after cutting. Esca 

develops when secondary infections occur by basidiomycete fungi, such as Fomitiporia 

mediterranea (Mugnai et al., 1999; Tabacchi et al., 2000).  

Esca is a complex disease whose leaf symptoms are associated with structural and 

biochemical changes, leading to the leaves becoming yellow brown or red brown in colour, 

leaving only a narrow strip of green tissue along the main veins. Commonly referred to as 

‘tiger-striped’ leaf symptomsFigure 1.4a). The most common symptoms inside the trunks are 

a spongy white rot. In spring, the shoots and branches of infected vines show delayed or weak 

growth. Tiny dark brown or purple coloured spots which develop on the berries, referred to as 

“black measles”, have been reported in California (Mugnai et al., 1999). During the summer, 

rapid wilting of the entire vine may be seen, a condition called “vine apoplexy”, which is 

often followed by the death of the entire vine (Figure 1.4b) (Mugnai et al., 1999). 

In infected vineyards the conidia of the primary fungi (P. chlamydospora and 

Phaeoacremonium spp.) have been trapped using spore trapping methods, with large numbers 

of spores trapped during rainfall, while spores of F. mediterranea are wind-borne. However, 

factors influencing disease spread are not fully understood (Eskalen et al., 2007). Esca 

disease has not been reported in New Zealand. 

a  b 
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Figure 1.4 (a) Esca symptoms on leaves and (b) esca “vine apoplexy” resulting in death of 
the whole vine (Photographs: Marlene Jaspers). 

1.2.3 Phomopsis 

Phomopsis cane and leaf spot disease is widely distributed in grape growing areas throughout 

the world (Phillips, 1998). This disease has been recently proposed to be referred as 

Phomopsis dieback due to its association with die back of grapvines (Urbez-Torres et al., 

2013). The disease symptoms include small yellow or light green spots with dark centres 

usually more common on the lower leaves of shoots (Figure 1.5a). Severely infected leaves 

are smaller in size than the normal leaves and may drop early in the season. This pathogen 

also attacks shoots, pedicles and rachides, on which symptoms appear initially as small 

brownish black spots which develop into dark oval shaped lesions. When numerous lesions 

occur at the base of the shoots, they are subject to wind breakage and stunted growth 

(Phillips, 2000). Systemically infected mature shoots which appear bleached in winter, with 

black raised spots which are the pycnidia. When berries become infected they develop a light 

brown rot, on which black pycnidia are later produced. The berries eventually shrivel and 

develop into mummies (Figure 1.5b) (Erincik and Madden, 2001). 

The pathogen produces pycnidia and perithecia on infected canes, berries and rachides in 

which it may overwinter. Spores oozed during wet weather are spread to healthy tissues by 

rain splash (Emmett et al., 1998). 

 

a b 
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Figure 1.5 (a) Fruit rot and (b) leaf spots caused by Phomopsis viticola [Photographs from 
the Crop Protection Compendium reproduced with kind permission of: Bob Emmett (a) 
Trevor Wicks (b)]. 

1.3 Botryosphaeriaceae species as trunk pathogens 

Species of the Botryosphaeriaceae are important pathogens on a wide range of agricultural, 

horticultural and forestry plant hosts worldwide. They cause a range of symptoms, including 

leaf spots, fruit rots, dieback, perennial cankers, and eventual death in economically 

important woody perennial crops and ornamental plants (Farr and Rossman, 2011), although 

symptoms vary according to the host species, cultivar and pathogen species. However, in 

grapevines, Botryosphaeriaceae species were originally considered to be saprophytes, 

secondary or weak pathogens in the wood. Despite this, evidence has slowly been gathered 

worldwide which indicated that they might be serious pathogens (Phillips, 2002).  

The names of the pathogens have been revised during the last 10-20 years and so the names 

of the Botryosphaeriaceae species reported in published literature as able to infect grapevines 

are shown in Table 1.1 to provide some clarity. 

  

a b 
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Table 1.1 Species of Botryosphaeriaceae known to infect grapevines [adapted from Urbez-
Torres et al., 2011]. 

Botryosphaeriaceae species Anamorph - 
Teleomorph 
connection 

Reference 

Botryosphaeria dothidea (Moug. ex Fr.) Ces. 
& De Not. 

Fusicoccum aesculi Cesati and De Notaris, 1863; 
Slippers et al., 2004b; 

Diplodia corticola A.J.L. Phillips, A. Alves  
& J. Luque 

Botryosphaeria 
corticola 

Alves et al., 2004 

Diplodia mutila (Fr.) Mont. Botryosphaeria 
stevensii 

Montagne, 1834; Shoemaker, 
1964;Alves et al., 2004 

Diplodia seriata De Not. Botryosphaeria 
obtusa 

De Notaris, 1845; Phillips et 
al., 2007 

Dothiorella iberica A.J.L. Phillips,  
J. Luque & A. Alves 

Botryosphaeria 
iberica 

Phillips et al., 2005 

Dothiorella americana J.R. Úrbez-Torres,  F. 
Peduto & W.D. Gubler  

Unknown Úrbez-Torres et al., 2012 

Guignardia bidwellii (Ellis) Viala & Ravaz Unknown Viala and Ravaz, 1892 
Lasiodiplodia crassispora T.I. Burgess &  

Barber 
Unknown Burguess et al., 2006 

Lasiodiplodia missouriana  J.R. Úrbez-Torres, 
F. Peduto & W.D. Gubler 

Unknown Úrbez-Torres et al., 2011 

Lasiodiplodia theobromae (Pat.) Griff. &  
Maubl. 

Botryosphaeria 
rhodina 

Griffon and Maublanc, 1909; 
Punithalingam, 1976 

Lasiodiplodia viticola J.R. Úrbez-Torres,  
F. Peduto & W.D. Gubler 

Unknown Úrbez-Torres et al., 2011 

Neofusicoccum australe (Slippers, Crous & 
M.J. Wingf.) Crous, Slippers &  A.J.L. 
Phillips 

Botryosphaeria 
australis 

Slippers et al., 2004b; 
Crous et al., 2006 

Neofusicoccum luteum (Pennycook &  
Samuels) Crous, Slippers & A.J.L. Phillips 

Botryosphaeria lutea Pennycook and Samuels, 
1985; Phillips et al., 2002; 
Crous et al., 2006; 

Neofusicoccum macroclavatum (T.I.  Burgess, 
Barber & Hardy) T.I. Burgess,  Barber & 
Hardy 

Unknown Billones et al., 2010 
Burgess et al., 2005; 
Crous et al., 2006 

Neofusicoccum mediterraneum Crous, M.J. 
Wingf. & A.J.L. Phillips  

Unknown Crous et al., 2007 

Neofusicoccum parvum (Pennycook &  
Samuels) Crous, Slippers & A.J.L. Phillips 

Botryosphaeria 
parva 

Pennycook and Samuels, 
1985;Crous et al., 2006 

Neofusicoccum ribis (Slippers, Crous & M.J.  
Wingf.) Crous, Slippers & A.J.L. Phillips 

Unknown Slippers et al., 2004; 
Crous et al., 2006 

Neofusicoccum viticlavatum (van Niekerk  & 
Crous) Crous, Sl ippers & A.J.L. Phillips 

Unknown van Niekerk et al., 2004; 
Crous et al., 2006 

Neofusicoccum vitifusiforme (van Niekerk  & 
Crous) Crous, Slippers & A.J.L. Phillips 

Unknown van Niekerk et al., 2004; 
Crous et al., 2006 

Phaeobotryosphaeria porosa (van Niekerk  & 
Crous) Crous & A.J.L. Phillips 

Unknown van Niekerk et al., 2004; 
Phillips et al., 2008 

Spencermartinsia viticola (A.J.L. Phillips &  J. 
Luque) A.J.L. Phillips, A. Alves & Crous 

Dothiorella viticola Luque et al., 2005;Phillips et 
al., 2008 
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In 1964 Chamberlain et al. (1964) isolated Diplodia mutila from lesions on the trunks and 

pruning stubs of grapevines. In 1970, El-Goorani and El-Meleigi (1972) isolated 

Botryodiplodia theobromae (renamed Lasiodiplodia theobromae) from failing grapevines, 

and a few years later Lehockzy (1974) reported that D. mutila was pathogenic in mature 

canes on field vines and those used for nursery grafts. Then in Italy Cristinzio (1978) showed 

that Diplodia seriata was associated with grapevine dieback. In Chile, Latorre et al. (1986) 

reported that Botryosphaeria dothidea, D. mutila and L. theobromae caused grapevine canker 

and dieback and in Brazil Paradela Filho et al. (1995) isolated B. dothidea from trunk cankers 

of grapevines. In Portugal, Phillips (1998) reported that B. dothidea, D. mutila and D. seriata 

were associated with symptoms of excoriose and dieback in grapevines. During the same year 

Pascoe (1998) isolated L. theobromae, D. seriata and D. mutila from wedge shaped trunk 

symptoms in Australia. Since then the Botryosphaeriaceae have gained importance as 

grapevine trunk disease pathogens (Larignon and Dubos, 2001; Phillips, 2002; van Niekerk et 

al., 2004; Taylor et al., 2005; van Niekerk et al., 2006; Urbez-Torres et al., 2008; Urbez-

Torres and Gubler, 2009a; Pitt et al., 2010; Urbez-Torres and Gubler, 2011; Morales et al., 

2012; Yan et al., 2013). On grapevines, 21 Botryosphaeriaceae species have so far been 

reported to cause disease symptoms in grapevines across the different production regions of 

the world (Urbez-Torres et al., 2012). Losses due to grapevine disease caused by the 

Botryosphaeriaceae were estimated to be 4-20% in Bordeaux vineyards in France (Larignon 

et al., 2001) and 25-30% in South Africa (Pearson & Goheen, 1998). Together with Eutypa 

dieback, the annual losses they caused were reported to be in excess of $USA 260 million in 

California, USA (Siebert, 2001).  

1.3.1 Symptoms of Botryosphaeria diseases 

The dieback symptoms that cause most damage on grapevines develop slowly and lead to a 

gradual decline in vigour and yield (Phillips, 1998), which is probably why the most severe 

losses occur in grapevines that are eight years and older (Larignon and Dubos, 2001). The 

most characteristic symptoms are arm and trunk dieback, in which a dark brown wood 

necrosis frequently starts at the pruning wounds and spreads down the trunks or arms of the 

vines. The cankers which develop on trunks where limbs were pruned off characteristically 

appear as flattened areas with loosening bark.  Removal of the bark around a canker reveals 

the wood beneath to be discoloured brown to reddish-brown instead of white (Figure 1.6) 

(Phillips, 2002). When the canker is cut across, the necrotic wood shows as a wedge shaped 

lesion (Figure 1.7g) which is also characteristic of Eutypa dieback. Other shapes of wood 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b29
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necrosis have also been reported which reflect the shape of the wound site and wood 

architecture (van Neikerk et al., 2004; Amponsah et al., 2011). Cankers can encircle the vine 

arms or trunks, resulting in the death of the arms or whole vines. Some losses attributed to 

Eutypa dieback in vineyards in the past are now believed to have been caused by 

Botryosphaeriaceae species (Phillips, 2002; van Niekerk et al., 2004; Savocchia et al., 2007). 

 Infection of buds causes their mortality and leads directly to a reduction in yield but can also 

lead to shoot dieback (Amponsah et al., 2012a). When mature, systemically infected shoots 

may appear bleached with black fruiting structures immersed in the host tissue (Phillips, 

1998), which are similar to the symptoms of Phomopsis cane blight (Phillips, 2002). Vines 

infected by Botryosphaeriaceae species may also show mild chlorosis of the leaves, 

depending on the extent of wood colonisation (van Niekerk et al., 2004). In young 

grapevines, symptoms of Botryosphaeriaceae spp. infection may also be seen as stunted and 

chlorotic growth, necrosis of leaf and flower buds (Figure 1.7a and b) and delayed bud burst 

(1.7c), a condition often called “young vine decline” that has also been associated with other 

diseases (Aroca et al., 2006). 

  
Figure 1.6 (a) Trunk canker shown by arrow, and (b) discolouration of trunk wood from 
cordon dieback above the canker caused by Botryosphaeriaceae species (Photographs: 
Marlene Jaspers). 

Berry rots are an important Botryosphaeriaceae spp. symptom that has been reported from 

France (Larignon and Dubos, 2001) and the USA (Hewitt, 1988) as well as being 

experimentally induced in New Zealand (Amponsah et al., 2012a). When berries become 

infected, they develop a light brown rot and eventually dry out and become mummified with 

black pycnidia emerging on the surface (Figure 1.7i, j). Berries of Sauvignon Blanc and Pinot 

Noir were able to be infected by conidia of N. luteum by Amponsah et al. (2012a) from pea-

size to completely ripe. 

a b 
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Figure 1.7 Symptoms of Botryosphaeriaceae spp. infection (a) leaf necrosis, (b) necrosis of 
flower buds, (c) delayed bud burst, (d) shoot die back, (e) dead arm, (f) bleached cane, (g) 
wedge shaped necrosis, , (h)internal wood necrosis , (i) infected bunch, (j) mummified berries 
with pycnidia, and (k) pycnidial ooze [Photographs: Nicholas Amponsah (a, b, f, h, i), 
Marlene Jaspers (c, d, e, k) and Seelan Baskarathevan (g)]. 

 

After berries had rotted, the pathogen was also found to have progressed into the pedicels and 

rachides, and the shoot supporting the bunch.  
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In vineyards, berries were reported to be usually infected near the ripening stage followed by 

rot, development of black pycnidia, and shrivelling (Hewitt, 1994). However, these berries 

usually became infected with secondary fungi and yeasts, so often pycnidia and typical 

symptoms of Botryosphaeria rot were difficult to see as the bunches turned into a rotten mass 

known as a “summer bunch rot” (Hewitt, 1988). 

Green shoots have also been reported to be infected with Botryosphaeriaceae species, which 

has been observed in vineyards as dieback (1.7d) after summer trimming (Amponsah et al., 

2011).  Inoculation of soft and hard green shoots of potted vines has been shown to cause 

light to dark brown lesions which were clearly visible within 1-2 weeks. On soft green 

shoots, the lesions were clearly visible (Figure 1.8a), but on hard green shoots and more 

mature canes, the lesions were frequently visible only when the bark had been peeled off, or 

the stems split open (Figure 1.8b) (Amponsah et al., 2011; Billones-Baaijens et al., 2014). 

 

Figure 1.8 (a) Internal lesions that developed 60 days after inoculating attached green shoots 
on 1-year-old potted Pinot noir grapevines with conidia of Neofusicoccum luteum, (b) 
Lesions 10 days after inoculating wounded green shoots of grapevine (Pinot noir) with 
mycelium colonised agar plugs of N. luteum , N. parvum N. australe, and Diplodia mutila 
(left to right) (Photographs: Nicholas Amponsah). 

The many research reports on species pathogenicity (lengths of lesions), with respect to the 

inoculated plants and tissues, have differed greatly between species and countries (van 

Niekerk et al., 2004; Savocchia et al., 2007; Urbez-Torres and Gubler, 2009; Amponsah et 

al., 2009a). This has made it difficult to provide a valid comparison between species. Table 

1.2 shows a summary of the symptoms reported for each species. 

  

a b 
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Table 1.2 Symptoms associated with different Botryosphaeriaceae species as reported in published 
literature [adapted from van Niekerk et al. (2006)]. 

Symptoms B.
da 

N.
p 

D.
s 

D.
m 

N.
l 

N.ri
b 

L. 
theo 

N.
a 

N. 
vitic 

N. 
vitif 

D.
p Refsb 

Bud mortality x x x         4; 10; 11; 
15 

Shoot dieback x     x x      
Elongated 
black lesions  x     x x      

Bleached 
canes x x x x x  x      

Trunk dieback x x x x x  x     
1; 9; 11; 
12; 13; 
14; 15 

Wedge-shaped 
necrotic lesion x x x x x x x x     

Arch-shaped 
lesions         x     

Dark brown 
wood 
discolouration 

x x x x x  x   x   

Brown 
streaking, 
black spots 

x x x x x  x      

Infected 
pruning 
wounds 

 x x      x    

Leaf chlorosis  x x x  x      4; 5; 6 
Fruit rot x     x x     2; 3; 7; 8 
Graft union 
failure 

x x x x x  x     1; 9; 11; 
12 

Pruning debris           x 14 
Asymptomatic        x     

aB. d – Botryosphaeria dothidea; N. p – Neofusicoccum parvum; D. m – Diplodia mutila; D. s – 
Diplodia seriata; N. l –Neofusicoccum luteum; N. rib – Neofusicoccum ribis; L. theo –\Lasiodiplodia 
theobromea; N. a – Neofusicoccum australis; F. vitic –Neofusicoccum viticlavatum; N. vitif – 
Neofusicoccum vitifusiforme; D. p – Diplodia porosum. b 1. Castillo-Pando et al., 2001; 2. 
Kummuang et al., 1996a; 3. Kummuang et al., 1996b; 4. Larignon and Dubos, 2001; 5. 
Lehoczky1974; 6. Lehoczky, 1988; 7. Milholland, 1988; 8. Milholland, 1991; 9. Pascoe, 1998; 10. 
Phillips, 2002; 13. Taylor et al., 2005; 14. van Niekerk et al., 2004; 15. Wood and Wood, 2005. 
 

In New Zealand, Amponsah et al. (2011) showed that inoculation of Pinot noir green shoots 

with N. luteum, N. australe, N. parvum and D. mutila caused significant differences in lesion 
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lengths, being 73, 58, 57 and 40 mm, respectively. Further, the lesion colours differed 

between species, being light brown for N. luteum and dark brown for N. parvum, N. australe 

and D. mutila (1.8b). In contrast, Billones-Baaijens et al. (2014) who investigated the 

susceptibility of rootstock and scion cultivars commonly grown in New Zealand, using three 

isolates each of N. luteum, N. parvum and, N. australe reported that N. parvum produced the 

longest lesions on trunks of potted plants of all varieties, but that there was also significant 

variation between isolates of N. parvum. However, studies in California using multiple 

isolates of each species to inoculate rooted canes showed that L. theobromae was the most 

virulent species followed by N. luteum, N. parvum, and N. australe (Urbez-Torres and 

Gubler, 2009). They considered these species to be highly virulent while B. dothidea was of 

intermediate virulence, and D. mutila, D. seriata, Dothiorella iberica, and Do. viticola were 

weakly virulent. In Australia, a study by Pitt et al. (2013) reported that N. parvum and L. 

theobromae were the most pathogenic based on lesion length developed in 15-year-old vines, 

followed by N. australe, B. dothidea and D. mutila, with Do. viticola, Do. iberica and D. 

seriata being the least pathogenic. 

1.3.2 Prevalence of Botryosphaeriaceae species in New Zealand 

In New Zealand, Baskarathevan et al. (2012) surveyed the six main grape-growing regions 

and showed that the distribution of species was different in the different regions surveyed 

(Table 1.3). The predominant species was N. parvum (34%) which was found in all six 

regions. This was followed by D. mutila (18%) recovered in Gisborne, Nelson, Blenheim and 

Canterbury, D. seriata (16%) in the north and central areas of the South Island, N. luteum 

(14%) from Auckland, Gisborne, Nelson and Otago and N. australe (11%) in Auckland, 

Gisborne, Blenheim and Canterbury.  The less frequently isolated species were N. ribis (3%) 

in Auckland and Nelson, Do. iberica (2%) in Otago, Do. sarmentorum (1%) in the central 

and southern areas of the South Island, and B. dothidea (1%) in Nelson. 
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This nation-wide sampling of the New Zealand vine regions showed that Botryosphaeriaceae 

spp. were: 

 in 68% of necrotic wood samples, 

 in 23% of the declining vines, 

 in 38 of the 43 vineyards (88%) that contributed samples, 

 in all regions (Auckland, Gisborne, Nelson, Marlborough, Canterbury and Otago), 

 in vines of all ages, but mostly from the 6-10 and 11-15 years age groups (34 and 23% of 

positive samples, respectively), 

 in all varieties, tested, but mostly from Sauvignon blanc and Pinot noir (58% of samples).  

Table 1.3 Incidence of Botryosphaeriaceae species isolated from diseased grapevines from 
six major wine growing regions in New Zealand [Adapted from Baskarathevan et al., 2012]. 

*North Island and #South Island  

1.3.3 Identification of Botryosphaeriaceae species 

Although morphological characteristics have been used for the identification of the 

Botryosphaeriaceae spp. some species have similar morphological characteristics (Crous et 

al., 2006; Qiu et al., 2008). Some species such as N. luteum, N. parvum and N. australe 

showed similar mycelial growth characteristics and colour as well as similar conidial 

morphology (Slipper et al., 2004b). In addition, some species of the Botryosphaeriaceae are 

unable to produce conidia in artificial media (Denman et al., 2000; Amponsah et al., 2008) 

meaning that identification based on conidial morphology is not possible. Therefore, for 

accurate identification of Botryosphaeriaceae species it is necessary to use a combination of 

morphological and molecular methods (Denman et al., 2000, Phillips et al., 2002; Slippers et 

                        Number of samples yielding botryosphaeriaceous species 
  Neofusicoccum Diplodia Dothiorella Botryosphaeria 

 Region luteum parvum australe ribis mutila seriata sarmentorum iberica dothidea 

Auckland* 15 24 1 4      

Gisborne* 11 18 1  3     

Blenheim#  9 16  20 11    

Nelson# 2 14  2 10 21   3 

Canterbury#  4 6  4 2 1   

Otago# 2 3     1 4  

Totals 30 72 24 6 37 34 2 4 3 
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al., 2004). Molecular based species identification which involves the sequencing of the 

ribosomal internal transcribed spacer (rRNA ITS) region, β-tubulin and elongation factor 1-α 

(EF1-α) genes have proved to be very useful for accurately identifying Botryosphaeriaceae 

species (Phillips et al., 2002; van Niekerk et al., 2004; Slippers etal., 2004). Ribosomal DNA 

sequences at different taxonomic levels are very useful for discrimination of fungi (Guarro et 

al., 1999). However, the non-coding regions such as internal transcribed spacer (ITS) are 

more reliable and generally used for species identification (Guarro et al., 1999). Some 

domains like the D1 and D2 of the 28S rRNA gene are also variable within the coding 

regions (Alves et al., 2005) and so universal fungal primers and polymerase chain reaction 

(PCR) can be used to easily distinguish species (Alves et al., 2005). 

When the region amplified by PCR is digested with a restriction enzyme, it cuts the DNA at 

specific sites which can differ between species (Guarro et al., 1999) and gel electrophoresis is 

used to visualise the resulting fragments. This technique called amplified ribosomal RNA 

restriction analysis (ARDRA) was used by Alves et al. (2005) to differentiate between 

species of Botryosphaeriaceae, whereby the amplified fragment of the 28S rRNA gene was 

digested using restriction endonucleases AluI, AsuI, HaeIII, MboI, NciI and TaqI. The 

techniques of Alves et al. (2005) were further expanded to allow the differentiation between 

N. luteum and N. australe with the SacII enzyme (Baskarathevan et al., 2012). 

Nowadays multi species specific primers have been developed, which are more commonly 

used for detection and differentiation of Botryosphaeriaceae species. Spagnolo et al. (2011) 

developed multi species specific primers that could detect 17 Botryosphaeriaceae species in 

grapevine wood. Ridgway et al. (2011) developed multi species primers BOT100F and 

BOT472R which amplified a 371-372 bp portion of the ribosomal RNA gene region and were 

able to detect six Botryosphaeriaceae species (N. luteum, N. parvum/N.ribis, N. australe, 

Diplodia mutila and Diplodia seriata) in wood, rain water and soil samples. Further, use of 

single stranded confirmation polymorphism (SSCP) allowed researchers to identify 

individual Botryosphaeriaceae spp. in complex samples (Ridgway et al., 2011). 

1.3.4 Disease cycle 

The disease cycle of Botryosphaeriaceae pathogens has generally more fully demonstrated on 

other crops than on grapevines. Michailides (1991) described the asexual disease cycle of B. 

dothidea on pistachio trees (Figure 1.9). The disease cycle begins with survival of the 

pathogen over winter within blighted shoots, petioles, buds, blighted and mummified fruit 
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and perennial shoot cankers. In spring during favourable conditions (rainfall), conidia are 

released from pycnidia and infect female panicles, male blossoms and young shoots. Buds 

infected the previous summer also resulted in blighted flowers and infection extending into 

the supporting shoots. In summer the pathogen conidia which are released during moist 

conditions and spread by wind or rain could infect mature panicles and leaves through 

stomata, developed fruit through lenticels and developing buds through the scales. Pycnidia 

which form on blighted shoots, petioles, leaf lesions and mummified fruits could provide 

further conidia for autumn infections under favourable conditions (Epstein et al., 2008).  

 

 

Figure 1.9 The disease cycle of Botryosphaeria panicle and shoot blight of pistachio caused 
by an asexual stage (a Dothiorella spp.) of B. dothidea (Slightly modified Michailides, 1991). 
Boxes represent tissues infected by the pathogen. 

On peach trees, the pathogen has been found to survive as perithecia on cankers. 

Botryosphaeria dothidea (anamorph Fusicoccum aesculi ascospores were reported to infect 

new shoots, blossoms and fruit under favourable temperatures of 12-39°C and at 12-32°C, 

when moisture was available, (Pusey, 1993: Copes and Hendrix, 2004). Brown-Rytlewski 

and McManus (1999) also reported that B. obtusa (anamorph D. seriata) ascospores and 

conidia, which are formed in perithecia and pycnidia, respectively, on infected fruit and twigs 

of apple trees, are disseminated in late spring or summer rainfall. These can infect other apple 
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trees through natural openings and wounds. In avocado orchards, Hartill and Everett (2002) 

reported that N. luteum pycnidia were present throughout summer, with potential for ongoing 

conidial production and release.  

In grapevines, the disease cycle has not been fully described. The pathogen almost certainly 

survives overwinter in diseased wood. The sexual stages of Botryosphaeriaceae spp. are 

rarely found in vineyards (Taylor et al., 2005) however pycnidia are frequently observed in 

diseased wood. The pycnidia are known to release conidia when moistened by mist, rain or 

irrigation, since they have been found by spore-trapping during these conditions. They are 

dispersed by wind and rain to cause new infections, which are generally believed to be 

through fresh pruning wounds (Urbez-Torres, 2011). In a vineyard in Canterbury, New 

Zealand, Botryosphaeriaceae species conidia were trapped in rain water run-off traps but not 

on Vaseline™ coated slides suitable for collecting air-borne spores, which had been placed 

on vineyard posts (Amponsah et al., 2009b). The conidia were trapped during an entire year, 

and were most abundant during December to February, probably due to the rise in 

temperature as well as the availability of a larger canopy of mature canes during that period 

(Amponsah et al., 2009b). The role of rainwater in the dispersal of conidia of 

Botryosphaeriaceae species has been reported by Pusey (1989) and Sutton (1981) who 

showed that waterborne conidia of B. dothidea and D. seriata were abundant in the air of 

peach and apple orchards, respectively, during rainy periods, and that the amount and 

duration of rainfall were the most important factors in waterborne dispersal of ascospores and 

conidia. However, Urbez-Torres et al. (2010b) reported trapping air-borne conidia on 

Vaseline™ coated slides placed within a grapevine canopy in California. They concluded that 

most spores were trapped following rain events during winter and very few or no spores were 

trapped in late spring and summer when conditions were much drier. Further, use of a 

volumetric spore trap showed that Botryosphaeriaceae spp. conidia were trapped from 1 h 

after onset of rain or irrigation and “not usually” after 2 h from the end of rain or irrigation. In 

South Africa, van Niekerk et al. (2010a) also reported trapping conidia of Botryosphaeriaceae 

spp. with a volumetric spore trap during winter and early spring, during and just after rainfall 

events. 

The conditions under which Botryosphaeriaceae species produce and disperse conidia from 

infected grapevine tissues has not been fully investigated. Copes and Hendrix (2004), who 

extracted conidia from stem cultures, reported that conidia were produced over a wide 

temperature range of 6–30°C with maximum sporulation and spore maturation at 18-24°C. In 
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New Zealand, production of pycnidia and conidial ooze has been induced on infected green 

shoots and canes when placed in high RH at room temperature, with repeated periods of 

conidial ooze possible from lesions over a few weeks (Amponsah et al., 2008). However, the 

specific effects of different environmental conditions on this have not been determined. 

Further studies are needed to fully investigate the effects of environmental conditions on 

sporulation as it affects Botryosphaeria dieback in vineyards. This has important implications 

for potential infection of grapevines during pruning or trimming operations in vineyards 

during the year. Such information will assist with the development of control strategies.  

1.3.4.1 The effect of tissue wetness duration on disease development  

Relative humidity and leaf wetness significantly influence the production and transport of 

inoculum as well as the infection success of many fungi. However, for Botryosphaeriaceae 

conidia which are dispersed with moisture, there is some evidence to show that they do not 

require prolonged moisture for infection. Amponsah et al. (2010) demonstrated that conidia 

of N. luteum within the ooze exuded from infected shoots were able to germinate when 

spread on glass slides without the presence of free moisture. The moisture present in 

relatively high RH was sufficient at 25°C; germination was optimum at 100% RH and much 

reduced at 93% RH, with no germination at 84% RH. Further infection studies using 

wounded green shoots on potted Pinot noir grapevines showed that continuing surface 

wetness was not an important factor in infection because the conidial suspension of N. luteum 

infected the grapevine shoots at 95% RH and 24°C without the need of a further wetness 

period (Amponsah et al., 2014).  However, Parker and Sutton (1993) reported that in orchards 

the incidence of apple fruit infection caused by B. dothidea increased with increasing wetness 

periods, and Arauz and Sutton (1989) also reported that in orchard conditions apple fruit and 

leaf infection caused by D. seriata increased with increasing wetness periods.  

1.3.4.2 The effect of wounds and wound age on susceptibility 

Botryosphaeriaceae species are generally considered as wound pathogens (Smith et al., 1994; 

Taylor et al., 2005; Amponsah et al., 2011; Urbez-Torres, 2011). However, in pistachio 

Michailides (1991) reported that penetration by B. dothidea conidia occurred through 

lenticels or stomatal openings on healthy leaves, petioles, fruit and rachides. Further, Kim et 

al. (1999) reported that B. dothidea penetrated through apple lenticels. They observed that the 

germ tubes also penetrated the fruit directly; in some cases, globose appressoria were formed 

at the tip of germ tubes on the fruit surface, where no lenticels or surface cracks occurred. 
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Pusey (1993) also showed that lenticels of peach trees became infected with B. dothidea and 

thus caused canker symptoms in the wood. Botryosphaeria dothidea was also shown to infect 

apple trees through lenticels and reside there; when the trees were exposed to water stress 

symptoms developed (Connor, 1968). Sutton (1991) also reported that B. dothidea infected 

apple fruit in middle and late parts of the season through cracks in the cuticle, wounds or 

lenticels. The conidia of B. dothidea have also been reported to enter into non-wounded elm 

and blueberry stems through stomata (Luttrell, 1950; Milholland, 1972).  

In grapevines, Phillips (1998) demonstrated that when B. dothidea conidia were inserted 

under the scales of dormant non-wounded buds on excised canes bud mortality resulted. 

Further, Amponsah et al. (2012a) reported that buds did not require wounds for infection 

since wounded and non-wounded buds had similar incidence and symptoms when inoculated 

in spring with conidia of N. luteum. However, attempts to infect non-wounded green shoots 

or trunks of potted vines with N. australe, N. luteum, N. parvum and D. mutila, were 

unsuccessful, although all fungi were pathogenic on the wounded tissues (Amponsah et al., 

2011). Despite these findings, Billones-Baaijens et al. (2015a) demonstrated that grapevine 

shoots grown in mothervine blocks became infected during the season through another route 

other than wounds, since fungicide protection of trimming wounds did not significantly 

reduce incidence of infection. Further, they were able to show that multiple species and 

genotypes were sited within the bark of canes more often than in the wood, which indicated 

latency on surface tissues. However, presence of the same genotypes in some adjacent wood 

and bark infections indicated that some wood infection may have originated from the bark 

(Billones-Baaijens et al., 2015b).  

The age of wounds also has a significant effect on susceptibility to Botryosphaeriaceae 

species infections. On wounds made in trunks of 18-month-old potted Pinot noir grapevines 

in New Zealand in spring, susceptibility to infection by N. luteum conidia applied at 104 

conidia/mL decreased with wound age. Infection was 100% on fresh to 2-day-old pruning 

wounds, 40% when wounds were 7-day-old and 0% on 14-day-old wounds. In the same 

study, wounds remained susceptible to mycelial infection for up to 30 days (Amponsah et al., 

2014). In California, Úrbez‐Torres and Gubler (2011) demonstrated prolonged susceptibility 

of wounds in Cabernet Sauvignon and Chardonnay canes to conidia of L. theobromae and N. 

parvum; susceptibility remained higher when pruning was done in early winter (up to 84 

days) than in early spring (up to 12 days). In Italy, a vineyard study by Serra et al. (2008) 

demonstrated that wounds made on grapevine spurs remained susceptible to infection by D. 

http://onlinelibrary.wiley.com/enhanced/doi/10.1111/j.1365-3059.2010.02381.x/?regionCode=NZ&identityKey=d417afed-58dc-4002-a63b-d3dd1be1be2e&isReportingDone=false#b18
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seriata, even 8 weeks after pruning in late winter. Clearly, knowledge of the timing of 

pruning with respect to season and rainfall events which disperse fungal spores could provide 

growers with a strategy for preventing infection.  

1.3.4.3 The effect of tissue age, weather conditions and inoculum concentration on 

susceptibility to infection 

Initial studies with soft green tissues showed that lesion development was faster in detached 

than in attached tissues inoculated with N. luteum, N. australe, N. parvum and D. mutila 

(Amponsah et al., 2011). Further studies on effects of physiological age of attached grapevine 

stems on development of lesions caused by N. luteum showed that lesions were not always 

visible on 2-year-old trunks and 1-year-old canes, however pathogen progression, as 

determined by isolation, was greatest in older tissues, with distances of 39.1, 31.6 and 23.2 

mm for 2-year-old trunks, 1-year- old canes and current green shoots, respectively, 

(Amponsah et al., 2014 ). In California, Úrbez‐Torres and Gubler (2011) showed no 

differences between susceptibility of wounds on 1-year-old and 2-year-old wood to infection 

by L. theobromae and N. parvum. Van Niekerk et al. (2004) also demonstrated pathogenicity 

of different Botryosphaeriaceae species on green shoots, mature canes and mature wood but 

they did not compare susceptibility among the different aged tissues. Urbez-Torres and 

Gubler (2011) found that infection of pruning wounds by L. theobromae and N. parvum 

varied throughout the dormant season (November versus March). However in 2007 dormant 

season, wounds remained susceptible up to 7 weeks in November, December and January, 

whereas in the 2008 dormant season, wounds remained susceptible up to 12 weeks in 

November and December. 

Effect of tissue age on susceptibility of grapevines to infection by Botryosphaeriaceae spp. 

has not been reported, although other studies have reported effects of wood age on infection 

by other pathogens. Balci et al. (2008) showed that lesions formed by Phytophthora species 

on 20-year-old oak tree stems were considerably larger than the stem lesions on stems of 1 

and 2-year-old seedlings of the same hosts. Increased susceptibility with tree trunk age was 

also reported for Phytophthora cinnamomi infected Quercus rubra plants (Robin et al., 

1992). Moller and Kasimatis (1980) and Trese et al. (1980) also showed that pruning wounds 

made on 1-year-old grapevine wood were more resistant to infection by Eutypa armeniaceae 

compared to wounds made in older wood.  However, Munkvold and Marois (1995) reported 

that age of grapevine wood at the time of wounding did not significantly affect the 

susceptibility of the wood to infection from E. lata, although wound susceptibility was 
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highest directly after pruning and decreased over time. Also, wounds made in early winter 

remained susceptible for a longer time than wounds made in January or February (late 

winter).  

Conidium concentration has also been reported to affect infection incidence, with B. dothidea 

incidence in apple fruit increasing as the inoculating concentration increased from 104 to 107 

conidia/mL (Biggs, 2004). However, Amponsah et al. (2014) showed that inoculation of 

fresh pruning wounds with 20 µL drops of N. luteum conidial suspension at a range of 

concentrations (102-106/mL) resulted in 100% infection incidence for all concentrations, 

although lesion development was slower for the lower concentrations than the higher 

concentrations. 

1.3.4.4 Infection of other grapevine tissues  

Amponsah et al. (2012a) demonstrated that wounded and non-wounded buds on potted vines 

became infected when inoculated with conidia of N. luteum; most were killed, with 

downward progression of the pathogen into the supporting shoots. Berries wounded and 

inoculated at the pre-bunch closure stage and later in the season were also shown to be 

susceptible to N. luteum infection, with isolation incidence increasing over the season and 

peaking at harvest, when infected berries became mummified and produced pycnidia with 

many conidia. The pathogen was also able to progress from berries into bunch stems and 

supporting canes. Castillo-Pando et al. (2001) who isolated Botryosphaeriaceae spp. from 

dead buds concluded that budburst failure was due to Botryosphaeriaceae spp. infections. In 

pistachio, Michailides (1991) found that conidia of B. dothidea were able to enter through 

stomata of leaves and shoots and through lenticels on fruits thus aggressively infecting 

uninjured fruit.  

1.3.5 Control 

To prevent infection of stem tissues it is essential that the pruning wounds are protected from 

infection by Botryosphaeriaceae species (Bester et al., 2007). However, the studies that 

investigated use of fungicides for wound protection have been limited; they were mostly 

conducted under protected growing conditions and only the important species of the region 

were used for inoculation. Researchers from different countries had reported the efficacy of 

tebuconazole, flusilazole, spiroxamine and fluazinam, carbendazim, fludioxonil, fluazinam, 

penconazole, procymidone, thiophanate methyl, fenarimol and iprodione in vitro (Denman et 

al., 2004; Savocchia et al., 2005; Luque et al., 2008; Pitt et al., 2010b; Amponsah et al., 
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2012b). Leavitt (2003) demonstrated the efficacy of iprodione, benomyl, captan and 

penconazole when applied to pruning wounds prior to inoculation with L. theobromae in a 

glasshouse experiment with potted grapevine plants. Pitt et al. (2010b) also showed that 

pruning wounds were protected from infection by D. seriata, B. parva, L. theobromae and B. 

dothidea by the fungicides tebuconazole, cyproconazole, flusilazole, carbendazim and 

benzimidazole. Bester et al. (2007) in South Africa reported that when shoots treated with 

prochloraz, tebuconazole and benomyl, were inoculated with species of Botryosphaeriaceae 

the incidence of disease was reduced from the relatively high levels in the water treated 

shoots. In addition, Rolshausen et al. (2005) also demonstrated that Topsin (thiophanate-

methyl) applied as a paint prior to inoculation was able to provide 77-82% protection against 

the inoculated pathogens, B. dothidea, D. seriata and L. theobromae in a vineyard. Luque et 

al. (2008) investigated the efficacy of different fungicides in field trials in Spain and found 

that carbendazim was the most effective, followed by thiophanate-methyl at reducing 

numbers of lesions (83.4 and 70.1%, respectively) caused by D. corticola on cork oak trees 

after cork removal. Diaz and Latorre (2013) studied the efficacy of paste and spray 

formulations of fungicides in Chile and reported that both spray and paste applications of 

benomyl, pyraclostrobin, tebuconazole and thiophanate-methyl reduced the infection rate of 

D. seriata, Inocutis sp. and Pa. chlamydospora in pruning wounds of grapevine (Cabernet 

Sauvignon) but paste formulations of these fungicides provided better control than spray 

applications. They also reported that application of the fungicides 1 day pre-inoculation 

provided better control than the post inoculation applications. The efficacy of fungicides has 

also been shown by Pitt et al. (2012) in Australia. They tested 20 fungicides in vitro and in 

vivo and found that the fungicides, flusilazole, tebuconazole, fluazanim, fludioxonil and 

iprodione and carbendazim not only inhibited mycelial growth of Botryosphaeriaceae spp. in 

vitro but were also effective in the field where they reduced the incidence of D. seriata or D. 

mutila by 32, 54, 55, 18-32, 41 and 27-41%, respectively. In addition to fungicides they also 

evaluated wound protectant paints in which Garrison and Bacseal Super, provided 42-65% 

and 38% control, respectively. In some trials they used such as tree wound dressings and 

acrylic paints which reduced Botryosphaeriaceae infection of pruning wounds by about 46%.   

The apparent lack of field efficacy found by many researchers was possibly due to the 

continuous levels of natural inoculum, which a single fungicide application could not protect 

against during the long period of wound susceptibility. This was demonstrated by the 

infection incidence of non-inoculated control vines, for which 63% were reported to be 
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infected by Pitt et al. (2012). However, Amponsah et al. (2012b) demonstrated the efficacy of 

flusilazole, carbendazim, tebuconazole, thiophanate-methyl and mancozeb in a New Zealand 

vineyard where natural inoculum had not been found. When sprayed onto cane pruning 

wounds on potted and field grapevines, which were subsequently inoculated with N. luteum 

conidia, these fungicides prevented the inoculated pathogen from infecting healthy wood in 

100, 93, 87, 83 and 80% of field vines, respectively. Clearly, the longevity of fungicides and 

the re-application frequency need to be investigated in an environment where there are 

continuously high levels of conidia. 

Biological control agents have been used as wound protectants to provide control of some 

grapevine trunk diseases (Di Marco et al., 2004; Fourie and Halleen, 2004b; Sosnowski et al., 

2008). Pitt et al. (2012) showed that the mean percent recovery of D. seriata was 

significantly reduced by 13% by the application of Vinevax® in a trial conducted in the 

Hunter valley. Trichoderma spp. were shown to be mycoparasites of several Botryosphaeria 

species, with isolates of T. harzanium and T. atroviride reported to control infection of apple 

stem and fruit by Botryosphaeria berengeriana f. sp. piricola (Kexiang et al., 2002). They 

found that reisolation of B. berengeriana after co-inoculation and pre-inoculation was 

reduced by 27.0-42.3% and 22.2-47.1%, respectively due to Trichoderma spp. application. 

Chen et al. (2003) showed that when Paenibacillus lentimorbus was applied to pistachio 

pruning wounds before inoculation with B. dothidea, it greatly reduced wound infection. 

Biological control agents such as Fusarium lateritium (Carter and Price, 1974; John et al., 

2005), Trichoderma spp. (John et al., 2005; Kotze et al., 2011), Bacillus subtilis (Ferreira et 

al., 1991; Schmidt et al., 2001; Kotze et al., 2011) and Erwinia herbicola (Schmidt et al., 

2001) have also shown antagonistic activity against these pathogens. Recently a study in 

France used bacterial strains isolated from grapevines as biocontrol agents against B. cinerea 

and N. parvum. The in vivo assays showed the effectiveness of Pantoe agglomerans and an 

Enterobacter sp. as potential biocontrol agents against N. parvum (Haider et al., 2016). 

However, in New Zealand, no studies have been carried out to test the effectiveness of 

biological protectants to prevent infection of grapevine pruning wounds by 

Botryosphaeriaceae species. 

Another control measure that is widely recommended is the use of sanitary practices. 

Babadoost (2005) stated that pruning debris should either be buried or removed from the 

vineyard and preferably burnt, as this material can be a source of inoculum that can cause 

infection. However, they did not provide any data to support this statement. Hygiene methods 
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may also be effective. In avocado, frequent sterilization of the pruning instruments used to 

harvest the fruit reduced stem end rot infections caused by N. parvum and N. luteum (Hartill 

and Everett, 2002). Pitt et al. (2010a) reported that the incidence of trunk diseases can be 

reduced by avoiding pruning during and immediately after rainfall, pruning later in the season 

and removing infected wood as well as the trimmed branches because the pathogens can 

survive on dead tissues for a long period of time.  

 

1.4 Aims and objectives of this research 

The aim of this research programme is to improve the understanding of how pruning time, 

environmental conditions and the stages of the disease cycle affect rates of infection, 

information from which to develop control strategies. The objectives of this research are as 

follows: 

Objective 1: Investigate factors associated with optimum conidium production. These 

experiments will provide understanding of which grapevine tissues produce conidia and 

under which environmental conditions.  

Objective 2: Investigate conidium dispersal and infection in vineyards. These experiments 

will monitor dispersal and pathogenicity of conidia dispersed naturally from infected tissues. 

Objective 3: Investigate the host factors that affect infection of grapevine tissues. These 

experiments will determine the lengths of time that the normal pruning and trimming wounds, 

made on a range of tissues, can remain susceptible to infection by the dispersed conidia and 

whether conidial numbers and season affect infection incidence of wounded stem tissues. 

Objective 4: Investigate potential for infection of non-wounded tissues. These experiments 

will determine whether infection can occur in buds and fruits at different developmental 

stages, and whether infection of stem tissues can occur through lenticels.  

Objective 5: Determine the efficacy of chemical and biological wound protectants during the 

period of susceptibility.  
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Chapter 2 

Factors associated with conidium production 

2.1 Introduction 

Environmental factors are very important in the epidemiology of fungal pathogens. Of these, 

relatve humidity (RH) and wetness of surfaces are known to be especially important for 

fungal infection as well as production and transport of inoculum. For the Botryosphaeriaceae 

species which infect grapevines, the conidia which have been trapped during moist 

conditions, are believed to be dispersed mainly by rain splash (Amponsah et al., 2009b; 

Úrbez-Torres et al., 2010b; Baskarathevan et al., 2013). The effect of relative humidity (RH) 

and sunlight on survival of Botryosphaeriaceae spp. conidia were also investigated by 

Amponsah et al. (2010). They showed that conidial germination of Neofusicoccum luteum, N. 

australe and Diplodia mutila was highest in 100% RH (91.8% within 3 h), moderate at 97% 

(67.2% within 6 h), and 93% (43.9% after 24 h), with no germination at 84% RH. They also 

showed that increasing exposure times to UV radiation caused decreases in the viability of 

conidia of N. luteum, N. australe and D. mutila. Further studies showed that prolonged 

surface wetness was not an important factor in N. luteum infection of wounded Pinot noir 

grapevine canes. However, under in vitro conditions, Parker & Sutton (1993) reported that 

incidence of apple fruit infections caused by Botryosphaeria dothidea increased with 

increasing wetness period and Arauz & Sutton (1989) also reported greater incidence of apple 

fruit and leaf infections caused by D. seriata with increasing wetness period (92-100% RH).  

Temperature may also affect development of pathogenic fungi. Urbez-Torres et al. (2010a) 

reported that Botryosphaeriaceae conidia could germinate over a range from 5 to 35°C. 

However, only conidia of B. dothidea, D. seriata, and L. theobromae could germinate at 

40°C. An understanding of how these factors contribute to disease progression in vineyards is 

important for the management of disease. Further, previous studies have indicated that 

disease progression differs between isolates of some Neofusicoccum spp. (Billones-Baaijens 

et al., 2014), so conidial production may also differ between isolates. The aims of this study 

were to (a) investigate the pathogenicity and sporulation of different isolates of N. luteum and 

N. parvum on different grapevine tissues and cultivars, and (b) investigate the effects of 

environmental factors on sporulation by these isolates on different grapevine stem tissues. 
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2.2 Materials and Methods 

2.2.1 Production of grapevine plants and their management  

For some of the experiments in this chapter and for most of the experiments in this thesis, 

about 1,500 Sauvignon blanc and 500 Pinot noir grapevine plants were grown in pots in a 

Marlborough tunnel house and used as needed. The dormant canes from which they were 

grown were removed by winter pruning from the Lincoln University vineyard and soaked for 

30 min with occasional agitation in a solution of the systemic fungicide carbendazim (MBC 

500 Flo; 0.25 g a.i./L) (Agronica). The bases of the canes were then placed in containers with 

15 cm of vermiculite for rooting on a heat pad (27°C for 6 weeks) at ambient temperature in 

the Lincoln University Nursery. Two weeks later, the canes were washed in sterile water and 

the disease status checked by removing the top 5-7 mm from each shoot, which was plated on 

PDA and incubated at 25°C for 5 days before being examined for presence of colonies that 

resembled Botryosphaeriaceae spp. Since none of the canes were infected all rooted cuttings 

were transferred to the Marlborough Fairhall Vineyard, Blenheim where they were 

transferred to 5 L pots with a commercial potting mix (Morgans, Marlborough; (Appendix 

A.1). The plants were grown in two tunnel houses (Figure 2.1a) which were not heated and 

were cooled by opening the doors at each end during summer. In mid-summer, they were also 

covered in a shade-cloth screen to reduce the temperature. Plants were drip-irrigated every 

second day as needed. In spring when the buds had broken, the plants were sprayed with 

sulphur (Kumulus DF) (ORION Crop Protection) (40 g/8 L) and Impulse 

[(Spiroxamine/benzyalcohol) (Bayer CropScience) (9.6 mL/8 L)] alternatively every second 

week to prevent powdery mildew. After 10 months growth and every 12 months after that, 

each plant was side-dressed with approximately 10 g of the fertilizer Agroblen®Mg (Everris). 

Plants were also sprayed with Nitrosol (Yates) (8: 3: 6; N: P: K, respectively, plus minerals 

and trace elements) twice during each growing season. Pots were also weeded by hand every 

third week. Plants were pruned and trimmed several times during each growing season and 

tied to stakes for support. After pruning, wounds were sprayed with VineVax 

(Agrimm®Technologies Limited) at 10 g/L. Potted plants were transferred to an open 

gravelled area 1 week prior to setting up each experiment (Figure 2.1b). 
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Figure 2.1 a) Potted vines growing in tunnel house b) Plants transferred to outside area for 
experiments. 
  

a 
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2.2.2 Lesion development and production of conidia from different isolates of N. luteum 

and N. parvum on different stem tissues 

2.2.2.1 Pathogenicity and sporulation of multiple isolates on detached green shoots 

In late summer 2013, green shoots (15-20 cm long from the tip) and semi-hard green shoots 

(30-60 cm from the shoot tip) were cut from Sauvignon blanc vines in the Lincoln University 

vineyard and the bases were immediately placed in water where they were held until 

inoculated (1-3 days). Each shoot was inserted into a Universal bottle containing sterilized 

water when required for the experiment. The Universal bottles were sealed with Parafilm® 

(American National Can™, Sigma-Aldrich) around the stems of the shoots.  The six isolates 

of N. luteum (CC445, G51b1, G31d2, ICMP 16678, A526 and MM558) and eight isolates of 

N. parvum (G69a1, A75a1, A122, G61a1, B2141, A842, MM562 and G652), were used to 

inoculate the shoots. They had been stored at -80°C and were revived by subculture on potato 

dextrose agar (PDA; DifcoTM New Jersey, United States) and plates incubated at 25°C in a 12 

h dark and light 12 h cycle, with illumination by fluorescent and near ultra violet light (366 

nm) for 3 days, were used to inoculate the shoots (Figure 2.2a). A central area of each shoot 

was sterilised by swabbing with 70% ethanol and allowed to air dry and was then wounded 

(~3 mm deep and long) between the nodes using a sterilised scalpel blade. The wounded 

areas were inoculated with colonised agar plugs (3 mm diam.) cut from the margins of 3-day-

old cultures. Control plants were wounded and inoculated with sterile PDA using the same 

method. These inoculated soft green shoots were incubated for 7 days and semi-hard green 

shoots for 14 days at room temperature (23-24°C) under natural light, with frequent misting 

for the first 4 days. For each treatment, two replicates (blocks) were set up per day on three 

consecutive days. The six replicates per isolate and tissue type were arranged in a randomized 

block design (RBD). The lesions which developed (Figure 2.2b) were measured with a digital 

calliper (Mitutoyo).  

The stem pieces containing the lesions and pycnidia were removed and surface sterilized in 

70% alcohol for 30 s and washed for 30 s in sterile water, before being air dried in a laminar 

flow unit overnight. The dried stem lesions were placed on sterile paper in a sterile plastic 

container and incubated on the laboratory bench for 5-7 days. A 1 cm section was cut from 

the centre of each lesion and placed in a sterilized Universal bottle also containing a moist 

filter paper strip. After 24 h incubation at 23-24°C, the filter paper strip was removed and 2 

mL sterile tap water added to each bottle with the 1 cm stem sample. It was shaken for 3 min 

by hand and the suspended conidia were counted using a haemocytometer, with three 
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replicate counts for each treatment. Assessment of conidial concentrations was conducted for 

two replicates per day. 

 
Figure 2.2 Inoculation of grapevine stem tissue (a) mycelium agar plug inoculated onto 
wounded shoot denoted by an arrow, (b) lesion that developed by 1 week after inoculation.  

2.2.2.2 Pathogenicity and sporulation of selected isolates of N. luteum and N. parvum on 

attached soft green shoots  

The isolates for this experiment were selected according to the length of the lesions which 

developed in Section 2.2.2.1, which indicated levels of virulence. Three highly virulent 

isolates of N. luteum (CC445, ICMP 16678 and MM558) and N. parvum (G69a1, MM562 

and G652) and one moderately virulent isolate for N. luteum and N. parvum, G51b1 and 

A122 respectively, were grown as described in Section 2.2.2.1. The potted Sauvignon blanc 

plants which had been growing for 4 months were wounded between the first and second 

nodes of the green shoots emerging from the trunks and inoculated as described in Section 

2.2.2.1, using mycelium plugs of 3-day-old cultures. Control plants were inoculated with 

sterile PDA. The six replicates per isolate were arranged in a (RBD). The plants were 

incubated for 2 weeks, on a gravel area outside the tunnel house at Fairhall Vineyard, 

Blenheim and were assessed for lesion development and sporulation as described in Section 

2.2.2.1. 

2.2.2.3 Pathogenicity of mixed isolate mycelium of N. luteum and N. parvum on green 

soft and semi-hard shoots of two different grapevine varieties  

One-year-old potted plants were selected from the tunnel house for inoculation. For each 

species, the 3-day-old mycelium of the same three most pathogenic isolates as in Section 

2.2.2.1 were mixed by chopping together and used to inoculate wounded areas of the green 

shoots and semi-hard shoots of Sauvignon blanc and Pinot noir in late October, 2014 at the 

b a 
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Fairhall Vineyard. Control plants were inoculated with sterile PDA. To prevent drying of the 

mycelium plugs, each inoculated wound was wrapped with Parafilm. The 10 replicates of 

each species and grapevine variety were laid out in a RBD and allowed to grow for 2 and 4 

weeks (green shoots and semi-hard shoots, respectively) outside the tunnel house at the 

Fairhall Vineyard. They were then assessed for lesion development and conidial numbers as 

described in Section 2.2.2.1. 

2.2.2.4 Pathogenicity of mixed isolate mycelium of N. luteum and N. parvum on woody 

trunks of potted vines of two different grapevine varieties 

In November 2014 the 2-year-old trunks of potted grapevines (Sauvignon blanc and Pinot 

noir) were wounded and inoculated with mycelium as described in Section 2.2.2.3 (Figure 

2.3). Each wounded trunk was inoculated with a mixed mycelium of either species. Control 

plants were inoculated with sterile PDA. The 10 replicates per species and variety were laid 

out in a CRBD and plants were allowed to grow for 6 weeks outside the tunnel house at the 

Fairhall Vineyard, and then assessed for lesion development as described in Section 2.2.2.1. 

After 6 weeks the bark was removed from each trunk to allow the lesion length to be 

assessed.  

 
Figure 2.3 Inoculated area (arrow) of main trunk of potted grapevine with Neofusicoccum 
parvum and N. luteum. 
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Pieces (0.5 cm) cut from lesion edges were surface sterilized in 70% alcohol for 30 s and 

rinsed in sterile water for 30 s. The pieces were placed onto PDA plates and incubated at 

25°C for 3-7 days, then observed for characteristic growth of N. parvum and N. luteum 

(Amponsah et al., 2011). 

2.2.2.5 Pathogenicity of N. luteum and N. parvum mycelium on Pinot noir and 

Sauvignon blanc in the vineyard 

In November 2014, hard green shoots and canes (woody, 1-year-old stems) of Pinot noir and 

Sauvignon blanc vines growing at Kaituna Vineyard, Blenheim were wounded and inoculated 

with a mixed mycelium of the same isolates of N. luteum or N. parvum, eight replicate plants 

each, as described in Section 2.2.2.3. On each vine two semi-hard green shoots and one cane 

were selected for each species. Control vines were inoculated with sterile PDA. After 3 

weeks the inoculated hard green shoots were removed from vines and assessed for lesion 

development and conidium production as described in Section 2.2.2.1. The inoculated canes 

were assessed for lesion development after 8 weeks as described in Section 2.2.2.4. 

2.2.3:  Effects of environmental conditions on sporulation 

2.2.3.1 Detached hard green shoots 

Detached hard green shoots collected from the Lincoln University vineyard in late summer 

2013 were inoculated with the isolates which produced the most conidia of N. parvum, 

(G69A1, MM562, and G652) and N. luteum, (CC445, ICMP 16678, and MM558) (Section 

2.2.2.1). After 2 weeks, when lesions and pycnidia had developed, the 1 cm sections cut from 

the centres of the lesions on these infected shoots were incubated under relative humidities 

(RH) of 80-81, 92.5-96 and 100%, using saturated solutions of salts, (NH4)2SO4, KNO3 and 

water, respectively, based on the methods of Dhingra and Sinclair (1985). The lesion sections 

which had been tied to a thread were surface sterilised and air dried as described in Section 

2.2.2.1, then suspended in the air above the salt solutions in the tubes for 24 h after the air 

had been allowed to equilibrate to the appropriate RH (24 h) (Figure 2.4). These sealed tubes 

were placed in a RBD in different incubators set at 10, 15, 20 and 25°C. The six replicates 

were set up on alternate days, i.e. on days 1, 3, 5, 7, 9, and 11. The incubators retained the 

same temperatures throughout, and because there were limited numbers of incubators 

available the tubes were not randomly allocated to temperatures with respect to blocks. After 

2 days incubation, the numbers of conidia that oozed from the pycnidia were determined as 

described in Section 2.2.2.1.  
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Figure 2.4 Grapevine shoot section (1 cm length) containing a Neofusicoccum parvum lesion 
suspended in the air above the salt solution. 

2.2.3.2 Attached soft stem tissues on potted vines 

To determine the effects of environmental conditions on release of conidia from living plants, 

soft green shoots on 1-year-old potted vines were inoculated with mycelium of selected 

isolates of N. parvum (G69a1, MM562, and G652) and N. luteum (CC445, ICMP 16678, and 

MM558) as described in Section 2.2.2.1 and allowed to develop lesions and pycnidia by 

incubating for 1 week in a shade house. The lesion lengths were measured using a digital 

calliper, and the plants were then transferred to growth chambers (Conviron PGV36 with 

H319UV-B lighting system, floor area 1.37 x 2.45 m, lighting max. 960 u mols/m2/s; 

Controlled Environments Limited), for sporulation.  The conditions in the growth chambers 

were 93 and 100% RH at both 20 and 25°C (selected based on the results of Section 2.2.3.1). 

The chamber was set to 93% RH for the first set of potted grapevines and then to 100% RH 

with the second set of potted grapevines. However, the chamber could not achieve this so 

100% RH was achieved by hanging wet cotton fabric around the inner walls of the growth 

chamber and placing water buckets, which were refilled frequently, inside the chamber. The 

floor was also wetted with water every 4 h during the day.  Tinytag® relative humidity (0-

100%) and temperature (-40- +75°C) data loggers (Gemini Data Loggers, UK) were also 

placed in the growth chambers and they confirmed RH and temperature. After 2 days, stem 

lesion segments were assessed for numbers of conidia as described in Section 2.2.2.1. It was 

not possible to randomly allocate plants to temperatures with respect to blocks because there 

were only two chambers available for a short time. 

1 cm lesion section 

Salt solution 
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2.2.3.3 Release of conidia from naturally infected vines in vineyards 

Vines within two vineyards (Fairhall and Brancott Estate Vineyards) which were known to 

have infected vines (Sections 3.2.1.1 and 3.2.1.2) were assessed during the year to observe 

the effects of moist conditions in Marlborough. In each of the vineyards, symptomatic tissues 

were identified on the basis of morphological characteristics and these tissues were marked 

on 24 vines for ongoing observation. The lesions on these tissues were observed with a hand 

lens for presence of characteristic pycnidia. After each period of rainfall or cloudy, humid 

weather, the same tissues were observed with a hand lens for conidial ooze (Figure 2.5). To 

identify the spores, the ooze was removed, placed on a microscope slide and observed at 

×100 with a microscope. When conidia characteristic of Botryosphaeriaceae species were 

observed, the slides were washed with a few drops of sterile water, using a sterile ‘hockey 

stick’ and the liquid spread onto PDA containing Triton-X 100 (1 mL/L) for growth. 

Colonies characteristic of Botryosphaeriaceae species were then sub-cultured on PDA and 

identities of sub-cultured isolates characteristic of Botryosphaeriaceae species were 

confirmed by molecular methods as described in Section 3.2.2.4. Those tissues that produced 

conidia characteristic of Botryosphaeriaceae species were observed continuously during 

spring to winter.  

At the end of the season, these tissues were removed, washed under tap water and incubated 

under high relative humidity for 3 days at room temperature. However, assessment of 

conidial numbers could not be conducted because the overgrowth by mycelium obscured any 

conidial ooze. The HortPlus database (http://hortplus.metwatch.co.nz/) provided the data of 

temperature and rainfall during the periods of observation.  

 

 
Figure 2.5 Infected Sauvignon blanc cane with oozing pycnidia from Brancott Vineyard. 

 

 

Oozing pycnidium 

http://hortplus.metwatch.co.nz/


 

34 
 

2.2.3.4 Identification of strains isolated from conidial ooze on shoots in vineyards 

2.2.3.4a DNA extraction  

The colonies characteristic of Botryosphaeriaceae species grown from the collected ooze 

were sub-cultured on PDA and 1 mm mycelium plugs cut from the edges of the pure colonies 

were used to inoculate potato dextrose broth (PDB; DifcoTM New Jersey, United States) in 

deep (25 mm) Petri dishes. After 3 days, superficial tufts of mycelium were removed from 

each PDB culture with a sterile micropipette tip and added to PowerPlant® Bead tubes (MO 

BIO laboratories, California, USA) which contained small beads. Then 450 µL of solution 

PD1, 50 µL of solution PD2 and 3 µL of RNase solution were added to each PowerPlant® 

Bead tube. After briefly vortexing to mix, the tubes were vortexed at maximum speed for 15 

min in the vortex adaptor tube holder (MO BIO laboratories, California, USA). The tubes 

were then centrifuged at 13,000 × g for 2 min and 550 µL of each supernatant was transferred 

to a clean 2 mL tube. To these tubes 175 µL of solution PD3 was added, they were vortexed 

for 5 s and the tubes were incubated at 4°C for 5 min. After centrifugation at 13,000 × g for 2 

min, 600 µL of each resulting supernatant was transferred to a clean 2 mL tube, to which 

were added 600 µL of solution PD4 and 600 µL of solution PD6 which caused the proteins to 

precipitate. The tubes were briefly vortexed for 5 s and the resulting supernatant from each 

tube was then filtered through a spin filter by centrifugation at 10,000 × g for 1 min. The flow 

through from each solution was discarded, leaving the DNA bound to the silica membrane in 

the filter. To each spin filter, 500 µL of solution C5 was added and centrifuged at 10,000 × g 

for 30 s. The wash solution that flowed through was discarded. This step was repeated three 

times until all of the lysate had been passed through the spin filter. To each spin filter tube, 

500 µL of solution PD5 was added and it was centrifuged at 10,000 × g for 30 s. The flow 

through was discarded and the spin filter was placed back into the same collection tube. To 

each spin filter tube, 500 µL of solution PD6 was added and the tubes were centrifuged at 

10,000 × g for 30 s. The flow through was discarded and each spin filter was returned to the 

same collection tube. To remove the residual PD6, the spin filter tubes were again centrifuged 

at 13,000 × g for 4 min. Each spin filter was placed in a clean 2 mL collection tube, 100 µL 

of solution PD7 was added to the centre of the white filter membrane and it was incubated for 

2 min at room temperature. These tubes were centrifuged at 10,000 × g for 30 s and the flow 

through was re-loaded again to the centre of the white filter membrane followed by 

centrifugation at 10,000 × g for 30 s. The spin filter was discarded and the concentration of 

DNA in the flow through liquid was determined using a Nanodrop 3.0.0 spectrophotometer 
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(Nanodrop Techologies Inc., Delaware, USA). DNA samples were then diluted to 20 ng/µL 

by diluting the original extract with UltraPureTM Distilled water (Invitrogen). The resulting 

DNA from this process was stored at -80°C for PCR amplification. 

2.2.3.4b PCR amplification with ITS primers 

The DNA extracted from each culture was amplified using primers ITS4 (5'-

TCCTCCGCTTATTGATATGC-3') and NL4 (5'-GGTCCGTGTTTCAAGACGG-3'). Each 

tube of PCR mixture contained 200 µM of each dNTP, 1 U Taq DNA polymerase 

(FastStart® Roche), 1 x PCR buffer sufficient for each reaction tube (with 1.5 mM MgCl2), 

0.4 µM of each primer and 1µL of DNA template. Each reaction volume was made up to 25 

µL with UltraPureTM distilled water. Negative control tubes which contained sterile water 

instead of the template DNA were included in every PCR. The amplification conditions were 

as follows: initial denaturation of 5 min at 95°C, followed by 30 cycles of 30 s at 94°C, 30 s 

at 50°C, and 1 min at 72°C, and a final extension period of 10 min at 72°C. After 

amplification, 1 μL of each PCR product was separated by electrophoresis on a 1% agarose 

gel for 50 min at 10 V/cm in 1 x TAE buffer with a 1 Kb plus DNA ladder (Invitrogen Life 

Technologies, Carlsbad, California, USA). The gel was stained with ethidium bromide 

(0.05µg/mL, AMRESCO) for 15 min, destained in water for 10 min, and then photographed 

using a UV transilluminator (VersodocTM, BioRad Laboratory). 

2.2.3.4c Restriction Analysis 

The amplified ribosomal DNA restriction analysis (ARDRA) technique was used for all the 

amplicons as described by Baskarathevan et al. (2012). The PCR products of 1200 bp were 

obtained following amplification using ITS1 and NL4 primers, were digested with restriction 

enzymes in an iterative and sequential process (Figure 2.6). To distinguish the N. 

parvum/N.ribis group from other Neofusicoccum species, each reaction contained 10 μL of 

PCR product that was digested with 2 U of HaeIII (BioLabs) enzyme for 12 h at 37°C and 

the resulting fragments were separated by electrophoresis on a 1.5 % agarose gel for 1 h at 10 

V/cm in 1 x TAE. The gels were visualized as described in Section 2.2.2.4b. Digestion with 

HaeIII distinguished N. parvum from all other Botryosphaeriaceae species, with five visible 

bands (258, 254, 203, 157 and 58-83 bp) (Group A) (Baskarathevan et al., 2012).  
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Figure 2.6 Diagram of the iterative restriction enzymes digestion to identify the 
Botryosphaeriaceae species isolates from oozing pycnidia. 

For the remaining Neofusicoccum isolates, a second 10 µL aliquot of the PCR product was 

digested with 2 U TaqI (BioLabs) restriction endonuclease at 65°C for 2 h followed by heat 

inactivation at 80°C for 20 min which produced four bands of 364, 292, 189 and 53-92 bp 

which indicated that isolates were either N. australe or N. luteum (Group C). The PCR 

products of these isolates were differentiated with 2 U of SacII (Fermentas) at 37°C for 12 h, 

which resulted in two banding patterns, with two bands of 1071 and 102 bp indicating N. 

luteum and three bands of 766, 304 and 102 bp indicating N. australe. After TaqI digestion, 

the isolates with four bands of 426-432, 291-292, 173-189 and 51-63 bp were placed in 

Group B (N. ribis, D. mutila or D. seriata). For Group B isolates the PCR product was further 

digested using the NciI (BioLabs) enzyme at 37°C for 14 h, which differentiated D. mutila 

(with two bands of 1079 and 93 bp), D. seriata (with three bands of 334, 747 and 93 bp) and 

N. ribis which was not cut by the enzyme (with one band of 1173 bp). 
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2.2.4 Statistical analysis 

Data was analysed by General Linear Model (Minitab 17th edition). For the analysis, data of 

the lesion length and conidia counts were transformed to log10 to improve the homogeneity in 

variance. The comparison responses were examined with Sidak Pairwise Comparisons at 

P≤0.05. Only the differences between means that met this criterion are considered as being 

significantly different in the following results section. 

2.3 Results 

2.3.1 Lesion development and production of conidia from different isolates of N. luteum 

and N. parvum on different stem tissues 

2.3.1.1 Pathogenicity and sporulation of multiple isolates on detached green shoots 

There was a block effect for lesion lengths on soft and semi-hard shoots (P<0.001 for both 

P<0.001, respectively) (Appendix B.1.1, and B.1.2, respectively), due to shoots inoculated on 

the day after cutting producing longer lesions than those held in water for 1 and 2 days. 

However, the lesion lengths produced by the isolates followed the same relative trends on all 

days (blocks). For all N. parvum isolates, mean lesion lengths for soft green shoots differed 

significantly between those inoculated on the day of cutting and after 1 and 2 days, being 2.6, 

1.5 and 1.3 cm, respectively and for semi-hard shoots being 3.5, 1.9 and 1.4 cm, respectively. 

For all N. luteum isolates, mean lesion lengths for semi-hard shoots also differed significantly 

for days 0, 1 and 2, being 4.9, 1.7 and 1.5 cm, respectively, and for soft green shoots being 

3.4, 1.5 and 1.4 cm, respectively. Numbers of conidia produced on lesion sections were also 

affected by block for soft but nor for semi-hard shoots (P<0.001 and P=0.370, respectively) 

(Appendix B.1.4 and B.1.6, respectively). For all N. parvum isolates, mean numbers of oozed 

conidia for soft green shoots differed significantly between days 0, 1 and 2, being 3.4 x 104, 

1.7 x 104 and 1.3 x 104 conidia/cm lesion, respectively, and for semi-hard shoots being 3.5 x 

104, 2.9 x 104, and 3.0 x 104 conidia/cm lesion, respectively. For all N. luteum isolates, mean 

numbers of oozed conidia also differed significantly for semi-hard shoots being 5.1 x 104, 5.4 

x 104 and 2.5 x 104 conidia/cm lesion, respectively, and for soft green shoots were 5.2 x 104, 

2.9 x 104 and 2.0 x 104 conidia/cm lesion, for days 0, 1 and 2, respectively. Control plants did 

not show any symptoms typical of Botryosphaeriaceae species 

On soft green shoots, lesion lengths were not affected by species (P=0.192; Appendix B.1.1) 

but were significantly affected by isolate (P<0.001; Appendix B.1.3) with longest mean 
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lesions being caused by N. luteum CC445 (3.9 cm) and N. parvum G69a1 (2.9 cm), and 

shortest lesions caused by N. luteum isolate G31d2 (1.1 cm), and N. parvum isolate A842 (1.2 

cm), both being approximately 30% of the mean length for isolate CC445 (Figure 2.7). There 

was a significant effect of isolate on numbers of oozed conidia/cm for soft tissues, however 

the effect of species was not significant (P<0.001 and P= 0.051, respectively; Appendix 

B.1.4). The highest mean numbers of conidia were oozed for isolates CC445 (5.8 x 104 

conidia/cm lesion) and G69a1 (5.6 x 104 conidia/cm lesion), and the lowest mean number was 

5.4 x 103 conidia/cm lesion for N. parvum isolate A842 (Figure 2.8).  

 
Figure 2.7 Mean lesion lengths after inoculation of detached Sauvignon blanc grapevine soft 
green shoots with isolates of Neofusicoccum luteum and N. parvum. Error bars represent 
standard errors of the means and bars with different letters are significantly different at 
P≤0.05. 

 

Figure 2.8 Mean numbers of oozed conidia from 1cm lesion lengths which developed on 
detached Sauvignon blanc grapevine soft green shoots after inoculation with different isolates 
of Neofusicoccum luteum and N. parvum. Error bars represent standard errors of the means, 
and bars with different letters are significantly different at P≤0.05. 
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On semi-hard shoots, lesion lengths were not affected by species (P=0.139; Appendix B.1.2 

but were significantly affected by isolate (P<0.001; Appendix B.1.5), with longest mean 

lesions caused by N. luteum CC445 (4.25 cm) and N. parvum G69a1 (3.8 cm), and shortest 

mean lesions caused by N. luteum G31d2 (1.5 cm), and N. parvum A842 (1.6 cm), being 

approximately 37% of the mean length for isolate CC445 (Figure 2.9). There was no 

significant effect of species (P= 0.285; Appendix B.1.6) on the number of oozed conidia/cm 

lesion on semi-hard tissue. However, there was a significant effect of isolate (P<0.001; 

Appendix B.1.6), with highest numbers of conidia being oozed by N. parvum G69a1 (1.0 x 

105 conidia/cm lesion) and N. luteum CC445 (8.6 x 104 conidia/cm lesion). The lowest 

numbers of conidia oozed were for N. parvum isolate A842 (6.4 x 103 conidia/cm lesion), 

both being approximately 5% of the numbers for isolate G69a1 (Figure 2.10).  

For N. parvum, the three most pathogenic isolates with highest sporulation were G69a1, 

MM562 and G652 and for N. luteum they were CC445, ICMP 16678 and MM558.  Isolates 

of moderate pathogenicity and sporulation were G51b1 (N. luteum) and A122 (N. parvum) 

Overall, the remaining four isolates of N. parvum and two isolates of N. luteum consistently 

produced short lesions and very low numbers of conidia. (Figures 2.7, 2.8, 2.9 and 2.10).  

 
Figure 2.9 Mean lesion lengths after inoculation of detached Sauvignon blanc grapevine 
semi-hard shoots with isolates of Neofusicoccum luteum and N. parvum. Error bars represent 
standard errors of the means and bars with different letters are significantly different at 
P≤0.05. 
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Figure 2.10 Mean numbers of oozed conidia from 1cm lesion lengths which developed on 
detached Sauvignon blanc grapevine semi-hard shoots after inoculation with different isolates 
of Neofusicoccum luteum and N. parvum. Error bars represent standard errors of the means, 
and bars with different letters are significantly different at P≤0.05. 

2.3.1.2 Pathogenicity and sporulation of selected isolates of N. luteum and N. parvum on 

attached soft green shoots  

On soft green shoots, there was a significant isolate effect on lesion lengths and numbers of 

oozed conidia (P<0.001 for both; Appendix B.2.1, A.2.2). The greatest mean lesion lengths 

were caused by the same isolates as for the detached tissue (Section 2.3.1.1) being N. luteum 

CC445, ICMP 16678 and MM558 and N. parvum G69a1, MM562 and G652, which were not 

significantly different with lesions of 2.5-2.8 cm (Figure 2.11a).  The greatest sporulation was 

from N. luteum CC445 (1.6 x 105 conidia/cm lesion) and ICMP 16678 (1.4 x 105 conidia/cm 

lesion), followed by N. parvum G69a1 (9.9 x 104 conidia/cm and MM562 (9.5 x 104 

conidia/cm lesion) (Figure 2.11b). Control plants did not show any symptoms typical of 

Botryosphaeriaceae species 

2.3.1.3 Pathogenicity of mixed isolate mycelium of N. luteum and N. parvum on soft 

green and semi-hard shoots of two different grapevine varieties  

On attached soft green shoots of Sauvignon blanc and Pinot noir, mean lesion lengths 

differed significantly between the species (P=0.032; Appendix B.2.3), with N. luteum  

causing significantly longer lesions (1.92 cm) compared with N. parvum (1.67 cm). However, 

mean lesion lengths were not significantly affected by grapevine varieties (P=0.859; 

Appendix B.2.3) nor a variety and species interaction (P=0.361; Appendix B.2.3). 
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Figure 2.11 (a) Mean lesion lengths and (b) mean numbers of conidia oozed from 1cm 
lesions on attached soft green stem shoots of Sauvignon blanc grapevine plants infected with 
isolates of Neofusicoccum luteum and N. parvum. Error bars present standard errors of the 
means, and bars with different letters are significantly different at P≤0.05. 

The mean lesion lengths on soft tissues of Sauvignon blanc were 1.98 and 1.64 cm for N. 

luteum and N. parvum, respectively and the mean lesion lengths on soft tissues of Pinot noir 

were 1.87 and 1.71 cm for N. luteum and N. parvum, respectively. The numbers of oozed 

conidia differed significantly between the species and grapevine varieties on soft tissues of 

Sauvignon blanc and Pinot noir (P<0.001, P=0.008, respectively; Appendix B.2.4). 

Inoculation with N. luteum resulted in significantly higher numbers of oozing conidia (2.5 x 
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104 conidia/cm lesion) compared with N. parvum (1.0 x 104 conidia/cm lesion), and 

inoculation of Sauvignon blanc resulting in significantly higher numbers of oozing conidia 

(2.3 x 104 conidia/cm lesion) compared with Pinot noir (1.9 x 104 conidia/cm lesion). 

However, there was no interaction between grapevine varieties and species (P=0.418; 

Appendix B.2.4). The mean numbers of oozed conidia on soft tissues of Sauvignon blanc for 

N. luteum and N. parvum were 2.8 x 104 and 1.8 x 104 conidia/cm lesion, respectively and the 

mean numbers of oozed conidia on soft tissues of Pinot noir for N. luteum and N. parvum 

were 2.2 x 104 and 1.6 x 104 conidia/cm lesion, respectively. 

On attached semi-hard tissues, lesion lengths on Sauvignon blanc and Pinot noir were not 

significantly affected by species (P=0.114; Appendix B.2.5), but were significantly affected 

by grapevine varieties (P=0.016; Appendix B.2.5). Lesions which developed after inoculation 

of Sauvignon blanc (2.6 cm) were significantly longer than those which developed on Pinot 

noir (2.4 cm). However, there was no interaction between the grapevine varieties and species 

(P=0.377; Appendix B.2.5). The number of oozed conidia was also significantly affected by 

species (P<0.001; Appendix B.2.6), with significantly higher numbers of oozing conidia for 

N. luteum (3.1 x 104 conidia/cm lesion) compared with N. parvum (2.1 x 104 conidia/cm 

lesion). However, mean numbers of oozed conidia were not affected by grapevine varieties 

(P=0.600; Appendix B.2.6), and there was no interaction between grapevine varieties and 

species (P=0.548; Appendix B.2.6). The mean numbers of oozed conidia on semi-hard 

tissues of Sauvignon blanc were 3.2 x 104 and 2.3 x 104 conidia/cm lesion for N. luteum and 

N. parvum, respectively and the mean number of oozed conidia on soft tissues of Pinot noir 

were 3.1 x 104 and 2.1 x 104 conidia/cm lesion for N. luteum and N. parvum, respectively. 

Control plants did not show any symptoms typical of Botryosphaeriaceae species. 

2.3.1.4 Pathogenicity of mixed isolate mycelium of N. luteum and N. parvum on woody 

trunks of two different grapevine varieties. 

The lesions were hard to see so the bark was removed from each trunk prior to measuring the 

lesion length (Figure 2.12). Lesion lengths differed significantly between the species 

(P<0.001; Appendix B.2.7) and grapevine varieties (P=0.046; Appendix B.2.7) but there was 

no variety and species interaction (P=0.963; Appendix B.2.7). Significantly longer lesions 

developed on Sauvignon blanc (1.7 cm) compared with Pinot noir (1.5 cm), and N. luteum 

caused significantly longer lesions (1.9 cm) compared with N. parvum (1.3 cm). The mean 

lesion lengths on Sauvignon blanc for N. luteum and N. parvum were 2.0 and 1.4 cm, 

respectively and on Pinot noir were 1.8 and 1.2 cm for N. luteum and N. parvum, 
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respectively. Characteristic Botryosphaeriaceae colonies were recovered when small pieces 

from infected trunk lesions were plated onto PDA. No lesions characteristics of 

Botryosphaeriaceae species were observed and no characteristic colonies were isolated from 

control plants. 

 
Figure 2.12 De-barked trunks of 2-year-old vines grown in pots showing lesions 6 weeks 
after inoculation with Neofusicoccum luteum and N. parvum onto wounded trunks of two 
grapevine cultivars (Sauvignon blanc (SB), Pinot noir (PN). 

2.3.1.5 Pathogenicity of N. luteum and N. parvum mycelium on Pinot noir and 

Sauvignon blanc in the vineyard 

On attached hard green shoots of Sauvignon blanc and Pinot noir, lesion lengths differed 

significantly between the species (P<0.001; Appendix B.2.8) and grapevine varieties 

(P<0.001; Appendix B.2.8). Significantly longer lesions developed after inoculation of 

Sauvignon blanc (3.1 cm) compared with Pinot noir (2.1 cm), with N. luteum (3.0 cm) 

causing significantly longer lesions compared with N. parvum (2.7 cm). However, there was 

no significant interaction between varieties and species (P=0.136; Appendix B.2.8). The 

mean lesion lengths on hard green shoots of Sauvignon blanc were 3.6 and 2.8 cm for N. 

luteum and N. parvum, respectively, on Pinot noir were 2.3 and 2.0 cm for N. luteum and N. 

parvum, respectively (Figure 2.13a). The number of oozed conidia was not significantly 

affected by the species (P=0.428; Appendix B.2.9), but were affected by the grapevine 

variety (P<0.001; Appendix B.2.9). Inoculation of Sauvignon blanc resulted in 6.9 x 104 
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conidia/cm lesion which was significantly greater than for Pinot noir (2.6 x 104 conidia/cm 

lesion). There was no interaction between grapevine varieties and species (P=0.863; 

Appendix B.2.9). The mean numbers of conidia oozed from Sauvignon blanc were 7.1 x 104 

and 6.7 x 104 conidia/cm lesion for N. luteum and N. parvum, respectively, which were 

significantly different from Pinot noir with 2.4 x 104 and 2.0 x 104 conidia/cm lesion for N. 

luteum and N. parvum, respectively. 

On attached canes, lesion lengths on Sauvignon blanc and Pinot noir were significantly 

affected by species (P<0.001; Appendix B.2.10) and grapevine varieties (P=0.021; Appendix 

B.2.10). Significantly longer lesions developed after inoculation of Sauvignon blanc (1.7 cm) 

compared with on Pinot noir (1.5 cm), with significantly longer lesions caused by N luteum 

(1.8 cm) compared with N. parvum (1.4 cm). However, there was no interaction between the 

grapevine varieties and species (P=0.253; Appendix B.2.10). The mean lesion lengths on 

Sauvignon blanc for N. luteum and N. parvum were 1.9 and 1.5 cm, respectively, and on 

Pinot noir were 1.7 and 1.4 cm, respectively. 

2.3.2 Effects of environmental conditions on sporulation 

2.3.2.1 Detached semi-hard green shoots 

There were significant effects of isolate, temperature and relative humidity on numbers of 

conidia oozed by the isolates of N. luteum and N. parvum (P<0.001 for all; Appendix B.3.1). 

Overall, the species effect was not significant (P=0.895; Appendix B.3.1). The isolate effect 

followed a similar trend to that shown in Figure 2.11b, with N. parvum G69a1 producing the 

greatest number of conidia (P<0.05) (Figure 2.13). The greatest numbers of conidia were 

oozed at 25°C (3.1 x 104 conidia/cm lesion) and least at 10°C (5.6 x 103 conidia/cm lesion). 

The greatest number of conidia were oozed at 100% RH (2.9 x 104 conidia/cm lesion) and the 

least at 80-81% RH (1.0 x 104 conidia/cm lesion). There were significant interactions between 

isolates and temperature (P=0.010; Appendix B.3.1), isolates and RH (P=0.002; Appendix 

B.3.1), and temperature and RH (P<0.001), as well as an interaction between isolates, RH 

and temperature (P=0.046; Appendix B.3.1), which seemed to be associated with the 

apparent preferences of some isolates for specific conditions (Figure 2.14). There were 

significant interactions between species and temperature (P=0.004; Appendix B.3.1), species 

and RH (P=0.003; Appendix B.3.1), and temperature and RH (P<0.001; Appendix B.3.1), 

but not between species, RH and temperature (P=0.179; Appendix B.3.1). Overall, higher 

conidial numbers were oozed at 25°C by both species (Table 2.1). However, N. parvum 
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Figure 2.14 Mean numbers of conidia oozed from detached 1 cm semi-hard Sauvignon blanc 
grapevine stem tissues infected with three isolates each of Neofusicoccum luteum and N. 
parvum, and incubated at four different temperatures and three different relative humidities 
(RH). 

2.3.2.2 Attached soft green shoots on potted vines 

There was a significant effect of isolates on numbers of conidia oozed but not of species 

(P<0.001, P=0.362, respectively; Appendix B.3.2), with N. luteum CC445 producing 

significantly (P<0.05) greater numbers of conidia compared with all other isolates, followed 

by N. parvum G69a1, which was significantly higher than the remaining isolates (Figure 

2.15). There were significant effects of temperature and relative humidity (both P<0.001; 

Appendix B.3.2) on conidial numbers oozed by the isolates of N. luteum and N. parvum 

(Appendix B.3.2), with highest numbers of conidia oozed at 25°C (3.6 x 104 conidia/cm 

lesion) and 100% RH (3.8 x 104 conidia/cm lesion) (Table 2.2). There was a significant 

interaction between temperatures and isolates (P=0.020; Appendix B.3.2) which appeared to 

be associated with N. parvum isolate G69a1 oozing higher numbers of conidia at 20°C than at 

25°C (Figure 2.16), in contrast to the rest of the isolates. There was also a significant 

interaction between temperature and relative humidity (P=0.031; Appendix B.3.2), which 

was associated with a greater increase in numbers of conidia at 100% than 93% RH being 

evident at 20°C than at 25°C. There was no significant interaction between isolates and RH 

(P=0.137; Appendix B.3.2). There was also a significant interaction between isolates, 

temperature and RH (P=0.039; Appendix B.3.2).  
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Figure 2.15 Mean numbers of conidia oozed/cm from attached Sauvignon blanc soft green 
shoots containing lesions caused by Neofusicoccum luteum and N. parvum. Error bars 
represent standard errors of the means, and bars with different letters are significantly 
different at P≤0.05. 
 

 
Figure 2.16 Mean numbers of conidia oozed from attached Sauvignon blanc soft green 
shoots of grapevine infected with isolates of Neofusicoccum luteum and N. parvum, when 
incubated at two different temperatures and two different relative humidities (RH). 
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Table 2.2 Mean numbers of conidia (x103) oozed from 1 cm sections of infected Sauvignon 
blanc soft green shoots of grapevine, which were incubated at two different temperatures (20 
and 25°C) and two relative humidities (RH) (93 and 100%) for 2 days. 

                 Mean numbers of oozed conidia (x 103) from 1cm infected 
shoots 

RH Mean 
Both 
Species 

Species                                       RH 20°C 25°C 
 

N. luteum 

N. luteum 

N. parvum 

N. parvum 

93% 24.4ba 32.8aba 28.1bb 

100% 35.8ab 42.2a 38.0a 

93% 23.3b 30.4ab  

100% 3 6.1ab 37.8a  

Temperature Mean  29.9b 35.8a  

Means followed by different letters within columns and for the atemperature and bRH means, are 
significantly different at P≤0.05. 

2.3.3 Release of conidia from naturally infected vines in vineyards  

During the 6 months when vineyards were observed, pycnidia were found oozing five times 

(Table 2.3). The effects of environmental variables [average dew point, leaf wetness, RH, 

mean air temperature and total rainfall/day] at the time and previous night are shown in Table 

2.3. Ooze from infected canes was collected during or just after rain fall and also on dry 

mornings when there had been rain the previous night. When the ooze was observed under 

the microscope, conidia characteristic of Neofusicoccum and Diplodia species were observed 

(Figure 2.17). At Brancott and Fairhall Vineyards, 66.7% and 50% of ooze samples, 

respectively, were positive for Botryosphaericeae species conidia. 

 
Figure 2.17 Conidia characteristic of Neofusicoccum (white arrow) and Diplodia species 
(black arrow). Scale bars represent 50 µm. 
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Table 2.3 Average environmental variables for the previous night and in the morning when 
conidia were seen to ooze from pycnidia on infected canes in the Brancott and Fairhall 
Vineyards, Blenheim on specific dates. 

Envir. 
variables 

Dates in 2014 and 2015 

28th Sep 10th Dec 31th Dec 6th Mar 27th April 

Prev. 
Night Morn. Prev. 

Night. Morn. Prev. 
Night. Morn. Prev. 

Night. Morn. Prev. 
Night. Morn. 

Max. dew 
point (°C) 9.1 4.4 14.2 14.2 10.7 18.5 14.6 16.2 14.4 14.1 

Total rain 
(mm/day) 7 24.8 10.2 40.2 18.1 

Max. leaf 
wetness 

(%) 
90.5 80.5 87.4 100.9 0.6 14.1 78.4 104.9 98.3 93.8 

Max RH 
(%) 93.2 86.7 82.1 90.9 79.1 81.2 77 91.5 94.7 90.8 

Max. air 
temp. (°C) 10.2 8.4 18.2 16.9 15.6 18.4 19.9 19.4 16.8 18.5 

 

2.3.3.1. Identification of strains isolated from conidial ooze on shoots in vineyards 

Of the 69 samples, the frequency of recovered species was D. mutila (39.1%), N. australe 

(30.4%), N. parvum (14.5%), N. luteum (5.8%), D. seriata (7.2%) and N. ribis (3.0%) (Table 

2.4). At Brancott Vineyard, the predominant species was D. mutila (47.5%), followed by N. 

australe (25.0%), N. parvum (12.5%), N. luteum (7.5%), D. seriata (5.0%) and N. ribis 

(2.5%). At Fairhall, the predominant species was N. australe (38%) followed by D. mutila 

(27.7%), N. parvum (17.2%), D. seriata (10.3%), N. luteum (3.4%) and N. ribis (3.4%). 
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Table 2.4 Incidence of botryosphaericeae spp. being isolated from conidial ooze recovered 
from infected canes in the Brancott (Br) and Fairhall (FH) vineyards, Blenheim on specific 
dates. 

 Detection of different Botryosphaeriaceae species  

 28thSept 2014 10thDec 2014 31stDec 2014 6thMarch 2015 27thApril 2015 
 Br FH Br FH Br FH Br FH Br FH 

N. luteum 1 - - - - 1 2 - - - 
N. parvum - 1 2 2 1 - 1 2 1 - 
N. australe 2 3 2 - - 3 3 3 3 2 
D. seriata - - 1 2 - - - - 1 1 
D. mutila 5 2 4 2 2 1 5 2 3 1 
N. ribis - - - - 1 1 - - - - 
Total 8 6 9 6 4 6 11 7 8 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18 Representative gels of the amplified 1200 bp fragment of the ribosomal DNA 
using ITS1/NL4 primers (A). Gels below show PCR products with ITS1/NL4 primers which 
were digested with restriction enzymes (HaeIII, Taq1, SacII and NciI). Characteristic patterns 
for a) N. parvum, b) all non-N. parvum, c) N. luteum/N. australe, d) all non-N. luteum/N. 
australe, e) N. luteum, f) N. australe, g) D. mutila, h) N. ribis, i) D. seriata, M= 1 kb+ ladder. 
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2.4 Discussion 

In this study detached grapevine shoots of Sauvignon blanc were infected by different 

isolates of N. luteum and N. parvum to determine the variation in lesion development and 

conidial production by different isolates of the two species, with the results also allowing 

selection of the best isolates for further experiments. The results indicated that N. luteum 

lesions were able to progress faster than those of N. parvum on both soft and semi-hard 

shoots. The same pattern was shown by Amponsah et al. (2011) who reported that the mean 

lesion lengths produced on green shoots by isolates of N. luteum (73.2 mm) were longer than 

for isolates of N. parvum (57.9 mm) using Pinot noir plants. Similar results were shown by 

Urbez-Torres and Gubler (2009); when they examined the pathogenicity of nine 

Botryosphaeriaceae species, on 1-year-old dormant grapevines of variety Crimson in 

California they ranked L. theobromae as being the most pathogenic, N. luteum as the second 

and N. parvum as the third most pathogenic species overall. In contrast, Billones-Baajiens et 

al. (2014) showed that N. parvum was the most pathogenic species among the three isolates 

each of N. parvum, N. luteum and N. australe, with lesion means of 79.9, 48.2 and 47.8 mm, 

respectively. Clearly, several of the Botryosphaeriaceae species should be considered major 

pathogens of grapevines. The differences in species pathogenicity reported in the different 

countries may have been associated with a number of experimental factors, including the 

differences between selected isolates, the conditions of the experiments and the grapevine 

varieties chosen, which have generally varied between countries. Further, use of mycelium 

inoculum which was used in all the above studies as well as the current study may also have 

improved efficiency of infection, as shown by Amponsah et al. (2014). With N. luteum 

inoculation of detached soft green shoots, they showed that mycelial inoculum caused faster 

pathogen progression than conidial inoculum and that greater concentrations of conidia in the 

inoculum led togreater pathogen progression than the lower concentrations tested.  Overall, 

this study has illustrated the importance of pathogenicity testing with a range of isolates, and 

with different scion varieties, and indicates that the outcome of lesion development is 

dependent on isolate capability as well as host factors. 

In this study, different isolates within a species had different pathogenicity levels. Isolates 

CC445 for N. luteum and G69a1 for N. parvum produced lesion lengths at least twice as long 

as for other isolates within the same species. Further, five of the eight N. parvum isolates and 

two of the six N. luteum isolates produced only moderate lesions on detached soft shoots and 

produced minimal lesions on detached semi-hard shoots. Van Niekerk et al. (2004) also 
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showed differences between isolates since D. seriata isolate STE-U 5139 produced lesions 

twice as long as for other isolates of the same species. They also reported that for N. australe 

one of the isolates produced lesion lengths twice as long as the other isolates in their study. 

Isolate differences were also reported by Billones-Baajiens et al. (2014) for N. parvum, with 

isolate P069 causing the longest overall lesions (mean of 43.3 mm) followed by P178 (23.1 

mm) while the other isolates were generally similar in their effects (8.6-17.5 mm) on six 

scion varieties of potted plants. In a study by Amponsah et al. (2011), with three isolates each 

of N. australe, N. luteum, N. parvum, D. mutila and D. seriata, longest mean lesions were 

produced by N. luteum and N. australe, but there was significant variation between isolates of 

N. luteum and D. mutila. Further, similar observations were reported by Urbez-Torres and 

Gubler (2009); on rooted cuttings of the table grape variety Crimson there was significant 

variation in lesion lengths between the eight isolates each of all nine species tested. The canes 

inoculated with N. luteum showed highest variability among isolates, ranging from 7.3 cm to 

31.3 cm of vascular discolouration. The variation in disease responses seen in this study and 

other studies is likely to be due to inherent variation between isolates of factors involved in 

pathogenicity such as production of enzymes and toxins involved in infection of host tissue 

and growth rates (Saldanha et al., 2007). When Srivastava et al. (2013) added naturally 

occurring plant phenolic compounds to growth media, their in vitro results showed that these 

compounds inhibited growth of mycelium for Botryosphaeria isolates. Further they decreased 

laccase production and pectinase activity, which are associated with pathogenicity. 

The production of conidia from 1 cm lesion sections caused by all isolates on detached stem 

tissues, when placed in high relative humidity for 1 day, showed that more conidia were 

produced from the more pathogenic isolates (longer lesions produced) of any species, except 

for one N. parvum isolate (G69a1) which produced more conidia than the most pathogenic 

isolate of N. luteum. The release of more conidia from more pathogenic isolates might be due 

to production of more pycnidia on lesions caused by these isolates which ultimately resulted 

in the release of more conidia. However, in the current study, the 1 cm pieces used for 

sporulation comprised most of the lesion tissue for the least pathogenic species (which had 

lesions of 1.1 and 1.6 cm, respectively, for the soft and semi-hard shoots). Since the generally 

observed pattern during the disease process in this study, was for extension of a lesion 

followed by later sporulation from the necrotic areas of the lesion, these small lesions may 

not have been mature enough for optimum sporulation to occur (Sammonds et al., 2016). 

These researchers also reported in their study that pycnidial production for B. dothidea was 
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close to the inoculation point (the oldest part of the lesion). However, the relationship 

between lesion pathogenicity and conidial production was not consistently reported by 

Amponsah (2011) who found that N. parvum isolates caused relatively long lesions on 

detached green shoots of Pinot noir, but no pycnidia or conidia. 

The attached soft green, semi-hard green shoots and trunks on potted plants of two grapevine 

varieties in this study were susceptible to infection by two species of Neofusicoccum (mixed 

isolates each of N. luteum and N. parvum), with the mean lesion lengths being significantly 

longer for N. luteum than for N. parvum. However, on attached semi-hard green shoots and 

on woody trunks mean lesion lengths differed significantly between varieties, showing 

Sauvignon blanc to be more susceptible than Pinot noir with both species tested. A similar 

result occurred when mature canes in a vineyard were inoculated with the same type of 

inoculum. Billones-Baajiens et al. (2014) also reported differences between varieties when 1-

year-old trunks of six grapevine scion varieties were inoculated with three isolates each of N. 

luteum, N. parvum and N. australe. Lesion lengths were significantly different among 

varieties, with Merlot and Pinot noir having significantly longer lesions of 2.1 and 2.0 cm, 

respectively, than the 1.6 cm for Sauvignon blanc. However, when Amponsah et al. (2011) 

investigated varietal susceptibility of Cabernet Sauvignon, Chardonnay, Sauvignon blanc, 

Pinot noir and Riesling they found no varietal differences on excised green shoots inoculated 

with one isolate each of N. luteum, N. australe, N. parvum and D. mutila. The 2003-2004 

survey in California, conducted by Gubler et al. (2005) found that Botryosphaeriaceae 

species were isolated most often from Sauvignon blanc (63.6%), followed by Chardonnay 

(54.5%) and few Botryosphaeriaceae infections were found with Thompson seedless 

(12.2%).  

In the current study, inoculation with N. luteum and N. parvum onto the woody trunks of 15 

month old potted grapevines caused no external symptoms except at the inoculated wounded 

point. However, when the bark was removed from these woody trunks, brown necrosis was 

observed. Potted plants in this study did not develop bark symptoms during the 1 month 

period of incubation, however external symptoms were visible in field vines when lesions of 

unknown age were much larger than in the potted vines used here. Amponsah et al. (2009a) 

also showed that inoculation of 2-year-old trunks of grapevines with N. australe, N. luteum 

and D. mutilia caused no external symptoms except at the inoculation point; however, 

inoculation with only N. parvum caused external wood necrosis 7 months after inoculation. In 

the study by Billones-Baajiens et al. (2014), it was also found necessary to peel the bark from 
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the canes so that lesions caused by N. luteum, N. parvum and N. australe could be measured 

18 days after inoculation. Amponsah et al. (2014) also reported that dieback due to 

inoculation by N. luteum did not develop in potted plants until after plants were water 

stressed for 2 months (15% field capacity). In another experiment, they also showed that 

lesions developed only after 8 months when plants had entered winter dormancy. These 

results suggest that N. luteum and N. parvum may have a tendency to penetrate and colonize 

inner wood layers, and that external symptoms occur only when the lesions are well-

developed and the plants not able to grow vigorously.  

These pathogenicity experiments showed that N. luteum consistently produced longer mean 

lesions than N. parvum when these species were used to infect wounded attached and 

detached tissues of grapevines and at different phenological stages (soft green shoots, semi-

hard green shoots and woody trunks).  The pathogenicity assay on detached tissues provided 

a useful method to determine the pathogenicity of different isolates, despite the differences in 

lesion lengths between detached and attached tissues, as also reported by previous researchers 

(Savocchia et al., 2007; Amponsah et al., 2008; Urbez-Torres and Gubler, 2009). Van 

Niekerk et al. (2004) also reported that Botryosphaeriaceae species could infect different 

stem tissues of wounded grapevines (green shoots, mature canes and mature wood) but they 

did not compare the pathogenicity levels on these tissues. However, future experiments 

should inoculate the detached cuttings within 1 day of removal from the plants as this study 

has shown that inoculating cuttings held over several days led to differences in pathogen 

development. 

This study investigated some environmental factors that may affect release of 

Botryosphaeriaceae conidia. Isolates of N. luteum and N. parvum released relatively high 

numbers of conidia (>104 /cm stem tissue) at all temperatures and relative humidities tested in 

this study. Maximum conidial ooze occurred at 25°C except for one isolate of N. parvum 

(G69a1) which produced more conidia at 20°C. Fewest conidia were released at 10°C for all 

isolates of N. parvum and N. luteum, and similar numbers of conidia were oozed at 15 and 

20°C for all isolates except G69a1. Copes and Hendrix (2004) determined the release of 

conidia of D. seriata, B. dothidea and L. theobromea at temperatures of 6, 12, 18, 24 and 

30°C with constant moisture and found that maximum numbers of conidia oozed at 24°C for 

B. dothidea, 18-24°C for D. seriata and at 12, 18 and 24°C for L. theobromea. However, the 

set-up of their experiment was very different to that described here. The autoclaved water 

shoots of apple and peach were cut into 1 cm segments, inoculated and placed into glass 
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tubes plugged with cotton wool. Assessment of conidia oozed by these ‘stem cultures’ 

involved the removal of pycnidia which were crushed in water and then the conidial solution 

used for counting. The current experiment showed that moisture was essential for release of 

conidia and that more conidia were released in warm conditions than cool conditions. Since 

northerly (warm) winds commonly occur during rainfall in Marlborough this indicates the 

greater potential for conidial release in Marlborough than in other regions such as Canterbury 

where southerly winds often accompany rainfall.   

Although no other studies have been done on release of Botryosphaeriaceae conidia in 

relation to effect of RH and temperature, there are some studies on trapping of conidia in the 

field, which concur with results of the current study. Knutazman et al. (2009) reported 

conidial dispersal of Diplodia species at field temperatures from 9°C upwards in France and 

Urbez-Torres et al. (2010b) reported the release of conidia in California at temperatures of 3-

7°C during the winter months. However, Amponsah et al. (2009b) reported that greatest 

numbers of Botryosphaeriaceae species conidia were trapped in summer in rain water run-off, 

which they concluded was due in part to the greater amount of grapevine canopy which could 

produce more conidia from the infected wood. Xu et al. (1998) investigated the effects of 

several factors on the incidence of Nectria canker on potted apple trees of varieties Bramley’s 

and McIntosh grown from seedlings. They found that temperature was not a limiting factor 

for inducing conidial release as many conidia were trapped in weeks when the weekly median 

(of average daily temperatures) was as low as 10°C. Further, temperature had little effect on 

disease incidence but moisture did. Incidence decreased with increasing duration of wet 

periods, being 60, 51, 48 and 45% for 6, 12, 24 and 48 h of wet periods following 

inoculation, which apparently conflicted with other studies. However, these conflicting 

results are consistent with the concept that all mature conidia are released as soon as 

conditions are sufficiently moist, with little further release until new conidia have matured. 

This was clearly demonstrated by Ramos et al. (1975) who showed that ascospores of Eutypa 

armeniacae were less in spring after a large release in January. 

In this study, high RH was necessary for oozing of conidia. Maximum numbers of conidia 

oozed at 100%, moderate numbers at 93-96% and low numbers at 83% RH. Also, Amponsah 

et al. (2008) showed that when stem lesions containing pycnidia were maintained at ambient 

RH, they did not ooze conidia, but when placed in high relative humidity for 36 h at 23-24°C 

they oozed conidia. Similar results were reported by Gough and Lee (1985) who showed that 

numbers of conidia oozing from pycnidia of Septoria tritici were also affected by RH. On 
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leaf lesions, pycnidia discharged 4.0 x 103 conidia at 100%, while much lower numbers were 

oozed at 86% RH (1.7 x 102 conidia). Since conidia are not usually considered to be survival 

spores, factors that promote release are likely to be similar to factors optimum for 

germination. Amponsah et al. (2010) reported that maximum germination of N. luteum, N. 

australe and D. mutila conidia occurred at 100% RH with no germination at 84% RH. Aruaz 

and Sutton (1991), who studied the germination of D. seriata conidia in different RH levels, 

reported different moisture effects on conidial germination for D. seriata isolates. Although 

conidia of one isolate did not germinate at all, most conidia from two of the three isolates 

were able to germinate in free water, while conidia of only one isolate were able to germinate 

under high RH, with declining rates as RH reduced from 100 to 92% and no germination at 

88.5% RH. Arauz and Sutton (1990) also observed that 4 h continuous wetness at 24°C was 

required for conidial germination of D. seriata conidia on apples. However, as little as 1 h of 

subsequent dryness was sufficient to prevent infection of apple leaves. They also reported 

that 4.5 to 13 h wetness was required at the optimum temperature of 26.6°C for leaf infection 

on Golden Delicious seedlings and 9 h of wetting at 20-24°C for infection of Golden 

Delicious apple fruit. Moisture availability is therefore important for conidial release, 

germination and infection by Botryosphaeriaceae species.  

In the current study, pycnidia on infected grapevines in the vineyards were also observed to 

ooze cirrhi of conidia at maximum air temperatures of 8.2-19.9°C and RH 77-94.7%, 

respectively. The conidial ooze collected when the lowest temperature of 8.2°C might 

indicate that conidia are released from pycnidia at lower temperature than was tested in the in 

vitro study, or alternatively, conidial release might have occurred the previous night when the 

air temperature was 10.2°C. Further, the grapevine tissue could have retained some heat and 

so affected the rate of exudation. No other researchers have reported conidial ooze in the 

vineyards under natural environmental conditions, probably because the ooze, which is 

exuded in moist conditions, is often removed by rain splash. Studies on effects of 

environmental conditions on release of conidia have reported that high relative humidity 

could initiate sporulation by Botryosphaeriaceae spp. (Michailides and Morgan, 1993; Aruaz 

and Sutton, 1989). Van Niekerk et al. (2010) studied the spore dispersal pattern of 

Botryosphaeriaceae species in South Africa and found that air-borne spores of Diplodia and 

Dothiorella spp. were present after periods of high relative humidity at or above 70%. Pusey 

(1989) conducted an experiment in peach orchards and found that air-borne ascospores of 

Botryosphaeriaceae species were able to be trapped after periods of dew or mist but not 
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measureable rainfall. Studies by Kuntzamann et al. (2009) in France reported that weather 

conditions such as fog and snow could also induce the release of Botryosphaeriaceae spp. 

spores. Spore-trapping studies in France and New Zealand reported an abundance of 

Botryosphaeriaceae species spores throughout the year, maximum release being associated 

with rainfall during summer months (Amponsah et al., 2009b; Kuntzamann et al., 2009). 

Further, Valencia et al. (2015) demonstrated in Chile, that large numbers of air-borne conidia 

were trapped mainly after or during precipitation events of at least 0.2 mm during autumn and 

winter. However, in the current study, 7 mm of rain was the minimum which led to visible 

oozing of cirrhi in the field, but it is possible that less rainfall had caused release of fewer 

conidia in minute cirrhi which were not obvious to the naked eye. 

Conclusion 

This study showed that isolates of the two most commonly found species of the 

Botryosphaeriaceae on grapevine in New Zealand, N. parvum and N. luteum, were able to 

infect different kinds of grapevine excised and attached tissue (green and semi-hard shoots, 

canes and trunks), although there were differences in lesion lengths between isolates. This 

study therefore provided evidence for the selection of isolates for further experimentation in 

this research programme, and using mainly N. luteum which was more pathogenic than N. 

parvum. The in vitro study of effects of temperature and relative humidity on release of 

conidia has also indicated the best conditions for release of conidia (100% RH and 25°C) to 

be used in these studies. Since Sauvignon blanc was more susceptible than Pinot noir, this 

variety was selected for most of the planned studies. Both N. luteum and N. parvum produced 

lesions on stems of potted grapevines within practical timeframes.  Although lesions were 

produced more rapidly on detached shoots, the potted vines were considered to better reflect 

natural conditions so it was decided that they would be used in future experiments. Conidial 

ooze was found to be produced in natural conditions, and further investigations were planned 

to examine conidial dispersal in vineyards. Chapter 3 of this thesis is therefore focused on 

rain splash dispersal and the effects of wind direction on the dispersal distances of 

Botryosphaeriaceae conidia in the vineyards. 

 
 
 



 

58 
 

Chapter 3 
Conidium dispersal in Marlborough vineyards 

3.1 Introduction 
Conidia and ascospores of Botryosphaeriaceae spp. are released during and following rainfall 

and then splash-borne and air-borne (Urbes-Torres and Gubler, 2008; Urbes-Torres et al., 

2010a; Eskalen et al., 2013). In New Zealand, many observations made in vineyards have not 

found perithecia but have shown that dispersal of these pathogens is mainly by conidia which 

are exuded from pycnidia in sticky tendrils called ‘cirrhi’, during moist conditions. These 

tendrils are able to mix with rain water for subsequent splash dispersal, with potential for 

aerial dispersal of droplets containing conidia. In a Canterbury vineyard, conidia from species 

of the Botryosphaeriaceae were trapped in rain water run-off during an entire year, but were 

not trapped in late summer on Vaseline™-coated slides, indicating that they were not air-

borne in dry conditions (Amponsah et al., 2009b).  

The role of rainwater in the dispersal of conidia of the Botryosphaeriaceae has been reported 

for other crops by Pusey (1989) and Sutton (1981) who showed that conidia of 

Botryosphaeria dothidea and D. seriata were abundant in the air of peach and apple orchards, 

respectively, during rainy periods, and that the amount and duration of rainfall were the most 

important factors in dispersal of ascospores and conidia. In California, spores of 

Botryosphaeriaceae species were trapped with a Burkard spore trap during rainfall and during 

overhead sprinkler irrigation (Urbez-Torres et al., 2010a). In that study conidia were trapped 

from mid fall to early spring and maximum numbers were trapped in winter. Kuntzmann et 

al. (2009) studied dispersal of Botryosphaeriaceae spp. spores (D. mutila, D. seriata, B. 

quercuum and N. parvum) in France and reported that the spores were trapped from spring to 

winter during periods of rain. In their study 90% of the spores of D. mutila and D. seriata 

were trapped during the grapevines’ vegetative growth. In another study in South Africa, 

spores of Botryosphaeriaceae spp. were trapped with a Quest volumetric spore trap (Interlock 

Systems, Pretoria, South Africa) during or after rain, being trapped after as little as 0.25 mm 

rainfall, with more spores being trapped in 2005 when 339.2 mm rain fell in 48 rain days than 

in 2004 when 207.3 mm of rain fell in 44 rain days (van Niekerk et al., 2010a).  

This study was carried out to investigate the dynamics and efficacy of conidium dispersal and 

colonisation of grapevines by Botryosphaericeae spp. as pathogens in Marlborough 

vineyards. 
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3.2 Materials and Methods 

3.2.1 Spore trap set-up in commercial vineyards (2013-2015) 

3.2.1.1 Rain water spore traps set-up 

In 2013, rainwater run-off traps were set up to catch Botryosphaeriaceae spp. conidia in the 

Waipara, Brancott, Renwick and Fairhall Vineyards of Pernod-Ricard Ltd to identify 

vineyards with natural infection. These were chosen as potential sites for experimentation so 

that the later planned release and recapture experiments with Botryosphaeriaceae pathogens 

would not deliberately introduce the pathogen to trunk-disease free vineyards. In each 

vineyard, two blocks were selected (18-22 years old symptomatic vines) (one Sauvignon 

blanc and one Pinot noir) and in each block four vines at least 20 m apart were randomly 

selected. Each rainwater spore trap consisted of a 210 × 297 mm transparent acetate sheet 

which funnelled the trapped water into a container below. The top straight edge of the acetate 

sheet was positioned by the head of the vine, the centre being stapled onto the trunk, and the 

two opposing corners stapled onto the wrapped-down canes. The lower corners of the sheet 

were folded inwards and stapled together to create a funnel. Each funnel base was placed into 

a 200 mL container tied onto the vine 20-50 cm above the ground (Figure 3.1a). After any 

full day of rain (6 hof rain), the collected water was removed for assessment as described by 

Amponsah et al. (2009b).  

The trapped water was held at 4ºC for about 1 h to allow spores to settle, the supernatant (up 

to 60 mL) was discarded and the remaining ~40 mL was centrifuged at 10,000 × g for 15 min 

at 10°C. The supernatant was discarded and the pellet divided into two approximately equal 

portions. One portion was stored frozen at -20°C to be used in molecular identification with 

single-stranded conformation polymorphism (SSCP). The remaining portion of the pellet was 

added to 5 mL sterile water, vortexed briefly to mix and the suspension observed with a light 

microscope (Leitz LABORUX S, Germany) at ×100 magnification for presence of 

characteristic Botryosphaeriaceae spp. conidia. Aliquots (100 µL) of the suspension and the 

10-1, 10-2, 10-3 and 10-4 dilutions were spread onto PDA amended with streptomycin, 

penicillin and chloramphenicol (0.05 g/L of each) (Sigma-AldrichTM Co. St. Lous, MO USA) 

to suppress the bacterial growth, as well as Triton-X (1 mL/L) (Labchem, Ajax Finechem Pty 

Ltd) to restrict colony growth. Plates were incubated at 25°C in a 12:12 h light:dark cycle, 

with illumination by fluorescent and near ultra violet light (366 nm). After 3 days the plates 

were observed for typical colonies of Botryosphaeriaceae species. 
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In 2015, the same process was repeated in Brancott, Fairhall and Renwick Vineyards. The 

characteristic spores of Diplodia and Neofusicoccum spp. were counted using a 

haemocytometer as described in Chapter 2 Section 2.2.2.1 and identified by molecular 

methods as described below. 

Figure 3.1 (a) Rain water spore trap, (b) Burkard spore trap placed in the vineyards to trap 
air-borne spores of Botryosphaericeae species.  

3.2.1.2 Botryosphaeriaceae spp. conidia trapping 2014 (Burkard spore sampler)  

Naturally released spores of Botryosphaeriaceae spp. were collected with a Burkard spore 

trap (Burkard Scientific Ltd, Uxbridge, Middlesex, UK). The Burkard spore trap (Figure 

3.1b) has a built in vacuum pump which draws in air that may have air-borne fungal spores 

and pollen. The air containing the spores is passed over a sticky transparent plastic tape 

(Melinex tape) which is supported on a drum. The spores are trapped onto the tape that 

unwinds and is wound onto a second clockwork-driven drum, which is removed for 

assessment of the tape. The Burkard trap was run during and after rainfall events in the 3 

months of autumn, 2014, at Brancott, Fairhall and Renwick Vineyards, two randomly 

selected blocks in each (one Sauvignon blanc and one Pinot noir), being rotated amongst the 

vineyards. The Melinex tape preparation and mounting was done according to instructions 

provided with the Burkard spore trap sampler. The Melinex tapes were cut into segments (48 

mm), each representing one 24 h period, which were put onto glass slides that were examined 

with a microscope (Leitz LABORUX S) at 400× magnification. All conidia characteristic of 

Botryosphaeriaceae spp. were counted on each segment. The segments of Melinex tape 

positive for Botryosphaeriaceae spp. conidia were stored at -20°C for DNA extraction and 

a b 
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PCR analysis (Sections 3.2.2.1, 3.2.2.2 and 3.2.2.3). The numbers of Botryosphaeriaceae spp. 

conidia trapped at each weekly interval were compared with the temperature, relative 

humidity, dew point and rainfall data obtained from the weather station 

(http://hortplus.metwatch.co.nz/) nearest to the vineyard, to enable conidial release to be 

correlated with weather events. 

3.2.2 Molecular confirmation of Botryosphaeriaceae spp. identity for conidia collected 

by rain water and Burkard spore traps 

3.2.2.1 Extraction of DNA from rain water samples  

DNA was extracted from all the rain water pellets using a PowerSoilTM isolation kit (MO 

BIO laboratories, California, USA) according to the manufacturer’s instructions. Each pellet 

held at -20°C was thawed at room temperature for an hour, centrifuged at 30,000 × g for 10 

min and the supernatant discarded. Aliquots of approximately 250 µL from all samples were 

added to PowerBeadTM tubes which contained small beads and 2 mL of an aqueous solution 

of acetate and salts (to protect nucleic acid from degradation). These tubes were gently mixed 

by vortexing and 60 µL of solution C1 was added to each. After briefly vortexing to mix, the 

tubes were vortexed at maximum speed for 10 min in the vortex adaptor tube holder (MO 

BIO). The tubes were centrifuged at 10,000 × g for 30 s and then 500 µL of each supernatant 

was transferred to a clean 2 mL tube. To these tubes 250 µL of solution C2 was added, they 

were vortexed for 5 s and the tubes were incubated at 4°C for 5 min. After centrifugation at 

10,000 × g for 1 min, the resulting supernatants (about 600 µL) were transferred to clean 2 

mL tubes. To precipitate non DNA material, 200 µL of C3 solution was added to each tube. 

After briefly vortexing, the tubes were incubated at 4°C for 5 min and centrifuged at 10,000 

× g for 1 min. The supernatants from each tube (approximately 750 µL) were then transferred 

to clean 2 mL tubes. Then 1200 µL of solution C4 was added to each tube and they were 

vortexed for 5 s. The resulting solution from each tube was then filtered through a spin filter 

by centrifugation at 10,000 × g for 1 min. The flow through from each solution was 

discarded, leaving the DNA bound to the silica membrane in the filter. To each spin filter 500 

µL of solution C5 was added and centrifuged at 10,000 × g for 30 s. The wash solution that 

flowed through was discarded and the spin filter was then again centrifuged at room 

temperature for 1 min. The wash solution that flowed through from each spin filter was again 

discarded and these spin filter were then transferred to clean 2 mL tubes. To these tubes, 100 

µL of solution C6 was added and the tubes were centrifuged at 10,000 × g for 30 s to release 

the DNA into solution.  

http://hortplus.metwatch.co.nz/
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A Nanodrop 3.0.0 spectrophotometer (Nanodrop Techologies Inc., Delaware, USA) was used 

to determine the concentration of extracted DNA by measuring absorbance at 280 nm. DNA 

samples were diluted to 20 ng/µL with UltraPureTM  distilled water (Invitrogen). To check 

DNA quality, 5 µL of this DNA was mixed with 3 µL of loading dye (Appendix A.2.1) and 

separated by electrophoresis on a 1% agarose gel in 1× TAE (Appendix A.2.2) at 10 V/cm 

for 50 min. The gel was processed as described  in Section 3.2.2.3. The extracted DNA was 

stored at -80°C until used. 

3.2.2.2 Extraction of DNA from melinex tape (Burkard spore trap) 

DNA was extracted from the stored melinex tape for all Burkard spore samples obtained in 

Section 3.2.1.2 following the method of Kaczmarek et al. (2009). Each melinex tape sample 

was placed in a sterile 2 mL tube with glass beads (0.15 g; particle size 425–600 µm; Sigma, 

UK), 1000 µL CTAB buffer (Appendix A.2.3) and 0.2 volumes (200 µL) of 5% sarcosyl.  

The tubes were placed in a FRITSCH Pulverisette 23 (John Morris Scientific Ltd.) cell 

disrupter twice (1 min maximum each time) and were then incubated for 30 min at 70°C. The 

tubes were centrifuged for 5 min at 11,400 × g and the supernatant (approximately 700 µL) 

from each tube was transferred to a clean 1.6 mL tube. To each tube 800 µL 

chloroform:isoamyl alcohol (24:1) was added, mixed by inversion 50 times, and centrifuged 

for 10 min at 11,400 × g. The top aqueous layers (approximately 450 µL) from these tubes 

were then transferred to clean 1.6 mL tubes, 500 uL of 100% isopropanol was added to each 

and they were mixed by inversion 20 times. The tubes were then placed on ice for 10 min and 

centrifuged for 5 min at 11,400 × g to obtain a DNA pellet. The supernatants were discarded 

and the DNA pellets were washed with 200 µL ice-cold 70% (v/v) ethanol. After 

centrifugation for 1 min at 11,400 × g the tubes were inverted on paper towels to dry. Each 

DNA pellet was re-hydrated by adding 50 μL of 1 mM TE buffer (tris-ethylene diamine tetra 

acetic acid, pH 7.5; Sigma, UK) and the tubes were incubated at room temperature overnight. 

The concentrations of DNA were determined as described in Section 3.2.2.1 and the extracted 

DNA stored at -80°C until used. 

3.2.2.3 PCR amplification of DNA from rain water and Burkard spore trap  

The extracted DNA from each rainwater and Burkard spore trap sample was amplified in a 

PCR mixture containing 200 µM of each dNTP, 1 U Taq DNA polymerase (FastStart® 

Roche), 1 × PCR buffer (with 1.5 mM MgCl2), 0.4 µM of each primer and 1 µL of DNA 

template. Each reaction volume was made up to 25 µL with UltraPureTM distilled water. The 
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negative control consisted of the same reagents but used UltraPureTM distilled water instead 

of template DNA. The positive control contained DNA template from a Botryosphaeriaceae 

spp. sample identified  by Baskarathevan (2011) as N. parvum (G62b1). The primers used 

were the universal primers ITS1-F (5'-CTGGTCATTTAGAGGAAGTAA-3') and ITS4 (5'-

TCCTCCGCTTATTGATATGC-3') described by White et al. (1991). The amplification 

conditions were: initial denaturation of 5 min at 95°C, followed by 30 cycles of 30 s at 94°C, 

30 s at 58°C and 1 min at 72°C, and a final extension period of 10 min at 72°C. The resulting 

PCR product was diluted 1:200 in UltraPureTM distilled water and 1 µL was used as template 

for secondary amplification with multi specific primers BOT100F (5'-

AAACTCCAGTCAGTRAAC-3') and BOT472R (5'-TCCGAGGTCAMCCTTGAG-3') using 

the same reagents and thermal cycle as listed above. Then 5 µL of the resulting PCR product 

was separated by electrophoresis on a 1% agarose gel for 50 min at 10 V/cm in 1 × TAE 

buffer and stained with ethidium bromide (0.05µg/mL, AMRESCO) for 10 min, destained in 

water for 5 min, and then photographed using a UV transilluminator (VersodocTM, BioRad 

Laboratory). The rest of the PCR product was stored at -20°C for single stranded 

conformational polymorphism (SSCP). 

3.2.2.4 Identification of Botryosphaeriaceae species from rain water and Burkard spore 

traps by single stranded conformational polymorphism (SSCP) 

SSCP was used to distinguish the species in the amplimers of all the positive bands (Ridgway 

et al., 2011). The SSCP also included amplicons of N. parvum (P179), N. luteum (L125), D. 

seriata (N230), D. mutila (M232) and N. australe (B319) produced from pure cultures that 

were present in the Lincoln University Culture Collection whose identity had been confirmed 

by Baskarathevan et al. (2012). For each PCR product 0.4 µL was mixed with 20 µL of SSCP 

loading dye (95% formamide, 0.05% bromophenol blue, 0.05% xylene cyanol, 10 mM NaOH 

and 0.8 mM EDTA; pH 8). These samples were mixed with brief vortexing and were then 

heat denatured at 99°C for 7 min in a thermal cycler to separate the double stranded DNA 

into single strands. These tubes were immediately put into wet ice and when cool were loaded 

into wells of a MDETM acrylamide gel (Appendix A.2.4). The gel was run at 22°C, 250V for 

17 h in a BioRad Protean II xi vertical electrophoresis unit using 1 x TBE buffer (Appendix 

A.2.5). The gel was immersed in fixer (900 mL distilled H2O, 100 mL 99% ethanol and 5 mL 

acetic acid) for 3 min and then silver stained (250 mL of fixer and 0.5 g of AgNO3) for 5 min. 

The gel was briefly rinsed with distilled H2O (dH2O) for 2 min and then put into a developer 

solution (500 mL of dH2O, 15 g NaOH and 0.5 mL of formaldehyde) for 10-40 min until the 
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bands became visible. This gel was again fixed for 5 min as decribed before and rinsedwith 

dH2O. The gel was then put onto a filter paper and wrapped with cling film before being 

dried on a gel dryer (SGD210D Speed GelTM System) at 68°C for 2-3 h. The dried gel was 

scanned with a photocopier with maximum dpi and colour and the file saved as TIFF/PDF. 

The band positions were compared with bands of the standard isolates, N. parvum (P179), N. 

luteum (L125) D. seriata (N230), D. mutila (M232) and N. austale (B319).  

3.2.3 Dispersal distances of Neofusicoccum parvum conidia during rainfall  

3.2.3.1 Production of marker isolate conidia on green shoots 

Apparently healthy semi-hard green shoots obtained from Sauvignon blanc vines growing in 

the Fairhall Vineyard were inoculated with a marker strain of N. parvum (B2141) described 

by Baskarathevan et al. (2013), using the methods described in Section 2.2.2.1. After 14 

days, the lesion sections of the shoots (10-15 cm) were excised, surface sterilised by soaking 

for 30 s in 70% ethanol, washed with sterile water and dried overnight in a laminar flow unit. 

These shoots were then stored in a sterile sealed container at 4°C until used for the dispersal 

experiment. Two days prior to forecasted rainfall these shoots were placed in an enclosed 

sterile container with a moist sterile paper towel to stimulate oozing of conidia.  

3.2.3.2 Rainwater dispersal experiments 

In 2014, a bundle of ten shoot sections with lesions that oozed conidia of N. parvum isolate 

B2142 was fixed to the top of a post within the Brancott Vineyard at the beginning of the first 

forecast rainfall period after summer trimming and again after winter pruning. Containers (2 

L) which collected rainwater (spore traps) were set up at distances of 0.5, 1, 5, 10 and 20 m in 

the direction of the prevailing wind, which was forecast (http://hortplus.metwatch.co.nz/) as 

easterly (9.6 km/h wind, autumn) (4.6 km/h, spring), and at 0.5, 1 and 5 m in three other 

equidistant directions around the post (Figure 3.2). If other grapvines posts were in the way, 

traps were placed to one side of the post. There were three 20 m apart experimental 

replications set up at the same times. The same process was repeated in autumn 2015 in the 

Fairhall Vineyard with easterly forcasted wind with an average speed of 4.2 km/h. 
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Figure 3.2 Ice cream containers (2L) for rain water collection placed on the ground around 
the Neofusiccocum parvum isolate B2141 (marker isolate) inoculum source. 

In 2014, rain water samples were collected after 2 days, and the three replications for each 

distance and direction were combined prior to DNA extraction. In 2015, rain water samples 

were collected after 2 days and replicate samples were treated separately. Each rainwater 

sample was passed through a sieve with a 50 µm pore size and the resultant solution 

centrifuged at 10,000 × g for 15 min. The supernatant was discarded and the pellet divided 

into two portions, half for spore identification by light microscope (×100 and ×400) and the 

other half was stored frozen at -80°C for molecular identification. 

3.2.4 Molecular confirmation of N. parvum (B2141) conidia in collected rain water  

3.2.4.1 Genomic DNA extraction (positive control) 

To provide DNA of the marker isolate (B2141), for control purposes, a mycelium plug of a 

single spore culture, which had been stored at -80°C was thawed and plated onto PDA, and 

incubated at 25°C in a 12:12 h light and dark cycle for 3 days. Mycelium plugs (3 mm) were 

cut from the edge of the culture and sub-cultured onto potato dextrose broth (PDB; DifcoTM 

New Jersey, United States) in deep Petri dishes. After 3 days, the mycelium from each PDB 

Inoculum source 
fixed to the post 
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culture was removed with a sterile micropipette tip and transferred on to sterile MiraclothTM 

(Calbiochem) on a stack of 10-15 absorbent paper towels. The paper towel stack was folded 

over the mycelium and pressed for a few seconds to absorb excess PDB. The dried mycelium 

was removed, wrapped in aluminum foil and snap frozen in liquid nitrogen. It was then 

ground to a fine powder with a sterile pestle and mortar and processed using the Puregene® 

system (Gentra systems, Minneapolis, USA) to extract genomic DNA. About 200 mg of this 

powder was added to a 1.5 mL tube with sterile tweezers. To this tube, 400 µL of cell lysis 

solution was added and mixed by pippeting the liquid up and down several times. Then 1.5 

µL of RNAase (10 mg/mL, Invitrogen) was added to it, swirled to mix and it was incubated 

at 37°C for 15 min. The tube was cooled to room temperature and 167 µL of the ‘protein 

precipitation’ solution was added to it. The tube was vortexed for 20 seconds and centrifuged 

at 13,000 × g for 3 min. The supernatant containing the DNA was poured into a clean 1.5 mL 

tube and 500 µL of 100% isopropanol was added and mixed by inverting several times. This 

tube was then centrifuged at 13,000 × g for 1 min. The supernatant was decanted and the 

remaining liquid was drained by inverting the tube onto absorbent paper. The pellet was then 

washed by adding 300 µL of 70% ethanol and centrifuging at 13,000 × g for 1 min. The 

liquid was drained as above and the tube containing the DNA was allowed to air-dry for 25-

30 min. After drying, 30 µL of sterile distilled water was added to this tube and it was 

allowed to rehydrate overnight at 4°C. 

3.2.4.2 DNA extraction from conidia in traps and PCR amplification with the nested 

PCR-RFLP process 

DNA was extracted from all rain water samples as in Section 3.2.2.2. The primary PCR used 

primers forward (BP-1-42F; 5′-AGAGCGGATACAACGTCAGT-3′) and reverse (BP-1-42R; 

5′-GGAGAGGAGAAAGTAGTGTG-3′), which were designed to amplify a product of 1550 

bp (Baskarathevan et al., 2012). Each 25 µL PCR tube contained 200 µM of each dNTP, 1 U 

Taq DNA polymerase (FastStart® Roche), 1 × PCR buffer (with 1.5 mM MgCl2), 0.4 µM of 

each primer and 1 µL of DNA template. and UltraPure™ distilled water was added to make 

the final volume to 25 µL. The negative control contained UltraPure™ distilled water instead 

of template DNA. The positive control contained DNA template extracted from marker 

isolate B2141 as described in Section 3.2.4.1.  Amplification of N. parvum was conducted as 

follows: denaturation at 94°C for 5 min, 40 cycles of 94°C for 30 s, annealing at 60°C for 30 

s and extension at 72°C for 90 s, with a final extension at 72°C for 10 min. The resulting PCR 

product was separated by electrophoresis on a 1% agarose gel as described in Section 3.2.2.3. 
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The secondary PCR was conducted with the internal (nested) forward primer BP-1-42intF 

(5′-CCATGTGAAGTGGACCCAGA-3′) and reverse primer BP-1-42intR (5′-

CTTCCTGAAATGACACCCGA-3′) which would amplify a 403 bp internal segment from 

the N. parvum. For this the primary PCR products were diluted 50-fold in UltraPure™ 

distilled water. A 1 µL aliquot of the diluted primary product was used as the template for the 

secondary PCR using the same amplification conditions and reagents as in the primary PCR 

(Baskarathevan et al., 2012). Genomic DNA from the marker strain of N. parvum (B2141) 

was used as a positive control and distilled water as the negative control.  

Restriction digestion with the Taq1 restriction enzyme was carried out for all PCR products 

to detect the presence of a fragment length specific to marker isolate N. parvum B2141 which 

differentiated it from other N. parvum isolates (DAR78999, STE-U-5856, G62b1, A242 and 

UCD64S0) from Lincoln University Culture collection, which had been identified by 

Baskarathevan et al. (2012). 

For the TaqI digestion, the reaction contained 10 µL of PCR product, digested with 2U Taq1 

restriction endonuclease at 65°C for 2 h followed by heat inactivation at 80°C for 20 min. 

The resulting fragments were separated by electrophoresis on a 1.5% agarose gel run for 1 h 

and 15 min at 10 V/cm in 1 x TAE buffer and stained as described in Section 3.2.2.3. 

3.2.5 Necrotic cane collection after dispersal experiment with marker isolate (2015) 

At the Fairhall Vineyard, one lignified hard shoot (50 mm) was collected from the vine 

nearest to the spore source after summer trimming, which showed characteristic dieback and 

for each replicate, at 0.5, 1, 2, and 5 cm in each of the four directions from the conidial source 

(48 in total), 4 weeks after the dispersal experiments with marker isolate of N. parvum 

(B2141). These stem tissues were each placed in a container with 50 mL sterile distilled 

water and rubbed vigorously with fingers for one minute. They were observed under the 

stereo microscope for characteristic symptoms and presence of pycnidia, then cut into 10 mm 

pieces (5 pieces), surface sterilized in 70% alcohol for 30 s and rinsed in sterile water for 30 

s, and these pieces used for isolation onto PDA amended with chloramphenicol (0.05 g/L). 

Plates were observed after 3-7 days incubation at 25°C for characteristic growth of N. 

parvum. The 50 mL wash water for each shoot was centrifuged at 10, 000 × g for 15 min and 

the pellet resuspended in sterile water prior to examination with a light microscope (×100 and 

×400). 
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3.2.5.1 Identification of N. parvum isolates based on morphological characteristics 

All colonies characteristic of Botryosphaeriaceae species were sub-cultured onto PDA, and 

after 4 and 15 days incubation at room temperature the colour of the colonies which grew on 

the plates were observed to morphologically confirm the presence of N. parvum isolates. 

3.2.5.2 Molecular confirmation of N. parvum (B2141) from collected necrotic shoots with 

nested PCR and PCR-RFLP process 

3.2.5.2.1 Genomic DNA extraction  

All the colonies which were morphologically characteristic of N. parvum were used for 

extraction of DNA as previously described in Chapter 2, Section 2.2.3.4. Colonies were 

identified to species level using the ARDRA system as described in Section 2.2.3.4 and the 

presence or absence of the marker strain (B2141) was determined using the nested PCR-

RFLP process as described in Sections 3.2.4.2. 

3.2.6 Infection of pruned grapevine canes 

To determine whether apparently healthy pruned canes left on the vineyard floor could 

become infected by Neofusicoccum spp. and so become active within the disease cycle of 

Botryosphaeria dieback, canes (48) were collected from the floor of the Fairhall Vineyard 1 

day after winter pruning. The canes were cut into 150 mm sections, washed under tap water 

to remove dirt then air-dried on paper towels laid out on a laboratory bench overnight. To 

prevent overgrowth by natural contaminants, surface sterilization was needed. Because 

surface sterilisation methods had not been tested on dormant canes, several methods were 

assessed. The samples were divided into four portions (12 each) which were (1) autoclaved; 

(2) surface sterilised by dipping in 70% ethanol; (3) washed with sterile water; (4) untreated 

and not inoculated. After air-drying as before, samples from Treatments 1-3 were inoculated 

onto the freshly cut upper end with a mixed conidial droplet comprising 40 µL (104/mL) of 

the same isolates of N. luteum or N. parvum as used in Section 2.2.3.1. The control non-

inoculated pieces were only washed in tap water. The six replications (two 150 mm sections 

each) were incubated in sterile containers with moist sterile paper towels and placed outside 

in a shaded area in a complete block design. After 1 month, the upper 2 mm portion from 

each shoot was removed and a 10 mm piece cut from the same end was surface sterilized and 

isolated onto PDA as described in Section 3.2.5. 
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3.2.7 Statistical analysis 

Data were analysed by General Linear Model (Minitab 17th edition). Data of conidial 

numbers from traps were transformed to log10 to improve the homogeneity of variance. For 

significant differences between treatments, means were examined with Sidak Pairwise 

Comparisons at P≤0.05. 

3.3 Results 
3.3.1 Spore trap set-up (2013-2015) 

3.3.1.1 Rain water spore trap set-up 

In 2013, no conidia characteristic of Botryosphaeriaceae species were observed in any of the 

rain water samples collected from the Waipara Vineyard. However, conidia characteristic of 

both Neofusicoccum and Diplodia spp. (Figure 3.3) were found in rain water collected on 28th 

March in the Brancott and Fairhall Vineyards, but not the Renwick Vineyard. On 3rd May 

there were no conidia typical of Botryosphaeriaceae spp.in the samples collected from any of 

the vineyards but rainwater collected on 5th May in Brancott, Fairhall and Renwick Vineyards 

had conidia characteristic of Neofusicoccum and Diplodia spp. conidia. Rainwater collected 

on 17th May had no conidia characteristic of the Botryosphaeriaceae species. In all cases, the 

PDA plates were covered in bacteria and yeasts and no colonies characteristics of 

Botryosphaeriaceae spp. were observed. In the repeated experiment in 2015, collected rain 

water contained conidia characteristic of Botryosphaeriaceae spp. for all traps and trapping 

months. Total rainfall, average relative humidity and average temperature are shown in 

Figure 3.4a. Overall conidial proportions showed more Diplodia spp. (53.6%) than 

Neofusicoccum spp. (46.4%) (Figure 3.4b). Suspensions plated onto PDA developed colonies 

characteristic of Botryosphaeriaceae spp.  

Numbers of Neofusicoccum conidia trapped in 2015 were significantly affected by months 

and varieties, but not vineyards (P=0.004, P=0.035, P=0.076, respectively; Appendix C.2.1). 

Overall, highest mean numbers of conidia were trapped in April (4.9) and least in March (4.7) 

(Figure 3.4b). Overall highest mean numbers of conidia were trapped in the Pinot noir variety 

(1.0 x 105) and lowest in the Sauvignon blanc (6.3 x 104). The interactions between months 

and vineyards, and months and variety were not significant (P=0.318, P=410, respectively). 

However, the interaction between vineyards and variety was significant (P<0.001), which 

seemed to be associated with the high numbers of conidia trapped at Fairhall Vineyard in the 
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Pinot noir block and the low numbers trapped at Renwick Vineyard in the Sauvignon blanc 

block (Figure 3.4b).  

 
Figure 3.3 Botryosphaeriaceae spp. conidia caught in a rain water spore trap set up in a 
vineyard in Marlborough. Conidium indicated by red arrow is typical of a Neofusicoccum 
spp. and by white arrow a Diplodia spp. 

Numbers of Diplodia conidia trapped in 2015 were significantly affected by months and 

vineyards, but not varieties (P=0.048, P=0.002, P=0.822, respectively; Appendix C.2.2). 

Highest (P<0.05) mean numbers of conidia were trapped in April (1.2 x 105) and least 

(P<0.05) in March (6.3 x 104) and most (P<0.05) at Fairhall (1.0 x 105) and least (P<0.05) at 

Renwick (5.0 x 104). The interactions between months and variety, and vineyards and variety 

were not significant (P=0.684, P=0.070, respectively). However, the interaction between 

months and vineyards was significant (P=0.041), which seemed to be associated with high 

numbers of conidia trapped at Fairhall Vineyard in April and low numbers trapped at 

Renwick Vineyard in May (Figure 3.4b). 
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Figure 3.4 (a) Total rainfall, average relative humidity and average temperature. (b) Mean 
numbers of conidia (log10) characteristic of Neofusicoccum spp. and Diplodia spp. collected 
in rain water spore traps during March-June, 2015 for varieties Pinot noir (PN) and 
Sauvignon blanc (SB), and in vineyards Brancott (B), Fairhall (F) and Renwick (R). 
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3.3.1.2 Botryosphaeriaceae spp. conidia trapping in 2014 (Burkard spore sampler)  

The numbers of Botryosphaeriaceae conidia trapped were low (Figure 3.5) for all days except 

for 9th and 10th June when average conidial numbers reached 62 and 67 per Melinex segment 

(per day) for Pinot noir and Sauvignon blanc blocks, respectively (Figure 3.5). The two peaks 

coincided with the high rain fall events (19.4 and 32.6 mm/day, respectively). The maximum 

average daily temperature was 15.4°C and the minimum average daily temperature was 9.0°C 

during the trapping period. There was no linear relationship between temperature and 

conidial numbers trapped with R2 of 0.36. Conidia of Botryosphaeriaceae spp. were trapped 

(1 per Melinex segment) when as little as 0.6 mm rain had fallen and maximum numbers of 

conidia (67 per Melinex segment) were trapped when higher rainfall (32.6 mm) occurred 

during the trapping period, and only up to 2 h after rainfall ceased. A linear relationship was 

observed between number of conidia trapped and rainfall with R2 of 0.95. 

 
Figure 3.5 Daily total number of Botryosphaeriaceae spp. conidia trapped in the vineyards 
using a 7 day Burkard spore sampler over 6 weeks trapping period, from 5th May until 16th 
June 2014. The air temperature (°C), relative humidity (%), wind speed (Km/h) and total 
rainfall (TRF; mm) were those recorded from the nearest weather station (Hortplus). B-
Brancott, F-Fairhall, R-Renwick, SB-Sauvignon blanc and PN-Pinot noir. 
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3.3.2 Molecular confirmation of Botryosphaeriaceae spp. identity for conidia in 

collected rain water and Burkard spore traps 

3.3.2.1 Confirmation of Diplodia and Neofusicoccum species in rainwater and Burkard 

spore traps by PCR using Botryosphaeriaceae multi-species primers  

As illustrated in Figure 3.6 the PCR for all samples from the Fairhall, Brancott and Renwick 

Vineyards produceda single band of molecular weight, approximately 372 bp, which 

indicated the presence of Botryosphaeriaceae spp. 

  

 
Figure 3.6 Agarose gels showing the presence of amplimers specific for Botryosphaeriaceae 
spp. produced using the multispecies primers with rain water samples from Brancott, Fairhall 
and Renwick Vineyards (labelled as B, F and R, respectively) on (a) (28th March and 5th May, 
2014 and (b) March to June 2015). The far left lane contains the 1 kb plus DNA ladder. 

3.3.2.2 Identification of Botryosphaeriaceae species from rain water and Burkard spore 
trap samples by single stranded conformational polymorphism (SSCP) 

This method detected N. luteum, N. australe, D. mutila and D. seriata which had ≥ 3 bp 

differences in the 372 bp amplicon; the unique conformations were easily differentiated on 

acrylamide gels. However, N. parvum and N. ribis were identical within the 372 bp amplicon 

and therefore could not be distinguished by SSCP. These species were identified from the 

2013 rainwater traps across all the sampling times and vineyards (Figure 3.7).  

a 

 400 bp 

1 Kb         1         2          3           4        5        6         7         8         9        10            11 

         B1           B2        F1         F2      B1     B2       R1       R2       R1       R2          +ve 

b 

400 bp 

1Kb  1      2     3     4    5    6     7     8     9     10    11   12   13   14   15   16   17   18   19 
                  March                         April                              May                          June 
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Figure 3.7 SSCP analysis using primers BOT 100F/BOT 427R showing different amplicons. 
Lanes 1-9 represent Burkard spore trap samples from different vineyards and the standard 
isolates are as follows: N.p=Neofusicoccum parvum (P179), N.l=N. luteum (L125), 
D.s=Diplodia seriata (N331), N. a=N. australe (B3192) and D.m=D. mutila (M212). 

Table 3.1 Botryosphaeriaceae spp. conidia trapped () in the vineyards using a 7 days 
Burkard spore sampler over 6 weeks trapping period, from 5th May until 16th June 2014. 

                                                                       aBotryosphaeriaceae spp. 

Date of rain 
event (2014) 

Vineyard Variety N. rib/N. p N.a N. l D. s D. m 

5th May Brancott SB      

9th May Brancott SB      

13th May Brancott PN      

14th May Brancott PN      

24th May Fairhall SB      

4th June Fairhall PN      

9th June Renwick SB      

10th June Renwick SB      

11th June Renwick SB      
aN. rib= Neofusicoccum ribis, N.p= Neofusicoccum parvum, N.a= Neofusicoccum australe, N. l= 
Neofusicoccum luteum, D.s= Diplodia seriata, D. m= Diplodia mutila. 

The species most commonly found with the Burkard spore trap, from all vineyards, were N. 

australe and D. seriata (26.7%) (Tables 3.1 and 3.2). The next most common species were N. 

parvum/N. ribis, N. luteum (20%) and D. mutila (13.3%).  

 

N. p    N. l       D.s      N.a    D.m 

Fairhall Brancott          Renwick 

                                          Samples     Standards 
  9          8            7        6              5           4       3         2     1  1 
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Table 3.2 Botryosphaeriaceae spp. conidia trapped () in the vineyards in rain water sample 
trapping period, from March until June 2015. 

                                                                aBotryosphaeriaceae spp. 
Date of rain 
event (2015) vineyard Variety N. rib/N. p N.a N. l D. s D. m 

6th March Brancott SB      
10th April Brancott SB      
6th March Brancott PN      
10th April Brancott PN      
12th May Brancott SB      
2nd June Brancott SB      
12th May Brancott PN      
2nd June Brancott PN      
6th March Fairhall SB      
10th April Fairhall SB      
6th March Fairhall PN      
10th April Fairhall PN      
12th May Fairhall SB      
2nd June Fairhall SB      
12th May Fairhall PN      
2nd June Fairhall PN      

6th March Renwick SB      
10th April Renwick SB      
6th March Renwick PN      
10th April Renwick PN      
12th May Renwick SB      
2nd June Renwick SB      
12th May Renwick PN      
2nd June Renwick PN      

aN. rib =Neofusicoccum ribis, N.p= Neofusicoccum parvum, N.a= Neofusicoccum australe, N. l= 
Neofusicoccum luteum, D.s= Diplodia seriata, D. m= Diplodia mutila.  

In the rain water spore traps in 2013, the species most commonly found were D. mutila (70%) 

and N. australe (55%) followed by D. seriata (25%).  In 2015, the most commonly found 

species in rain water spore traps were D. mutila (41.7%) and N. australe (33.3%), followed 

by D. seriata (16.7%) and N. luteum (8.3%). All six species were found with the Burkard 

spore trap at the Renwick and Brancott Vineyards while at the Fairhall Vineyard, N. 

parvum/N.ribis, N. luteum and N. australe were found. 
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3.3.3 Dispersal distances of Neofusicoccum parvum conidia during rainfall 

3.3.3.1a Microscopic identification of Neofusicoccum spp. in rain water (2014) 

Microscopic examination confirmed presence of conidia characteristic of Neofusicoccum and 

Diplodia spp. in samples set at all distances, up to 20 m from the source in the direction of 

the prevailing wind and up to 5 m from the source in the three other directions.  

3.3.3.2a Molecular confirmation of N. parvum isolate B2141 in 2014 rain water samples 

with nested PCR and PCR-RFLP  

From samples collected in 2014 a single band of approximately 1500 bp was amplified in six 

rainwater samples. These were collected at up to 1 m after both pruning and trimming in the 

three directions away from the prevailing wind (Figure 3.8) and in the wind direction at up to 

10 m from the source after pruning and up to 5 m after trimming. When a nested PCR with 

internal primers (BP-1-42int) was done, this produced amplimers from samples (after pruning 

and trimming) up to 10 m from the source in the wind direction and up to 5 m in the other 

three directions (Figure 3.9). When the primary PCR products of the trap samples were 

digested with Taq1 restriction enzyme, and run on a 1.5% agarose gel, four visible bands (51-

64, 97-157, 405 and 776 bp) were produced for some samples which were clearly different 

from other N. parvum isolates, which had four visible bands of 51-97, 221, 405 and 776 bp 

(Figure 3.10). When the nested PCR products of the trap samples were digested with Taq1 

restriction enzyme it produced two visible bands (95 bp and 159-210 bp). This confirmed 

recovery of N. parvum marker isolate (B2141) from rain water samples up to 10 m in wind 

direction and 5 m away from prevailing wind (Figures 3.10 and Table 3.3, 3.4).  

1650bp

0.5   1     5      0.5    1   5   0.5     1     5   0.5    1    5    0.5    1    5    0.5   1   5       

South              North           West          South          North               East

2000bp

Figure 3.8 Initial PCR amplification using external primers BP-1-42F and BP-1-42R and 
extracted DNA from rain water samples trapped at different distances from the source in 
direction of the downwind (west) and other directions (south, north and east).  All lanes 
contain rain water samples, except that the far right lane contains the marker strain B2141 
and the far left lane contains the 1 kb plus DNA ladder. 
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Table 3.3 Dispersal distances of marker isolate B2141 after rainfall in autum and spring 
(2014) and autumn of 2015 as confirmed by PCR-RFLP. 

 

Table 3.4 Dispersal distances of marker isolate B2141 after pruning (indicated by red colour) 
after trimming (indicated by black colour) in 2014 as confirmed by PCR-RFLP. 

 

3.3.3.1b Molecular confirmation of N. parvum isolates in 2015 rain water samples with 

nested PCR and PCR-RFLP process  

In 2015, external PCR using BP-1-42 primers for N. parvum (B2141) detected N. parvum in 

traps at up to 5 m from the source in the wind direction, and up to 1 m in the other three 

directions (Figure 3.11). Subsequent nested PCR with internal primers (BP-1-42int) detected 

N. parvum at up to 10 m from the source in the wind direction for one replicate and up to 5 m 

for most of the other traps. In the three other directions, nested PCR with internal primers 

detected N. parvum at 1 m in all replicate samples except for one sample, in which it was 

found at up to 5 m (Figure 3.12) (Table 3.5). The Taq1 restriction digestion of primary PCR 

products produced four visible bands (51-64, 97-157, 405 and 776 bp) for the marker isolate 

                                             Maximum distance spores trapped 

 2014 2015 

 Autumn Spring Autumn 

Direction Water trap Water trap Water trap 

S 0.5 0.5 5 

E 1 0.5 1 

N 5 0.5 1 

Downwind 10 10 10 

() Presence of marker strain  at different distances (m) 

180° 270° 360° Downwind 

0.5 m 1 m 5 m 0.5 m 1 m 5 m 0.5 m 1 m 5 m 0.5 m 1 m 5 m 10 m 20 m 

              

              
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on a 1.5% agarose gel which clearly differentiated it from other N. parvum isolates, which 

had four visible bands (51-97, 221, 405 and 776 bp) (Figure 3.15). The Taq1 restriction 

digestion of secondary PCR products produced two visible bands (95 bp and 159-210 bp) 

(Figure 3.16). This confirmed the recovery of N. parvum marker isolate (B2141) from rain 

water samples up to 5 m in wind direction and 1 m away from prevailing wind (Figure 3.15). 

 

Figure 3.11 Initial PCR amplification, using external primers BP-1-42F and BP-1-42R, of 
extracted DNA from rain water samples set at different distances from the source in the 
direction of the prevailing wind after pruning and trimming. Lanes 1-16 represent rain water 
samples and lane 17 represents the marker strain B2141. The numbers on the far left denote 
the molecular weights of the 1 kb plus DNA ladder. 

 

 

Figure 3.12 Secondary PCR amplification, using internal primers BP-1-42intF and BP-1-
42intR, of extracted DNA from rain water samples set at different distances from the source 
in the direction of the prevailing wind, and in other directions, after pruning and trimming. 
Lanes 1-14 represent rain water samples and lane 15 the marker strain B2141. The numbers 
on the far left denote the molecular weights of the 1 kb plus DNA ladder. 
 

1       2       3     4        5       6       7      8       9       10    11   12      13     14   15    16     17      - 

1 kb    1     2       3      4       5      6       7       8      9      10     11    12    13    14    15 

400 bp 

 0.5       1     5      0.5     1      5     0.5      1      5       0.5      1    5      0.5      1     5     0.5    +ve          

+ve   -ve   

 0.5     1    5     0.5      1     5     0.5     1       5     0.5       1       5    0.5     1     +ve      -ve   
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Figure 3.13 Agarose gel of Taq1 digested PCR products, generated by primers BP-1-42F and 
BP-1-42R, from DNA extracted from rain water samples set at different distances from the 
source in the direction of the prevailing wind after pruning. Lanes 1-10 represent rain water 
samples, lane 11 is non- marker N. parvum isolate A842, lane 12 is non- marker N. parvum 
isolate G69a1, lane 13 represents the +ve control and lane 14 the –ve control. The numbers 
on the far right denote the molecular weights of the 1 kb plus DNA ladder. 
1        2        3        4         5        6         7           8         9         10       14      1 kb 

 
Figure 3.14 Agarose gel of Taq1 digested PCR products, generated by internal primers BP-1-
42intF and BP-1-42intR, from extracted DNA from rain water samples set at different 
distances from the source in the direction of the prevailing wind after pruning and trimming. 
Lanes 1-9 represents rain water samples and lane 10 the marker strain B2141. The N. parvum 
isolates are: Lane 11 isolate STE-U 5856, lane 12 isolate G69a1, lane 13 isolate A842. Lane 
14 represents the –ve control and the numbers on the far right denote the molecular weights 
of the 1 kb plus DNA ladder. NM= non-marker. 
 

 

 

 

 

 
 
 

1 Kb     1        2        3        4       5         6        7         8        9       10      11      12     13      14 

800 bp 

500 bp 

200 bp 

                South           North          East              Downwind 

 1        2        3        4         5        6         7           8         9         10       NM     NM    NM      14      1 kb 

200 bp 

100 bp 

  0.5     1          5         0.5     1     5     0.5      1         5     10 

  0.5     1          5        0.5     1        5        0.5        1         5         10 
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Figure 3.16 Characteristic Neofusicoccum parvum colonies isolated from necrotic shoots 
onto PDA plates a) 3-day-old, b) 7- day-old. 

3.3.4.1 Molecular confirmation of N. parvum (B2141) from collected necrotic shoots with 

nested PCR-RFLP process   

PCR products of 1200 bp were obtained using the ITS1 and NL4 primers; when digested with 

the HaeIII restriction endonuclease, the products visible on a gel were five bands of 258, 254, 

203, 157 and 58-83 bp (Figure 3.17), which clearly distinguished N. parvum from all other 

Botryosphaeriaceae species. 

 
Figure 3.17 Agarose gel of HaeIII digested PCR products generated by amplification with 
primers ITS1 and NL4 from colonies recovered from necrotic shoots samples. Band pattern A 
represents Neofusicoccum parvum, and pattern B represents all non- N. parvum. The far left 
lane contains the 1 kb plus DNA ladder. 
 

 

 

a b 

B 

HaeIII 

100 bp 

500 bp 

300 bp 

         1       2        3       4       5        6        7       8       9       10      11     12      13     14   15      

A 
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The external primers BP-1-42 detected N. parvum in infected shoots up to 1 cm from the 

source in the wind direction, and at up to 0.5 cm in the three other directions. Subsequent 

nested PCR with internal primers (BP-1-42int) detected N. parvum up to 1 cm from the 

source in the wind direction except for one sample, which also produced a band at 2 cm. In 

the three other directions the nested PCR detected N. parvum up to 1 cm. 

The Taq1 restriction digestion of the primary PCR products produced four visible bands (51-

64, 97-157, 405 and 776 bp) for the marker isolate (B2141) on a 1.5% agarose gel which 

clearly differentiated it from the other N. parvum isolates with four visible bands (51-97, 221, 

405 and 776) (Figure 3.18). Digestion of the secondary PCR products with Taq1 produced 

two visible bands (95 bp and 159-210 bp) (Figure 3.19). The samples were positive for 

marker isolate (B2141) for all isolates obtained from infected canes within 1 cm of the source 

in the wind direction and for one isolate within 2 cm. This clearly confirmed that the shoots 

were infected by conidia from the source. Out of 45 samples 13 were positive for the marker 

isolate (Table 3.6). 

 
Figure 3.18 Agarose gel of Taq1 digested PCR products generated by external primers BP-1-
42F and BP-1-42R from DNA extracted DNA from necrotic shoots samples. Lanes 1-9 
represent rain water samples, lane 10 represents marker strain B2141 (+ve control), lane 11 
G69a1, lane 12 A842, lane 13 STE-5886 and lane 14 represents the –ve control. The numbers 
on the far left denote the molecular weights of the 1 kb plus DNA. 
 

100 bp 

300 bp 

700 bp 

               1           2          3        4       5        6       7      8      9      10       11     12      13     14         

 0.5        1         0.5     1       2        0.5     1       0.5       1      +ve 
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Figure 3.19 Agarose gel of Taq1 digested PCR products generated by internal primers BP-1-
42intF and BP-1-42intR of extracted DNA from necrotic shoots samples set at different 
distances from the source in the direction of the prevailing wind after pruning and trimming. 
Lanes 1-9 represent rain water samples and lane 10 represents the marker strain B2141. Lane 
11 represents G69a1, lane 12 A842, lane 13 and lane 14 represent the +ve control (B2141). 
The numbers on the far left denote the molecular weights of the 1 kb plus DNA ladder. 

Table 3.6 Infection of necrotic shoots by the Neofusicoccum parvum marker strain (B2141) 
at distances (cm) from the inoculum source after dispersal in different directions, 2015. 

 

3.3.5. Infection of pruned grapevine canes 

Pruned shoots inoculated after being autoclaved showed 41.6% infection by N. parvum and 

50% infection by N. luteum as shown by characteristic colonies when reisolated on PDA. 

Shoots inoculated after surface sterilisation with 70% ethanol showed 91.6% infection by N. 

parvum and 100% by N. luteum. Shoots just washed in water and inoculated showed highest 

level of infection, 100% for both N. parvum and N. luteum. The few contaminants found on 

these plates were mostly Alternaria, Fusarium and Ulocladium spp.  

  

Rep 

() Presence of marker strain at different distances (cm) 

180° 270° 360° Downwind 

0.5 1 2 5 0.5 1 2 5 0.5 1 2 5 0.5 1 2 5 

1                 

2                 

3                 

          1       2        3        4      5         6         7      8        9       10       NM   NM   NM   14         

100 bp 

 0.5    1      0.5       1     2        0.5       1      0.5     1      +ve 
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3.4 Discussion  

The aim of this study was to improve understanding of the processes of Botryosphaeriaceae 

conidium dispersal and survival and thereby the dynamics of disease epidemics.  

Microscopic examination of rainwater run-off collected from the Fairhall, Brancott and 

Renwick Vineyards in 2013 and 2015 revealed conidia characteristic of Neofusicoccum and 

Diplodia species. Amponsah et al. (2009b) also reported Neofusicoccum and Diplodia type 

species in the rainwater run-off of a Canterbury vineyard throughout the year. Pusey (1989) 

and Sutton (1981) identified B. dothidea and D. seriata ascospores in rain water run-off from 

peach and apple trees, respectively, and largely during spring and summer. In the study of 

Urbez-Torres et al. (2010b) Botryosphaeriaceae spores were trapped during rainfall and 

overhead sprinkler irrigation periods in California. Thus, this study confirms previous work 

demonstrating the presence of these species in rainwater both in New Zealand and overseas 

for grapevines and other woody hosts. In this study Botryosphaeriaceae spores were not 

found in the sampling of Waipara, which might be because it represents a relatively young 

vineyard and viticultural region. 

In the present study, conidia of Diplodia spp. were more numerous than for Neofusicoccum 

spp. This contrasts with results of Amponsah et al. (2009b) who reported 59.8% 

Neofusicoccum spp. and 40.2% Diplodia spp. in a Canterbury vineyard. However, those 

results were from a single vineyard in a different region. Further, the species incidence within 

a single vineyard may reflect the initial infection status of the young plants used for 

establishing that vineyard. The variation in data from two regions may also indicate that the 

distribution of Botryosphaericeae species is influenced by climatic conditions as reported 

from a New Zealand survey of species in necrotic vineyard tissues by Baskarathevan et al. 

(2012). In that study Neofusicoccum spp. predominated in the North Island (95%) while in 

the South Island they comprised only 45% of the pathogens isolated. Further, they also 

showed that the proportions of Neofusicoccum spp. and Diplodia spp., respectively, were 45 

and 55% in Blenheim and 60 and 32% in Canterbury. Differences in species distribution 

pattern have been suggested to be the result of different temperature preferences of different 

species (Taylor et al., 2005; Urbez-Torres et al., 2006a, 2008; Pitt et al., 2010). 

Baskarathevan et al. (2012) also reported that different species of Botryosphaeriaceae had 

different optimum temperatures for mycelial growth. In their study growth of N. parvum, N. 

luteum and D. seriata was optimum at temperatures of 26.1°C, 26.3°C and 25.9°C, while for 
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D. mutila and N. australe the optimum temperatures were 24.6°C and 23.4°C, respectively. In 

another study, Billones et al. (2013) reported that all the above species were present in 

nursery materials, so nurseries could be responsible for providing the primary sources of 

vineyard Botryosphaeria disease. Therefore, regional nurseries which provide the plants for 

nearby vineyards, might also account for the predominating species in those regions.  

Microscopic examination of the Melinex tape which trapped air-borne spores showed very 

few Botryosphaeriaceae spp. conidia in comparison with the rainwater traps. However, the 

Burkard spore trap was able to show the timing of conidial release. The conidia were trapped 

during or immediately after rainfall, being found after as little as 0.2 mm rain had fallen, but 

higher numbers of conidia were trapped with higher rainfall. Similar results were shown by a 

spore trapping study in South Africa (van Niekerk et al., 2010). In their study, conidia of 

Botryosphaeriaceae spp. were captured by a Quest volumetric spore trap after as little as 0.25 

mm rainfall, with higher number of conidia in higher rainfall. However, they also reported 

that in some cases no conidia were trapped even when rainfall did occur. In another 

volumetric spore trapping study in California by Urbez-Torres et al. (2010b) they showed 

that there was a positive relationship between conidial numbers released and amount of 

precipitation. In their study highest numbers of conidia were trapped in February (50.4% in 

Monterey and 65% in Sonoma) which coincided with the maximum amount of rainfall during 

that period. In another study Sutton (1981) observed similar results, with numbers of conidia 

and ascospores of Physalospora obtusa (syn. D. seriata; Phillips et al., 2007) and 

Botryosphaeria dothidea in an apple orchard having a positive relationship with amount and 

duration of rainfall. However, these results conflict with a study by Holmes and Rich (1970) 

in apple orchard, who observed no positive relationship between number of conidia of D. 

seriata and amount of rainfall. They showed that maximum numbers of D. seriata ‘spores’ 

were trapped when the relative humidity was 100%. Moisture effects on conidial release 

differ between regions. The current study has demonstrated that conidial release was 

associated with rainfall in Marlborough for which spore trapping had not previously been 

investigated. 

In this study, conidia of Botryosphaeriaceae spp. were not trapped beyond 2 h after rainfall 

ceased. The same result was shown by Urbez-Torres et al. (2010b); they also could not trap 

any Botryosphaeriaceae spp. conidia beyond 2 h after termination of rainfall or overhead 

irrigation. This is in contrast with a study of Sutton (1981) who reported that air-borne 

ascospores of D. seriata and B. dothidea were often trapped in apple orchards for 33hours 
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after the rainfall ended. In his study, ascospores of D. seriata were often the most commonly 

found spores at the end of rain period or after rain fall ceased. Since the ascospores are not 

produced in ooze but forcibly ejected into the air as air-borne spores, this probably accounts 

for the difference reported. Since apple trees are largely composed of more permanent 

and/older wood than grapevines in New Zealand, this may also account for the presence of 

ascospores in apple orchards but not in vineyards. However, there are no reports of the season 

and time during which perithecia and ascospores develop. 

Ascospores of Botryosphaeriaceae spp. were not found in spore traps in the current study, 

which was consistent with the study of Michailides and Morgan (1992), who reported that 

perithecia of Botryosphaeriaceae spp. are rarely observed in perennial crops, including 

grapevines. Smith et al. (2001) also reported that the sexual stages of Botryosphaeriaceae 

spp. were rarely found in nature. However, Pusey (1989) reported that ascospores of B. 

dothidea, D. seriata and L. theobromae were abundant in peach orchards in April 1984. They 

also reported that in 1985 the maximum numbers of B. dothidea ascospores were trapped in 

mid-March to mid-May, while ascospores of D. seriata and L. theobromae were trapped in 

high numbers in all months except in January (winter). Further, Sutton (1981) found similar 

numbers of conidia and ascospores of both D. seriata and B. dothidea in a trapping study in 

apple orchards, although the ascospores were predominant in spring and the conidia in mid- 

to late-summer. The lack of ascospores in New Zealand might be due to the lack of suitable 

mating types as found for grape powdery mildew. In New Zealand, only asexual spores of 

powdery mildew were found until summer 2014 when Johnston et al. (2014) reported finding 

chasmopara (formerly called cleistothecia), which are the sexual form of this fungus, in all 

the major grape-growing regions, due to the recent introduction of the Group B population.  

However, no research has reported the mating types of Botryosphaericeae spp. so this 

indicates a useful area for future research. Presence of two mating types in a country might 

indicate likely presence of ascospores which could mean that growers need to protect pruning 

wounds for longer periods after rainfall. 

In the present study, conidia of Botryosphaeriaceae spp. were trapped during or immediately 

after rainfall, when the average daily temperature was 9.0 -15.3°C and the daily average 

relative humidity was 74-97%. Spore-trapping studies in New Zealand and France reported 

an abundance of Botryosphaeriaceae species conidia throughout the year, maximum release 

being associated with rainfall during summer months (Amponsah et al., 2009b; Kuntzmann et 

al., 2009). The greater release of conidia during mild or warm conditions indicates that the 
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reported optimum growth temperatures of Botryosphaericeae might also apply to sporulation 

processes. However, conidial release has also been reported at low temperatures. Valencia et 

al. (2015) demonstrated in Chile that maximum conidial release (Diplodia seriata, 

Spencermartinsia viticola and Neofusicoccum sp.) occurred in weeks when the weekly 

median (of average daily temperatures) was 10°C. Kuntzmann et al. (2009) reported conidial 

dispersal of Diplodia species from 9°C in France and Urbez-Torres et al. (2010) reported that 

release of conidia (D. seriata and B. dothidia) in California occured at temperatures of 3-7°C 

during the winter months. In another study in North America by Pusey (1989), maximum 

numbers of B. dothidea conidia were detected during periods of high temperature, but not in 

winter when the temperature was below -10°C. However, Weaver (1979) found no 

correlation between air temperature and number of B. dothidea conidia collected in peach 

orchards. The effect of temperature on sporulation of three Botryosphaeriaceae spp. grown on 

detached apple and peach stems in vitro was studied by Copes and Hendrix, (2004). They 

reported that conidia were produced over the range of 6 to 30°C, with peak sporulation of B. 

dothidea at 24°C, D. seriata at 18-24°C and D. seriata at 12, 24, and 30°C. Numbers of 

conidia released were lowest at 6°C for all species. They also reported that in apple and peach 

orchards conidia of B. dothidea and D. seriata had been recovered during late fall, winter, 

spring and early summer months. In contrast, Urbez-Torres et al. (2010b) showed that in 

vineyards Botryosphaeriaceae spp. spores were released in almost all rainfall events, although 

highest numbers of released spores usually followed a rain-free period. However, in the 

current study numbers of air-borne conidia of Botryosphaeriaceae spp. were relatively low in 

autumn 2014 (May) and higher in early winter (June), even though the amounts of rainfall 

were similar. It is possible that there were insufficient conidia available for dispersal in 

autumn (26 mm total rainfall in May) because they had been released by earlier rain fall 

events, (156 mm total rainfall in April) and that by June they were more abundant and ready 

for release. Similar patterns were reported by van Niekerk et al. (2010a) who showed that 

after a high conidial release event, few or no spores were released during the following 1-3 

weeks, even when rainfall and relative humidity were adequate. Further, the rain events 

following such ‘spikes’ usually resulted in much lower numbers of spores. From these 

studies, it seems likely that conidia could be released during most day-time temperatures 

found in New Zealand, requiring moisture for exudation of conidial cirrhi and rain for splash 

dispersal which might also be wind-assisted. 
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The presence of Botryosphaeriaceae spp. isolates were confirmed by molecular studies. The 

amplification of a 372 bp band from collected rain water and the Burkard spore trap 

confirmed the presence of Botryosphaeriaceae species. Further confirmation of species by 

SSCP indicated the presence of five Botryosphaeriaceae spp. (N. luteum, N. parvum/ribis, N. 

australe, D. mutila and D. seriata). The ability of SSCP to distinguish fungal species present 

in collected rain water was demonstrated by Ridgway et al. (2011) who developed the SSCP 

system for identification of Botryosphaeriaceae spp. in environmental samples. They showed 

that up to three different Botryosphaeriaceae spp. were present in each sample and that the 

predominant species were N. luteum and N. parvum/ribis throughout the sampling period. 

The use of SSCP to differentiate species present in samples of mixed amplimers has been 

reported for many fungi. Rasmus and Rosendahl (2000) used Glomus specific primers and the 

SSCP technique to differentiate species of Glomus in root tissues. The SSCP technique was 

also used by Kumeda and Asao (1996) to differentiate Aspergillus species within the flavi 

group, including A. flavus, A. oryzae, A. tamarii, A. parasiticus, A. sojae, and A. nomius. 

However, in the current study this technique could not differentiate between N. parvum and 

N. ribis, because DNA of these two species was identical within the 372 bp amplicon 

produced by BOT100F and BOT472R primers. Neofusicoccum parvum and N. ribis have 

been considered closely related species because they could not be confidently separated by 

ITS sequence data alone, which is the method most commonly used in molecular 

identification of the Botryosphaeriaceae (Crous et al., 2006). In the current study, SSCP 

technology was used to differentiate between species of Botryosphaeriaceae because 

morphological techniques cannot be used to identify different species of Botryosphaeriaceae 

which often exhibited overlap between the species (Alves et al., 2006; Crous et al., 2006) and 

cloning and sequencing of the PCR product from each sample is cumbersome and costly 

process. However, when Pavlic et al. (2009) conducted sequence comparisons of gene 

segments in RNA polymerase II subunit (RPB2), using isolates of the N. luteum/ N. parvum 

complex, this enabled them to resolve the identity, and to introduce three new species from 

within the complex as N. cordaticola sp. nov., N. umdonicola sp. nov. and N. kwambon 

ambiense sp. nov. Similar studies could be conducted with N. parvum and N. ribis. 

Naturally occurring marker isolates are useful for studying population genetics and 

epidemiology of phytopathogenic fungi. Since the topic was reviewed by Michelmore and 

Hulbert (1987), who discussed the potential of isozymes and RFLPs to identify 

polymorphisms in specific isolates, many different genetic techniques for isolate 
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identification have been developed which have allowed for environmental and population 

studies. In this study, a marker isolate of N. parvum (B2141) was used to investigate the 

dispersal success of Botryosphaeriaceae spp. The investigation was made possible through 

use of specific primers followed by restriction enzyme analysis which produced a unique 

RFLP pattern with isolate B2141 and thus was able to differentiate between the marker 

isolate and other isolates naturally present in the vineyards. Marker isolates were detected in 

both standard and nested PCR but the detection capacity of nested PCR was greater. Rasmus 

and Rosendahl (2000) also used Glomus specific primers in nested PCR to amplify known 

fungi in their study. A similar approach was used by Helgason et al. (1998), who used 

Glomales specific primers and RFLP.  In two other studies a species specific molecular 

marker had been developed and was used to detect P. chlamydospora (Ridgway et al., 2002; 

Ridgway et al., 2005).  

In the 2014 study, the dispersal success of N. parvum and the detection capability of the 

marker isolate were unknown, so the samples from the three replications for each distance 

were combined prior to molecular identification. The results of this showed that conidia of 

the marker isolate of N. parvum had dispersed up to 10 m in the wind direction and 5 m in 

other directions. In the repeated study in 2015, in which the replicate samples were analysed 

separately, conidia were shown to have dispersed up to 5 m in the wind direction in two 

replications and up to 10 m in one replication, with dispersal up to 1 m in the other directions. 

This result is in contrast to the report by Baskarathevan et al. (2013), who could only track 

the marker isolate up to 2 m from the source of conidia. When Ahimera et al. (2004) 

conducted a single-drop experiment, in which 200 water drops were dispensed onto infected 

pistachio nuts under laboratory conditions; they found that B. dothidea conidia were 

dispersed over quite short distances. The median travel distance (distance travelled by 50% of 

droplets) was 20 mm. Only 6% of droplets were splashed further than100 mm, and less than 

0.2% of droplets reached 300 mm. Overall, more than 56% of conidia were carried in 

droplets that landed within 15 mm of the inoculum source and more than 95% of the conidia 

counted were splashed within 60 mm from the source. However, in this study one entire 

cirrhus, or a part of it, was found at 55 mm away from the source, indicating the potential for 

resplash in natural environments, which was likely to be occurring in the current experiment. 

Rainwater traps were also set up by Ahimera et al. (2004) at distances of 25, 50 and 100 cm 

from infected pistachio trees and after single rainfall events conidia were trapped in all cases 

at 100 cm. However, the numbers trapped were much lower than for traps set under the tree 
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canopy, maximum numbers being 6 x 103 and 4 x 104, respectively. However, in these two 

studies there is a lack of information regarding the role that wind plays in dissemination of 

Botryosphaeriaceae spp. conidia, as high wind speed is likely to affect the dispersal distance 

of conidia in water droplets, as observed by van Neikerk et al. (2010a). This was also 

demonstrated in the current study, in which dispersal of marker strain conidia occurred over 

longer distances in the direction of prevailing wind than in the other directions. 

When the infection success of the dispersed conidia was investigated by isolating necrotic 

shoots onto PDA after the dispersal experiment, the marker isolate was found colonising 

plants at up to 1 cm for most directions, although one sample was found at 2 cm from the 

source. The shorter distances of isolation than for spore traps might be because the number of 

conidia that landed on the vines was not enough to infect them. Biggs (2004) showed that 

infection incidence of apple was increased as the inoculum concentration of B. dothidea 

increased. The other reason for this might be that conidia were not viable by the time they 

reached those shoots. Amponsah et al. (2010) reported that solar radiation has a negative 

effect on germination of N. luteum, N australe and D. mutila, with 35% germination after 7 h 

exposure to sunlight and, increasing exposure caused decreasing germination. Further they 

showed that relative humidity (RH) had a great effect on germinability of conidia, since 92% 

of conidia germinated within 3 h when RH was 100%, whereas in 97% RH it took 6 h for 

germination to reach 67.2%, and at 93% RH no conidia had germinated after 3 and 6 h. Air-

borne conidia of Botryosphaeriaceae spp., potentially within rain droplets, have been trapped 

by Burkard spore traps, which could be used to detect air-borne conidia of the marker isolate 

at greater distances. However, in the current research programme, only one Burkard spore 

trap was available so this type of experiment was not attempted. Further distances of 

dispersal, which would have required resplashing from water films containing conidia, were 

not detected in these experiments. However, the resplash model may not be effective with 

conidia of Botryosphaeriaceae spp. since Sammond et al. (2016) demonstrated that most of 

the conidia of N. luteum, N. parvum and B. dothidea adhered onto a range of experimental 

surfaces, including cellulose, and were unable to be washed off within 5 minutes of 

deposition. 

In the current study, freshly pruned canes from a vineyard were able to be infected by conidia 

of N. luteum, and N. parvum when held in an outdoor environment, thereby indicating that 

the disease cycle includes a saprophytic phase involving the canes commonly left on vineyard 

floors. Elena et al. (2016) also showed that canes naturally infected with D. seriata and 
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pruned out 2 years previously, and then held under natural vineyard conditions, were able to 

produce viable conidia from the pycnidia for another 18 months. Although numbers of 

conidia reduced over time, these results confirmed the role of pruning debris in inoculum 

production. The current study showed that N. luteum, and N. parvum are also likely to 

colonise pruning debris, which may then act as an important long-lasting inoculum source. 

Further experiments need to be conducted to determine whether removal of this debris from 

vineyard floors causes reduction in the numbers of splashed and air-borne conidia within 

Marlborough vineyards.  

Conclusion 

This study has shown that many more conidia were trapped in rainwater than in air by the 

Burkard spore trap and that the splash-dispersed conidia were able to infect wounds in the 

vineyard. Botryosphaeriaceae spp. are generally acknowledged as pathogens of wounds 

which are caused on grapevine tissues by the common practices of trimming (conducted in 

summer) and pruning (conducted from late May to late August), which coincide with some 

major rainfall periods. Further, this study and other studies of spore trapping in New Zealand 

have shown that Botryosphaeriaceae spp. conidia are present throughout the year. Although 

spore trapping has provided valuable information, further information is needed about the 

effects of biological and environmental factors on the potential of dispersed conidia to infect 

the grapevine tissues. The next chapter in this thesis will describe investigations into how 

susceptibility of wounds in different tissues is affected by the time period after pruning, tissue 

age, variety, conidial concentration and environmental conditions. 
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Chapter 4 

Factors affecting infection of grapevine stems, buds and fruit 

4.1 Introduction 

Botryosphaeriaceae species are known to infect wounds of soft green and woody stems of 

grapevines, which occur on grapevine plants several times throughout the year during 

pruning and trimming. Studies by Munkvold and Marois (1995) and Chapuis et al. (1998) 

showed that susceptibility of grapevine stem wounds to Eutypa lata infection varied with 

wood age; wound susceptibility was highest directly after pruning and decreased over time. 

Also, wounds made in early winter remained susceptible for a longer time than wounds made 

in January or February (late winter). Biggs (2004) also showed that inoculum concentration 

was an important factor since incidence of B. dothidea infections on apple fruit increased as 

conidium concentration increased from 104 to 107 spores/mL. Petzoldt et al. (1981) also 

reported higher infection incidence in grapevine pruning wounds inoculated with 103 

ascospores/mL of E. lata as compared to 102 ascospores/mL.  However, Amponsah et al. 

(2014) showed that when 20 µL drops of Neofusicoccum luteum conidia (102-106/mL) were 

applied onto fresh trunk pruning wounds, all concentrations were able to cause 100% 

incidence of infection, but that lesion development was slower for the lower concentrations 

than the higher concentrations. 

Different tissues may also vary in their susceptibility to infection by the Botryosphaeriaceae. 

Flowers et al. (2001) reported that Diplodia sapinea was rarely isolated from xylem and pith 

tissues of pine trees as compared to bark and phloem tissues. Azouaoui et al. (2012) also 

reported being able to isolate Botryosphaeria iberica from the necrotic bark surrounding the 

inoculation sites in cypress. Botryosphaericeae spp. are generally regarded as wound 

pathogens (Smith et al., 1996; Taylor et al., 2005; van Niekerk et al., 2006), however 

Amponsah et al. ( 2012a) reported that a conidial suspension of N. luteum could infect even 

non-wounded buds on detached canes, killing most of the buds and progressing down into the 

supporting shoots. Phillips (1998) also reported that when a conidium suspension was 

‘inserted’ between grapevine bud scales and stipules without being directly wounded, the 

buds became infected by B. dothidea. Amponsah et al. (2012a) also showed that wounded, 

attached berries could be infected by N. luteum conidia, with greater incidence of berries 

inoculated at harvest time than at pre-bunch closure time. Wunderlich et al. (2011) also 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b30
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b32
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b21
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b25
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b37
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showed that detached berries were susceptible to infection when inoculated at harvest time 

with D. seriata, N. parvum, N. luteum, Dothiorella viticola, L. theobromae, D. mutila and 

Fusicoccum aesculi. In mango fruits, disease symptoms caused by Botryosphaeria spp. 

appeared only when sugar levels increased during ripening of fruit (Johnson et al., 1992).  

The aim of this study was to find how susceptibility of wounds in different tissues is affected 

by the time period after pruning, tissue age and type, Botryosphaeriaceae species, conidial 

concentration and environmental conditions. Unlike many other reported experiments with 

Botryosphaeriaceae species, the inoculated sites were not protected by Parafilm™ nor the 

plants covered with plastic bags to provide high relative humidity. Instead, inoculation was 

conducted late afternoon or early morning to reduce dehydration but still ensure that the 

results were relevant to natural infection conditions. 

4.2 Materials and Methods  

4.2.1 Effect of wound age on susceptibility 

In February 2014, the potted plants of Sauvignon blanc were acclimatised for 2 weeks outside 

of the tunnel house at Fairhall Vineyard. Tissues of various ages (semi-hard shoots and 2-

year-old lignified trunk wood) were wounded and inoculated with 20 and 40 µL drops, 

respectively, of conidial suspensions (104/mL) using a mixture of the three most pathogenic 

isolates of N. luteum (CC445, MM558, ICMP 16678) or N. parvum (MM562, G69a1, G652), 

which were prepared as described in Section 2.2.2.1. Semi-hard shoots were wounded by 

removing the shoot tops with sterilized secateurs and the main stems of woody trunks were 

wounded by drilling a 2.5 mm diam. and 3 mm deep hole into the centre of each trunk. 

Inoculation was performed at 0, 7, 14, 28, 42, 56 and 70 days after wounding. Sterile water 

was applied to non-inoculated control plants for all treatment days. The same plants were 

used to provide semi-hard shoot and trunks tissues for each inoculation day with six replicate 

plants per treatment arranged in a RBD. After 14 days the top ~6 cm of each semi-hard shoot 

was harvested. The upper 2 mm of the shoot was discarded and the shoot cut into segments at 

1 cm intervals up to 5 cm below the wounded area. These segments were surface sterilized, 

by dipping in 70% ethanol for 30 s followed by 30 s in sterile water and air drying under the 

laminar flow unit for 1 h, and then used for isolation onto PDA amended with 

chloramphenicol (0.05 g/L). After 28 days, trunk sections, up to 5 cm below the wounded 

inoculated areas, were harvested and cut into 1 cm segments, which excluded the ~0.5 cm 

area of the wound. These were surface sterilized, by dipping in 70% ethanol for 30 s, 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3059.2011.02548.x/full#b10
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followed by 30 s in sterile water and air drying under the laminar flow unit for 1 h. Bark and 

wood pieces were plated separately onto PDA amended with chloramphenicol (0.05 g/L). All 

plates were incubated at 25°C for 3-7 days and then typical colony appearance allowed 

identification of N. parvum and N. luteum. Assessment was based on incidences and lengths 

of colonised tissues for N. parvum and N. luteum in treated tissues.  

4.2.2 Effects of season and wound age on wound susceptibility 

To check the infection efficacy of pathogens at different plant growth stages and under 

different environmental conditions, the same process as described in Section 4.2.1 was 

repeated with Sauvignon blanc semi-hard green shoots and trunks (both on the same plant). 

Wounding, inoculation and incubation were conducted outside the tunnel house in different 

weather and growth conditions as occurred in the different seasons (winter, spring, summer 

and autumn). Dates and average environmental conditions are shown in Appendix F.1. The 

wounds were inoculated at 0, 7, 14, 28 and 42 days after wounding with only N. luteum 

conidia and water controls, since both species (N. luteum and N. parvum) showed similar 

levels of infection in Section 4.2.1.  Assessment was the same as described in Section 4.2.1 

except that wood and bark were not separated prior to isolation. 

4.2.3 Effects of conidial number and wound age on wound susceptibility 

To further check the effect of wound age and the infection efficacy of N. luteum with 

different conidial concentrations, in December, 2014 the experiment in Section 4.2.1 was 

repeated with Sauvignon blanc semi-hard green shoots and trunks (both on the same plant), 

with different conidial numbers per wound (2, 10, 20, 40 and 100).  Serial dilution of a mixed 

isolate conidial suspension of N. luteum provided concentrations from 1 x 102 conidia/mL to 

5 x 103 conidia/mL, for the 20 µL conidial droplets used for inoculation onto wounded hard 

shoots. A further dilution series of 5 x 101 conidia/mL to 2.5 x 103 conidia/mL, provided the 

same conidial numbers in the 40 µL conidial droplets used for inoculation onto wounded 

trunks. Inoculation was conducted at 0, 7, 14 and 28 days after wounding the plants as 

described in Section 4.2.1. Sterile water was used for the control plants, with the same tissues 

and wound ages. Experimental layout and assessment were the same as described in Section 

4.2.1 except that wood and bark were not separated prior to isolation. 
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4.2.5 Lenticels infection  

Since the previous experiment in Section 4.2.4 had shown bark infection seemed to have 

occurred through lenticels, semi-hard green shoots, canes and trunks of 2-year-old Sauvignon 

blanc and Pinot noir grapevines grown in the Lincoln University shade house were selected in 

October, 2015 to investigate infection development through lenticels. Three replicate plants 

were inoculated on the bark of hard green shoots, canes and trunks, selecting areas with 

obvious lenticels. The conidial suspensions (104/mL) of N. parvum (isolate B2141) or N. 

luteum (isolate G51a2) were applied using a spray bottle to cover an area of 3 cm length 

(about 0.5 to 1 mL of suspension). Control plants were inoculated with sterile water only. 

After 2 weeks these tissues were removed from the stems, so that infecting mycelium could 

be observed by fluorescence microscopy following the method of Williamson et al. (1998). 

Three thin (~0.3 mm thick) longitudinal sections of the bark and underlying wood as well as 

transverse sections in the lenticel areas were cut on the inoculated semi-hard green shoots, 

canes and trunks using a new sterile scalpel blade. The sections were fixed in Carnoy solution 

(ethanol: chloform: glacial acetic acid 6: 3: 1 v/v/v) for 1 h for semi-hard green shoots and for 

24 h for cane and trunk tissues. Sections were removed, drained and placed in clean 

Universal bottles containing NaOH (1 Normal), and softened and cleared in a water bath at 

60°C for 1 h (soft shoots) or 1 h 40 min (hard tissues). The NaOH was discarded and the 

sections were transferred to clean Petri dishes, where they were rinsed in 10 mL sterile water 

to remove the residual NaOH. A paint brush was used to pick up the individual sections and 

transfer them to a microscopic slide for mounting. Excess water was absorbed by blotting the 

sections gently with a new sheet of KimwipeTM (Kimberly-Clark, Science+Brand). A drop of 

freshly prepared 0.1% aniline blue in 0.1 N K2HPO4 was used to stain each specimen section 

and then a cover slip was gently pressed onto the tissue section. The specimens were 

observed by fluorescence microscopy with an Olympus SZX12 microscope with UV light 

source model U-LH100HG, with a supplementary barrier filter (excitation wave length of 

460-495 nm, emission of 510-550 nm) and without UV light. Image analysis was performed 

using the Cell/F (Olympus soft imaging solutions, Athens, Greece) image software. Data for 

presence of mycelium in the tissues adjacent to lenticels (incidence) were analysed by 

ANOVA. 

  



 

98 
 

4.2.6 Leaf bud infection 

In this experiment, conidial suspensions (104/mL) were prepared for both N. parvum (isolate 

B2141) and N. luteum (isolate G51a2) and 20 µL drops of each applied to seven leaf buds on 

a single cane of each 2-year-old Sauvignon blanc and Pinot noir vines at various 

developmental times [tight bud (August, 2014), woolly bud (September, 2014) and green tip 

visible stage (October, 2014)], with and without superficial wounding. For wounding, each 

bud was pricked thrice with a needle on the tip to a depth of 2-3 mm. Inoculation was done 

immediately with 20 µL drops of conidia which were lightly spread over the surface of the 

wounded area with the pipette tip. Sterile water applied to controls following wounding. For 

each treatment there were six replicate vines arranged in a RBD outside the tunnel house at 

Fairhall Vineyard Blenheim. After 2 weeks, five of the treated buds were cut from each vine 

and used for isolation onto PDA after surface sterilization as described in Section 4.2.1. Two 

buds were left for observation. After 3 months (tight buds) 2 months (woolly buds) and 1 

month (green tip visible buds), leaves developing from all bud stages were examined for 

necrosis, and the n eight, 5 mm segments cut from the lesion edges of each necrotic leaf were 

surface sterilised in 70% ethanol for 30 s, followed by 30 s in sterile water, dried and plated 

onto PDA. The green shoots which developed from each bud, were also removed, with five 1 

cm segments being cut for surface sterilisation and isolation onto PDA, starting from the leaf 

petiole to the junction with the supporting shoot. A further 5 cm section was cut from each 

cane containing the buds, at 0.5 cm above the top inoculated bud on the cane, and this was 

cut into five 1 cm segments for isolation. These segments were surface sterilised and used for 

sequential isolation of 1 cm segments as described in Section 4.2.1.   

This experiment was repeated in September 2015, with wounded woolly buds of 2-year-old, 

potted Sauvignon blanc and Pinot noir vines in the Lincoln University shade house. For each 

treatment (species, wounding and non-wounding) there were four replicate plants with three 

buds used on each plant. After 1 week these inoculated buds were removed and prepared by 

fixing, clearing and staining for observation under a fluorescent microscope as described in 

Section 4.2.4.  

4.2.7 Susceptibility of berries on potted vines at different stages of development 

In this experiment, potted vines of Sauvignon blanc and Pinot noir were selected in 2014 at 

various bunch developmental stages [pre-bunch closure (January, 2015; 4-6 mm in diameter), 

veraison (February, 2015) and 1 week before harvest (March, 2015)]. Grape sugar content 
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was measured to determine the harvest stage. Each week from 4 weeks after veraison one 

berry was selected from each bunch and its juice squeezed out within a new polythene bag. 

One drop of this juice (repeated three times) was put onto the glass face of a digital Atago 

Pocket PAL-1 refractometer (Atago Co., Ltd, Japan) and the reading was noted. When the 

mean sugar content was about 22-23%, the berries for harvest stage were inoculated. For each 

potted vine 12 berries were inoculated on one bunch for non-wounded berries and on another 

vine for wounded berries (4 superficial needle pricks per berry). The conidial suspensions 

(104/mL) prepared for both N. parvum (isolate B2141) and N. luteum (isolate G51a2) were 

applied with a spray bottle to the selected berries. The 12 replicate vines per treatment were 

arranged in a RBD outside the tunnel house at Fairhall Vineyard, Blenheim. One week after 

inoculation, 10 treated berries were removed and detached from their rachii. Berries and their 

rachii were surface sterilized as in Section 4.2.1 by dipping into 70% ethanol for 30 s, then 

washed with sterile water, dried and used for isolation onto PDA.  

The remaining two berries were left for 1 month to observe formation of pycnidia and 

infection progression into shoots. They were removed from the bunch, washed with sterile 

water for one minute and then incubated separately in Universal bottles with moist filter 

paper at room temperature for 2 days to allow oozing of pycnidia. The material that appeared 

to ooze from the pycnidia of berries was mounted on a glass slide and examined for conidia 

similar to those of N. luteum and N. parvum. For the berries inoculated 1 week before harvest, 

the supporting shoot of each bunch was immediately excised at 5 cm below and above the 

bunch stem position, surface sterilized by washing with sterile water for one minute and cut 

into 1 cm sections, which were sequentially placed onto PDA, followed by incubation at 

25°C for 3-7 days. Presence of fungal colonies characteristic of N. luteum and N. parvum 

indicated the distances moved by the pathogen. 

4.2.8 Susceptibility of berries on field vines at different stages of development  

In the Brancott Vineyard, Blenheim, 11 replicate Sauvignon blanc vines 19 years old were 

allocated for this experiment by the vineyard manager, of which one arm per vine was 

inoculated with N. parvum (isolate B2141) and the other with N. luteum (isolate G51a2). Ten 

bunches per vine were randomly selected for treatment at each development time (pre-bunch 

closure (February, 2015), veraison (March, 2015) and 1 week before harvest (April, 2015), of 

which four inoculated bunches were wounded (4 needle pricks/berry), four non-wounded, 

and two bunches (one wounded and one non-wounded) were inoculated with sterile water 

(control). On each bunch 12 berries were used for treatment. Conidial suspensions (104/mL) 
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were prepared for both species and applied with a spray bottle to the selected berries. After 1 

week, six berries were taken from each bunch for surface sterilization with ethanol (as in 

Section 4.2.7) and isolation onto PDA. The rest of the berries were left for 2 weeks to observe 

for development of pycnidia. For the berries inoculated 1 week before harvest, the supporting 

shoot of each bunch was excised at 5 cm below and above the bunch stem position, surface 

sterilized by washing with sterile water for one minute and cut into 1 cm sections, which 

were sequentially placed onto PDA, followed by incubation at 25°C for 3-7 days. Presence of 

fungal colonies characteristic of N. luteum and N. parvum indicated the distances moved by 

the pathogen. 

 4.2.9 Statistical analysis 

The lengths of colonised tissues were analysed by General Linear Model (Minitab 17th 

edition) to determine significant main effects, and the significance of differences between 

related treatments was determined using Sidak pairwise comparisons at P≤0.05. The 

proportion of infected berries and buds per plant were arcsine transformed to improve the 

homogeneity in variance.  Data of infection incidence in inoculated grapevine shoots were 

analysed by General Linear Model (GLM) using GenStat (16th edition), which is considered 

appropriate for binomial data (McCue et al., 2008), using the logit link function. Bernoulli 

distribution defined as a binary variable was assumed. Standard errors of differences (SEDs) 

derived from GLM analysis were used to show differences between treatment means.  

4.3 Results 

4.3.1 Effect of wound age on susceptibility 

For semi-hard green tissues, wound age at the time of inoculation significantly affected 

infection incidence (P<0.001; Appendix D.1.1). Pathogen mean infection incidence was 

100% for wounds inoculated at 0 and 7 days and 83.3% at 14 days, which were all 

significantly greater (P<0.05) than the 50.0% at 28 days. The lowest (P<0.05) mean 

incidences were 16.6% at 56 days and 0% at 70 days. (Table 4.1).  Pathogen mean infection 

incidence was not affected significantly by species (P=0.531) and the interaction between 

wound age and species was not significant (P=0.912).   

For wood of trunks, wound age at the time of inoculation also significantly affected infection 

incidence (P<0.001; Appendix D.1.2). Mean incidence was 100% at 0 and 7 days, which was 

significantly greater (P<0.05) than the 50% at 14 days, which was significantly greater 

(P<0.05) than the 16.6% at 28 days and 0% for the remaining inoculation times (Table 4.1). 
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Pathogen mean infection incidence was not affected significantly by species (P=1.000) and 

the interaction between wound age and species was not significant (P=1.000).   

For bark, wound age at the time of inoculation significantly affected infection incidence 

(P<0.001; Appendix D.1.3). Mean incidence was 100% for wounds inoculated at 0 and 7 

days, which was significantly greater (P<0.05) than the incidence of 58.3% at 14 days and 

41.6% at 28 days. The lowest mean incidences were 8.3% at 42 days, and 0% for the 

remaining inoculation times (Table 4.1). Pathogen infection incidence was not affected 

significantly by species (P=0.425) and the interaction between wound age and species was 

not significant (P=0.998). Control plants showed minimal internal necrosis (Figure 4.2) but 

no colonies characteristic of Botryosphaeriaceae spp. were isolated from any of the control 

plants. 

Table 4.1 Mean infection incidences (%) of Neofusicoccum luteum and N. parvum after 
inoculation with conidial suspensions (104) onto different wound ages made in semi-hard 
green shoots and trunks of potted Sauvignon blanc grapevines. Values in parentheses are logit 
transformed data. 

Wound age 

aNeofusicoccum spp. incidence (%) 

Semi-hard shoots 
Trunks 

Wood Bark 

0 100  (0.00) d 100  (0.00) c 100  (0.00) c 

7 100  (0.00) d 100  (0.00) c 100  (0.00) c 

14 83.3  (0.34) d 50.0  (1.10) b 58.3  (0.90) b 

28 50.0 (1.15) c 16.6  (8.76) a 41.6  (1.36) b 

42 33.3  (1.61) bc 0  (15.90) a 8.3  (9.65) a 

56 16.6  (8.26) ab 0  (15.90) a 0  (16.90) a 

70 0  (14.90) a 0  (15.90) a 0  (16.90) a 

SED            (0.351)  (0.346) (0.440) 

aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 
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Figure 4.2 Effect of inoculation with Neofusicoccum parvum on semi-hard green shoots with 
internal necrosis (b) as compared to non-inoculated control (a). 

For infection of semi-hard green tissues, the lengths of colonised tissues were significantly 

affected by wound age (P<0.001; Appendix D.2.1). The greatest (P<0.05) mean length of 

colonisation was for the 0 day inoculation (3.0 cm) and the least was for 56 and 70 days, 

mean similar (P>0.05) lengths being 0.2 cm and 0 cm, respectively (Table 4.2). Colonisation 

length was not affected by species (P=0.153) and there was no interaction between wound 

age and species (P=0.486). 

For infection of the wood of trunks, the lengths of colonised tissues were affected 

significantly by wound age (P<0.001; Appendix D.2.2). The greatest (P<0.05) mean lengths 

of colonisation were for 0 and 7 days inoculation with similar (P>0.05) lengths of 1.4 and 1.3 

cm. The least (P<0.05) mean lengths were for 56 and 70 days, being 0 cm for both (Table 

4.2). The length of colonised tissues was not affected by species (P=1.00) and there was no 

interaction between wound age and species (P=0.459). 
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Table 4.2 Mean lengths of colonised tissues after inoculation with conidial suspensions (104) 
of Neofusicoccum luteum and N. parvum onto different wound ages made in semi-hard green 
shoots and trunks of potted Sauvignon blanc grapevines. 

Wound age 

aNeofusicoccum spp. colonised tissues (cm) 

Semi-hard shoots 
 

Trunks 

Wood Bark 

0 3.0a 1.4a 1.8a 

7 1.9b 1.3a 1.6ab 

14 1.1bc 0.9ab 1.0abc 

28 0.4cd 0.3bc 0.7bc 

42 0.3cd 0c 0.2c 

56 0.2d 0c 0c 

70 0d 0c 0c 

Means 0.5 0.4 0.7 
aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

For infection of the bark of trunks, the lengths of colonised tissues were significantly affected 

by wound age (P<0.001; Appendix D.2.3). The greatest (P<0.05) mean colonised length was 

for 0 day inoculation (1.8 cm) and the least (P<0.05) were for 42, 56 and 70 days, all being 0 

cm (Table 4.2). The length of colonised tissues was not affected by species (P=0.207). There 

was no interaction between wound age and species (P=0.965). 

4.3.2 Effects of season and wound age on wound susceptibility 

On semi-hard green shoots, N. luteum infection incidence was significantly affected by 

seasons (P=0.018; Appendix D.3.1), with greatest (P<0.05) mean infection incidence in 

autumn (73.3%) and lowest (P<0.05) in summer (40.0%) (Table 4.3). Infection incidence was 

also affected by wound age (P<0.001), with greatest (P<0.05) mean infection incidences for 

0 and 7 days (100 and 87.5%, respectively) and least (P<0.05) for 42 days (4.1%) (Table 

4.4). The interaction between seasons and wound age was not significant (P=0.877), although 

in each season there were different trends for decreasing infection as wound aged (Table 4.5). 
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Table 4.3 Mean infection incidences of Neofusicoccum luteum after inoculation with conidial 
suspensions (104) onto wounds made in hard green shoots and trunks of potted Sauvignon 
blanc grapevines in different seasons. Values in parentheses are logit transformed data. 

Seasons 

aNeofusicoccum spp. incidence (%) 

Green shoots Trunks 

Autumn 73.3  (0.55) c 66.6  (0.62) b 

Spring 66.4  (0.70) bc 57  (0.85) ab 

Winter 53.3  (1.02) ab 46.6  (1.10) a 

Summer 46.2  (1.20) a 40  (1.34) a 

SED       (0.093)      (0.515) 

aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 

Table 4.4 Mean infection incidences of Neofusicoccum luteum after inoculation with conidial 
suspensions (104) onto different wound ages made in semi-hard green shoots and trunks of 
potted Sauvignon blanc grapevines. Values in parentheses are logit transformed data. 

Wound age 

aNeofusicoccum spp. incidence (%) 

Semi-hard shoots Trunks 

0 100  (0.00) d 100  (0.00) d 

7 87.5  (0.26) d 83.3  (0.36) d 

14 62.5  (0.85) c 50  (1.13) c 

28 37.5  (1.57) b 25  (4.75) b 

42 12.5  (7.97) a 4.1  (11.03) a 

SED        (0.392)                   (0.523) 

aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 
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Table 4.5 Mean infection incidences of Neofusicoccum luteum after inoculation with conidial 
suspensions (104) onto wounds made on different days on Semi-hard green shoots and trunks 
of potted Sauvignon blanc grapevines in different seasons. Values in parentheses are logit 
transformed data. 

aNeofusicoccum spp. incidence (%) 

Tissue 
type 

   Seasons                                                             Wound age 

 0 7 14 28 42 

 Autumn 100 (0.00) 100 (0.00) 83.3 (0.34) 50 (1.12) 33.3 (1.63) 

Green  Spring 100 (0.00) 100 (0.00) 66.7 (0.70) 50 (1.12) 16.7 (2.43) 

 Summer 100 (0.00) 66.7 (0.70) 33.3 (1.63) 33.3 (1.63) 0 (13.90) 

 Winter 100 (0.00) 83.3 (0.34) 66.7 (0.70) 16.7 (2.40) 0 (13.90) 

 Autumn 100 (0.00) 100 (0.00) 66.7 (0.69) 50 (1.099) 16.7 (2.40) 

Trunk Spring 100 (0.00) 100 (0.00) 50 (1.10) 33.3 (1.61) 0 (13.90) 

 Summer 100 (0.00) 50 (1.10) 33.3 (1.61) 16.7 (2.40) 0 (13.90) 

 Winter 100 (0.00) 83.3 (0.34) 50 (1.10) 0 (13.90) 0 (13.90) 

aValues within columns are not significantly different according to the SEDs derived from GLM 
analysis of logit transformed data. 

On woody trunks, N. luteum infection incidence was significantly affected by seasons 

(P=0.024; Appendix D.3.2), with greatest (P<0.05) mean infection incidence in autumn 

(66.6%) and lowest (P<0.05) in summer (46.6%) (Table 4.3). Infection incidence was also 

affected by wound age (P<0.001), with mean infection incidence being greatest (P<0.05) for 

0 days (100%) and least (P<0.05) for 42 days (16.7%) (Table 4.4). The interaction between 

seasons and wound age was not significant (P=0.734).  

For semi-hard green shoots, length of colonised tissues was significantly affected by season 

(P<0.001; Appendix D.4.1), with greatest (P<0.05) mean length in autumn (2.0 cm) and 

lowest (P<0.05) in summer (1.0 cm) (Table 4.6). Length of colonised tissues was also 

affected by inoculation day after pruning (P<0.001) with greatest (P<0.05) length for 0 day 

inoculation (2.9 cm) and lowest (P<0.05) for 42 day inoculation (0.2 cm) (Table 4.7). The 

interaction between the seasons and time of wound age was not significant (P=0.173).  

For trunks, the length of colonised tissues was also significantly affected by season (P<0.001; 

Appendix D.4.2), with greatest (P<0.05) mean length in autumn (1.3 cm) and lowest in 

summer (0.6 cm) (Table 4.6). Length of colonised tissues was also affected by inoculation 
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day after pruning (P<0.001), with greatest (P<0.05) length for 0 day inoculation (2.1 cm) and 

lowest (P<0.05) for 42 day inoculation (0.1 cm) (Table 4.7). The interaction between the 

seasons and time of wound age was not significant (P=0.173).  

Table 4.6 Mean lengths of colonised tissues after inoculation with conidial suspensions (104) 
of Neofusicoccum luteum onto wounds made in semi-hard green shoots and trunks of potted 
Sauvignon blanc grapevines in different seasons. 

Seasons 
aNeofusicoccum spp. colonised tissues (cm) 

Semi-hard shoots Trunks 

Autumn 2.0a 1.3a 

Spring 2.0a 1.0ab 

Winter 1.1b 0.7bc 

Summer 1.0b 0.6c 

Means 0.5 0.3 
aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

Table 4.7 Mean lengths of colonised tissues after inoculation with conidial suspensions (104) 
of Neofusicoccum luteum onto different wound ages made in semi-hard green shoots and 
trunks of potted Sauvignon blanc grapevines. 

Wound age 
aNeofusicoccum spp. colonised tissues (cm)  

Semi hard shoots Trunks 

0 2.9a 2.1a 

7 2.6a 1.3b 

14 1.4b 0.8c 

28 0.7c 0.3cd 

42 0.6c 0.1d 

Means 10.9 20.2 

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 
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4.3.3 Effects of conidial number and wound age on wound susceptibility 

For semi-hard green shoots, mean infection incidence was significantly affected by wound 

age (P<0.001; Appendix D.5.1), with greatest (P<0.05) mean infection incidence for 0 day 

inoculation (100%) and lowest (P<0.05) for 28 days (36.6%) (Table 4.8). Mean infection 

incidence was not affected by different inoculum levels (P=0.772) and the interaction 

between wound age and inoculum level was not significant (P=0.885). 

For woody trunks, mean infection incidence was also significantly affected by wound age 

(P<0.001; Appendix D.5.2), with greatest (P<0.05) mean infection incidence for 0 day 

inoculation (93.3%) and lowest (P<0.05) for 28 days (23.3%) (Table 4.8). Mean infection 

incidence was not affected by different inoculum levels (P=0.093) and the interaction 

between wound age and inoculum levels was not significant (P=0.930). 

The trends for greater incidence with higher inoculum levels, which seemed more evident 

with lower range of conidial numbers and for 0 and 7 day wounds are shown in Table 4.11 

Table 4.8 Mean infection incidences of Neofusicoccum luteum after inoculation with conidial 
suspensions (104) onto different wound ages made in semi-hard green shoots and trunks of 
potted Sauvignon blanc grapeviness. Values in parentheses are logit transformed data. 

Wound age 
aNeofusicoccum luteum infection incidence (%) 

Green shoots Trunks 

0 100  (0.00) c 93.3  (0.14) c 

7 86.6  (0.41) bc 80.0  (0.43) c 

14 70.0  (0.92) b 50.0  (1.14) b 

28 36.6  (1.23) a 23.3  (2.08) a 

SED         (0.499)          (0.338) 

aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 

For semi-hard green shoots, length of N. luteum colonised tissues was significantly affected 

by inoculation time (P<0.001; Appendix D.6.1), with greatest (P<0.05) mean length for 0 day 

inoculation (2.8 cm) and shortest (P<0.05) mean length for 14 and 28 days (0.9 and 0.5 cm, 

respectively; Table 4.9). There was a significant effect of inoculum level (P=0.020), with 

longest (P<0.05) length for 100 conidia/wound site (1.8 cm) and shortest (P<0.05) length for 

2 conidia per wound site (1.1 cm) (Table 4.10).  There was no significant interaction between 
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wound age and inoculum level (P=0.105). Figure 4.6 shows the greater lesion length for 100 

conidia than for 2 conidia per wound site.  

Table 4.9 Mean lengths of colonised tissues after inoculation with conidial suspensions of 
Neofusicoccum luteum onto different wound ages made in hard green tissues and trunks of 
potted Sauvignon blanc grapevines. 

Wound age 
aNeofusicoccum luteum colonised tissues (cm) 

Green shoots Trunks 

0 2.8a 2.4a 

7 1.5b 1.3b 

14 0.9c 0.6c 

28 0.5c 0.3c 

Means 0.3 0.4 

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

 

Table 4.10 Mean lengths of colonised tissues after inoculation with different numbers of 
conidia of Neofusicoccum luteum onto wounded semi-hard green shoots and trunks of potted 
Sauvignon blanc grapevines.  

Inoculum conc. 
conidia/wound 

aNeofusicoccum luteum colonised tissues (cm) 

Green shoots Trunks 

100 1.8a 1.4a 

20 1.6ab 1.3ab 

40 1.5ab 1.3ab 

10 1.2ab 0.8bc 

2 1.1b 0.7c 

Means 0.4 0.3 

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

For woody trunks, length of N. luteum colonised tissues was significantly affected by wound 

age (P<0.001; Appendix D.6.2), with greatest (P<0.05) mean length for 0 day inoculation 

(2.4 cm) and the shortest (P<0.05) mean lengths for 14 and 28 days (0.6 and 0.3 cm, 
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respectively) (Table 4.9). There was a significant effect of inoculum level (P<0.001; 

Appendix D.6.2), with longest (P<0.05) mean length for 100 conidia/wound site (1.4 cm) and 

shortest (P<0.05) mean length for 2 conidia per wound site (0.8 cm) (Table 4.10). The 

significant (P=0.027; Appendix D.6.2) interaction between wound age and inoculum level 

seemed to be associated with the higher conidial numbers causing similar colonisation 

distances for 0 and 7 day wound ages (Table 4.11). 

Table 4.11 Mean lengths of colonised tissues and infection incidence in trunks of potted 
Sauvignon blanc grapevines inoculated with different doses of conidia of Neofusicoccum 
luteum onto wounds of different ages. Values in parentheses are logit transformed data. 

        aColonised tissues (cm)     bInfection incidence (%) 

Inoculum dose Wound age Mean 
Mean 

2 0 1.2cdef 66.7  (0.70) 
2 7 0.6def 50.0  (1.10) 
2 14 0.4def 33.3  (1.61) 
2 28 0.4def 33.3  (1.61) 
10 0 2.1abc 100  (0.00) 
10 7 0.7def 66.7  (0.70) 
10 14 0.4def 33.3  (1.61) 
10 28 0.2f 16.7  (2.40) 
20 0 2.8ab 100  (0.00) 
20 7 1.5bcdef 100  (0.00) 
20 14 0.8cdef   50.0  (1.10) 
20 28 0.2f  16.7  (2.40) 
40 0 2.7ab 100  (0.00) 
40 7 1.8abcd  83.3  (0.34) 
40 14 0.5def  66.7  (0.70) 
40 28 0.3ef  16.7  (2.40) 
100 0 2.9a 100  (0.00) 
100 7 1.7abcde 100  (0.00) 
100 14 0.8cdef   66.7  (0.70) 
100 28 0.2f    33.3  (1.61)  

aValues for colonised tissues within columns followed by the same letter are not significantly different 
according to the Sidak test at 95% CIs. bValues for infection incidence are not significantly different 
according to the SEDs derived from GLM analysis of logit transformed data, shown in brackets. 
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4.3.4 Bark as saprophytic link to wound infection 

For canes, infection incidence of the first piece beyond the inoculated area (where the 

wounds were made) was significantly affected by treatments (P=0.050; Appendix D.7.1), 

with incidences for T1 (1 h), T2 (2 days) and T3 (1 week) being 33.3%, 41.6% and 70.8%, 

respectively (Table 4.12), which indicated movement of the pathogen from the inoculated 

point, through the bark upwards to where the wounds were made, with greater penetration 

over time. The central pieces which were inoculated had 100% infection incidence, which 

indicated that the pathogen had remained latent in the bark. The pieces from below and 1 cm 

beyond the inoculated areas had 0% infection incidence, indicating no movement into the 

new tissues. The infection incidence was not significantly affected by species or grapevine 

variety (P=0.529, P=0.826, respectively). All the interactions were non-significant. Non-

inoculated controls did not show any symptoms of Botryosphaericeae. 

For trunk wood, infection incidence of the first piece beyond the inoculated area was 

significantly affected by treatments (P=0.009; Appendix D.7.2), with incidences for T1, T2 

and T3 being 25%, 33.3% and 70.5%, respectively (Table 4.12). The central pieces which 

were underneath the inoculated bark area had a mean of 83.3% infection incidence, with 

76.3%, 83.3% and 90.2% for T1, T2 and T3 respectively. Infection in the wood below 

indicated that bark infection had progressed rapidly into adjacent wood. The pieces from 

below and 1 cm beyond the inoculated areas had 0% infection incidence. Infection incidence 

was not significantly affected by species or variety (P=0.871, P=0.791, respectively). All the 

interactions were non-significant. Non-inoculated controls did not show any symptoms of 

Botryosphaericeae 

For bark, infection incidence of the first piece beyond the inoculated area was significantly 

affected by treatments (P=0.044; Appendix D.7.3), with incidences for T1, T2 and T3 being 

24.9%, 49.5% and 66.6%, respectively (Table 4.12). The central pieces which were 

inoculated had 100% infection incidence and the pieces from below and 1 cm beyond the 

inoculated areas had 0% infection incidence Infection incidence was not significantly 

affected by species or variety (P=0.946, P=0.365, respectively). All the interactions were 

non-significant. Non-inoculated controls did not show any symptoms of Botryosphaericeae 
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Table 4.12 Mean infection incidences for Neofusicoccum luteum and N. parvum 1 cm above 
the inoculation areas of bark after wounding at different times [(T1 (1 h), T2 (2 days) and T3 
(7 days)] on canes and wood tissues of potted Sauvignon blanc and Pinot noir grapevines. 
Values in parentheses are logit transformed data. 

Treatments 

aMean infection incidence (%) 1 cm segment above the 
inoculation point 

canes  wood  bark  

T1 33.3  (1.61) a 25  (2.10) a 24.9  (2.03) a 

T2 41.6  (1.36) a 33.3  (1.82) b 49.5  (1.14) b 

T3 70.8  (0.60) b 70.5  (0.64) c 66.6  (0.72) c 

SED          (0.195)          (0.231)           (0.220) 
aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 

In the repeated experiment with trunks of Pinot noir potted plants, infection incidence in 

wood of the first piece beyond the inoculated area was significantly affected by treatments 

(P=0.041; Appendix D.8.1), with incidences for T1 (0 day), T2 (7 days) and T3 (14 days) 

being 25%, 50% and 83.3%, respectively (Table 4.13). The central pieces which had been 

inoculated had 84.2% mean infection incidence, with 72.2%, 88.8% and 91.6% for T1, T2 

and T3, respectively, and the pieces from below the inoculated areas had 0% infection 

incidence. Infection incidence for trunk wood was not significantly affected by species 

(P=0.422). All the interactions were non-significant. Non-inoculated controls did not show 

any symptoms of Botryosphaericeae 

Table 4.13 Mean infection incidences for Neofusicoccum luteum and N. parvum 1 cm above 
the inoculation area after wounding at different times (T1 (1 h), T2 (2 days) and T3 (1 week) 
on trunk tissues of potted Pinot noir grapevines. Values in parentheses are logit transformed 
data. 

Treatments 
aMean infection incidence (%) 1 cm above the inoculation point 

Wood Bark 

T1 25.0 (2.01) a 16.6 (2.40) a 

T2 50.0  (1.10) b 41.6  (1.35) b 

T3 83.3  (0.35) c 83.3  (0.35) c 

SED          (0.363)          (0.496) 

 aValues within columns followed by the same letter are not significantly different according to the 
SEDs derived from GLM analysis of logit transformed data. 
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Infection incidence for bark of the first piece beyond the inoculated area was significantly 

affected by treatments (P=0.023; Appendix D.8.2), with incidences for T1, T2 and T3 

being16.6%, 41.6% and 83.3%, respectively. The three central pieces which were inoculated 

had 100% infection incidence and the pieces from below the inoculated areas had 0% 

infection incidence. The infection incidence was not significantly affected by species 

(P=0.318). All the interactions were non-significant. Non-inoculated controls did not show 

any symptoms of Botryosphaericeae 

4.3.5 Lenticel infection  

The fixation and clearing of specimens made it possible to visualize hyphae and germinating 

conidia in longitudinal and transverse sections of cane bark, wood and green shoots under the 

light component of the fluorescent microscope. Although the plant tissues also fluoresced it 

did not interfere with the differentiation of mycelium (Figure 4.3).  However, it was not 

possible to discern mycelium in the bark of the tissues of trunks. 

Overall infection incidence was not significantly affected by species or variety (P=0.586, 

P=0.111; Appendix D.9.1, respectively), but it was significantly effect by tissue types 

(P=0.008), with overall mean infection incidences of semi-hard green shoots, canes and 

trunks being 97.9%, 93.0% and 67.5%, respectively (Table 4.14). Infection incidence was 

also significantly affected by segment types (P<0.001; Appendix D.9.1) being 77.9%, 48.1% 

and 72.1% of cross-sections and longitudinal sections (bark and underlying wood), 

respectively. 
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Figure 4.3 Representative fluorescent microscope observations of ~ 0.3 mm sections cut 
from grapevine tissues inoculated with Neofusicoccum luteum and N. parvum a) longitudinal 
section of bark of cane showing lenticel (arrow) with hyphae of N. luteum under UV light, b) 
same image without UV light, c) longitudinal section cut of green shoot showing mycelium 
of N. parvum under UV light, d) same image without UV light, e) longitudinal  section of 
cane with germinating conidia of N. parvum under UV light, f) cross section of green shoot 
with mycelium of N. luteum under UV light. Scale bars represent 100 µm. 
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Table 4.14 Mean percent of segments showing mycelium in thin sections cut at lenticels of 
different stem tissues when examined by fluorescent microscopy, 7 days after inoculation 
with conidia of Neofusicoccum luteum and N. parvum onto 2-year-old plants of Sauvignon 
blanc and Pinot noir. 

Tissues types 

                 aStem tissue types  

Longitudinal 
Sections Crosssections Mean 

Bark Wood   

Green shoots 74.9 69.4 97.9 97.9a 
Canes 69.4 77.7 93.0 93.0a 
Trunk 0 69.4 67.5 67.5b 
Means 48.1b 72.1a 77.9a  

 
 

aValues for infection incidence within columns and rows followed by the same letter are not 
significantly different according to the Sidak test at 95% CIs. 

4.3.6 Leaf Bud infection 

Non-wounded buds yielded colonies of N. luteum and N. parvum only from the buds 

inoculated at the green tip visible stage, therefore non-wounded buds were not included in the 

overall data analysis and the data for non-wounded green tip visible stage buds were analysed 

separately. For the wounded buds over all bud development stages, infection incidence was 

significantly affected by bud stage (P=0.003; Appendix D.10.1), with overall mean 

incidences at dormant, woolly and green tip visible stages of 43.3%, 46.7% and 55%, 

respectively. There was significant effect of species (P=0.037), with overall mean infection 

incidences of N. luteum and N. parvum being 50.6% and 46.1%, respectively. The effect of 

variety on mean infection incidence was also significant (P=0.006), with overall mean 

incidences for Sauvignon blanc (52.0%) being greater than for Pinot noir (45.0%). These 

incidence data were also analysed according to the bud stage inoculated to further investigate 

the effects. 
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Table 4.15 Mean infection incidence on Neofusicoccum luteum and N. parvum potted 
grapevines (Sauvignon blanc and Pinot noir) at different bud developmental stages. 

Species Developmental bud stages 
at inoculation 

aMean infection incidence (%) 

  

N. luteum Dormant 46.7a  

N. parvum Dormant 40.0a  

N. luteum Woolly 48.3a  

N. parvum Woolly 45.0a  

N. luteum Green tip visible 56.6a  

N. parvum Green tip visible 53.3a  

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

At the dormant stage, incidences of N. luteum and N. parvum in wounded buds were not 

significantly affected by species (P=0.238; Appendix D.10.2) or grapevine variety 

(P=0.238). Mean incidences of N. luteum and N. parvum were 46.7 and 40.0%, respectively 

(Table 4.15) and for Sauvignon blanc and Pinot noir were 46.7 and 40.0%, respectively.  The 

interaction between species and variety was not significant (P=0.261; Appendix D.10.2).  

At the woolly bud stage, incidences of N. luteum and N. parvum were not significantly 

affected by species (P=0.506; Appendix D.10.3) or grapevine variety (P=0.182). Mean 

incidences of N. luteum and N. parvum were 48.3 and 45.0%, respectively (Table 4.15), and 

for Sauvignon blanc and Pinot noir were 50 and 43.3%, respectively. The interaction between 

species and variety was not significant (P=0.506) (). 

At the green tip visible stage, incidences of N. luteum and N. parvum were not significantly 

affected by species (P=0.491; Appendix D.10.4) or grapevine variety (P=0.339). Mean 

incidences of N. luteum and N. parvum were 56.6% and 53.3%, respectively (Table 4.15), 

and for Sauvignon blanc and Pinot noir were 58.8% and 51.7%, respectively. The interaction 

between species and variety was not significant (P=0.659) ().  

For non-wounded buds at the green tip visible stage, incidences of N. luteum and N. parvum 

were not significantly affected by species or grapevine variety (P=0.552, P=0.976; Appendix 

D.10.5, respectively). Mean incidences of N. luteum and N. parvum were 33 and 30%, 
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respectively, and was 32.5% for both Sauvignon blanc and Pinot noir. The interaction 

between species and variety was not significant (P=0.976). 

The pathogens colonised all the green shoots growing out of the wounded buds and all canes 

supporting the buds (100% incidence for both tissues). Over all buds, mean lengths of 

colonised tissues in green shoots that developed from the buds were significantly affected by 

different bud stages of inoculation (P<0.001; Appendix D.11.1), with similar (P<0.05) mean 

lengths of colonised shoots inoculated at dormant and woolly stages (1.7 cm and 1.9 cm, 

respectively) which were less (P<0.05) than for the green tip visible (2.3 cm). There was a 

significant effect of species (P<0.001), with mean lengths of colonised tissues for N. luteum 

and N. parvum being 2.2 cm and 1.7 cm, respectively. The effect of grapevine variety on 

mean length of colonised shoots was also significant (P<0.001), with mean lengths of 

colonised shoots for Sauvignon blanc and Pinot noir being 2.1 and 1.8 cm, respectively.  

Over all wounded buds, mean lengths of colonised tissues in supporting canes showed a 

significant effect of different bud stages used for inoculation (P<0.001; Appendix D.11.2). 

Over all buds, mean lengths of colonised canes at dormant, woolly and green tip visible stage 

were 1.7 cm, 2.0 cm and 2.4 cm, respectively, which were all significantly different 

(P>0.05). There was a significant effect of species (P<0.001), with mean lengths of colonised 

canes for N. luteum and N. parvum being 2.3 cm and 1.7 cm, respectively. The effect of 

variety on mean length of colonised canes was also significant (P<0.001), with mean lengths 

for Sauvignon blanc and Pinot noir being 2.2 cm and 1.9 cm, respectively. These data for 

green shoots and canes were also analysed according to the inoculated bud stage to further 

investigate the effects.  

For dormant wounded buds, the lengths of colonised tissues in the green shoots were 

significantly affected by species (P<0.001; Appendix D.11.3), with mean lengths for N. 

luteum and N. parvum being 1.9 cm and 1.4 cm, respectively (Table 4.16). The mean lengths 

of colonised shoots were also affected by variety (P=0.006), with mean lengths for 

Sauvignon blanc and Pinot noir being 1.8 cm and 1.5 cm, respectively (Table 4.17). The 

interaction between species and variety was not significant (P=0.678). For supporting canes, 

the lengths colonised were significantly affected by species (P<0.001; Appendix D.11.4), 

with mean lengths for N. luteum and N. parvum being 2.0 cm and 1.5 cm, respectively (Table 

4.16). The lengths of colonised canes were also affected by variety (P=0.002), with mean 

lengths for Sauvignon blanc and Pinot noir being 1.9 cm and 1.6 cm, respectively (Table 

4.17). The interaction between species and variety was not significant (P=0.410).  
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Table 4.16 Mean lengths of colonised tissues (Green shoots and canes) on Neofusicoccum 
luteum and N. parvum potted grapevines (Sauvignon blanc and Pinot noir) at different bud 
developmental stages. 

Species Developmental bud stages 
at inoculation 

aMean distance colonised (cm) 

Green shoots Cane tissues 

N. luteum Dormant 1.9a 2.0a 

N. parvum Dormant 1.4b 1.47b 

N. luteum Woolly 2.2a 2.2a 

N. parvum Woolly 1.6b 1.68b 

N. luteum Green tip visible 2.6a 2.7a 

N. parvum Green tip visible 1.6b 2.0b 

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

Table 4.17 Mean lengths of colonised tissues on Sauvignon blanc and Pinot noir potted 
grapevines at different bud developmental stages. 

Variety Developmental bud stages 
at inoculation 

aMean distance colonised (cm) 

Green shoots Cane tissues 

Sauvignon blanc Dormant 1.8a 1.9a 

Pinot noir Dormant 1.5b 1.58b 

Sauvignon blanc Woolly 2.0a 2.0a 

Pinot noir Woolly 1.78b 1.8b 

Sauvignon blanc Green tip visible 2.5a 2.57a 

Pinot noir Green tip visible 2.16b 2.2b 

aValues within columns followed by the same letter are not significantly different according to the 
Sidak test at 95% CIs. 

For wounded woolly buds, the lengths of colonised green shoots were significantly affected 

by species (P<0.001; Appendix D.11.5), with mean lengths for N. luteum and N. parvum 

being 2.2 cm and 1.6 cm, respectively (Table 4.16). The lengths of colonised shoots were also 

affected by variety (P=0.005), with mean lengths for Sauvignon blanc and Pinot noir being 

2.0 cm and 1.8 cm, respectively (Table 4.17). The interaction between species and variety 

was not significant (P=0.608). For the supporting canes, the lengths colonised were 
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significantly affected by species (P<0.001; Appendix D.11.6), with mean lengths for N. 

luteum and N. parvum being 2.2 cm and 1.7 cm, respectively (Table 4.16). The lengths of 

colonised canes were also affected by variety (P=0.006), with mean lengths of colonised 

canes for Sauvignon blanc and Pinot noir being 2.0 cm and 1.8 cm, respectively (Table 4.17). 

The interaction between species and variety was not significant (P=0.540).  

For wounded green tip visible buds, the lengths of colonised green shoots were significantly 

affected by species (P<0.001; Appendix D.11.7), with mean lengths for N. luteum and N. 

parvum being 2.6 cm and 1.6 cm, respectively (Table 4.16). The lengths of colonised shoots 

were also affected by variety (P=0.005), with mean lengths of colonised tissues for 

Sauvignon blanc and Pinot noir being 2.5 cm and 2.1 cm, respectively (Table 4.17). The 

interaction between species and variety was not significant (P=0.503). For supporting canes, 

the lengths colonised were significantly affected by species (P<0.001; Appendix D.11.8), 

with mean lengths for N. luteum and N. parvum being 2.7 cm and 2.0 cm, respectively (Table 

4.16). The lengths of colonised canes were also affected by variety (P=0.004), with mean 

lengths for Sauvignon blanc and Pinot noir being 2.6 cm and 2.2 cm, respectively (Table 

4.17). The interaction between species and variety was not significant (P=0.472).  

Leaf and petiole necrosis was observed in leaves which emerged from inoculated wounded 

buds after 1 month (Figure 4.4).  

 

 
Figure 4.4 Necrosis on leaves (red arrows) and petioles (yellow arrows) on shoots developed 
1 month after inoculation of wounded green tip visible bud stage.  

When woolly buds on Sauvignon blanc vines were inoculated at Lincoln University, the 

sections prepared after 1 week and observed by fluorescent microscope showed presence of 
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germinating conidia and development of mycelia within the buds (Figure 4.5). Overall 

infection incidence was 88.8%. 

Figure 4.5 Representative fluorescent microscope observations of woolly buds inoculated 
with Neofusicoccum luteum and N. parvum a) and c) Cross sections of buds with germinating 
conidia of N. parvum b) and d) cross sections with growing mycelium of N. luteum, Scale 
bars represent 100 µm. 

4.3.7 Susceptibility of berries on potted vines at different stages of development  

No colonies characteristic of N. luteum and N. parvum were recovered from any of the non-

wounded berries or their rachii at pre-bunch closure or veraison therefore non-wounded 

berries were not included in the overall data analysis. For the wounded berries at all berry 

development stages, infection incidence was not significantly affected by species. There was 

a significant effect of grapevine variety (P=0.003; Appendix D.12.1), with incidence for 

Sauvignon blanc (65.3%) being greater than for Pinot noir (56.1%). There was a significant 

effect on infection incidence of the different berry stages (P<0.001), with incidences of 

berries infected at pre-bunch closure (38.0% and 31.0%), verasion (53.5% and 51.1%), and 1 

week before harvest time (97.5% and 93%) for N. luteum and N. parvumrespectively, which 

were significantly different (P>0.05) (Figure 4.6a).  
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Infection incidences of wounded berries inoculated at pre-bunch closure stage were 

significantly affected by species (P=0.018; Appendix D.12.2), with mean incidences for N. 

luteum and N. parvum being 38% and 31%, respectively (Figure 4.6a). The effect of 

grapevine variety was also significant (P=0.017), with mean incidences for Sauvignon blanc 

and Pinot noir being 38% and 31%, respectively (Figure 4.6b).  The interaction between 

species and variety was not significant (P=0.678). For rachii of these berries, infection 

incidences were significantly affected by species (P=0.012; Appendix D.12.3), with mean 

incidences for N. luteum and N. parvum being 42.5% and 34.1%, respectively (Figure 4.7a). 

Infection incidence was also significantly affected by variety (P=0.022), with mean 

incidences for Sauvignon blanc and Pinot noir being 42.0% and 34.5%, respectively (Figure 

4.7b).  The interaction between species and variety was not significant (P=0.364).  
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Figure 4.6 Mean infection incidences of a) Neofusicoccum luteum and N. parvum b) 
Sauvignon Blanc and Pinot noir in potted grapevines on wounded berries inoculated at pre-
bunch closure (PBC), veraison and 1 week before harvest. Error bars represents standard 
error of the mean and barswith different leters are significantly different at P≤0.05. 
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Figure 4.7 Mean infection incidence of a) Neofusicoccum luteum and N. parvum, b) 
Sauvignon Blanc and Pinot noir on rachii of potted grapevines when berries were inoculated 
at pre-bunch closure (PBC), veraison and 1 week before harvest. Error bars represents 
standard error of the mean and barswith different leters are significantly different at P≤0.05. 

Infection incidences of wounded berries inoculated at veraison stage were not affected 

significantly by species, (P=0.662; Appendix D.12.4) but were affected by variety (P<0.001), 

with mean incidences for Sauvignon blanc and Pinot noir being 60.5% and 44.5%, 

respectively (Figure 4.6b).  The interaction between species and variety was not significant 

(P=0.964).  For rachii of these berries, infection incidences were not significantly affected by 

species (P=0.609; Appendix D.12.5) but were significantly affected by variety (P<0.001), 

with mean incidences for Sauvignon blanc and Pinot noir being 64.5% and 49.5%, 
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respectively (Figure 4.7b).  The interaction between species and variety was not significant 

(P=0.976).   

At 1 week before harvest stage infection incidences were significantly affected by species 

(P=0.016; Appendix D.12.6), with mean incidences for N. luteum and N. parvum being 

97.5% and 93%, respectively (Figure 4.6a). Infection incidences were significantly affected 

by variety (P=0.019; Appendix D.12.6), with mean incidences for Sauvignon blanc and Pinot 

noir being 97.5% and 93%, respectively (Figure 4.6b). The interaction between species and 

variety was not significant (P=0.743). For rachii of these berries, infection incidences were 

significantly affected by species (P=0.015; Appendix D.12.7), with mean incidences for N. 

luteum and N. parvum being 98.3% and 94.5%, respectively (Figure 4.7a). Infection 

incidences were significantly affected by variety (P=0.003), with mean incidences for 

Sauvignon blanc and Pinot noir being 98.7% and 94.1%, respectively (Figure 4.7b).  The 

interaction between species and variety was not significant (P=0.655). For the non-wounded 

berries, colonies characteristic of N. luteum and N. parvum were isolated from 4.3% of the 

inoculated berries but not the rachii for both Sauvignon blanc and Pinot noir.  

Infected berries were mummified, brown to black in colour with raised black pycnidia which 

oozed when placed in high relative humidity (Figure 4.8). For the infected berries incidence 

of pycnidia, which oozed over all berry development stages, was not significantly affected by 

species or variety (P=0.090 and P=0.670, respectively; Appendix D.12.8). There was a 

significant effect of the different berry stages (P<0.001), with incidences of berries with 

oozing pycnidia at pre-bunch closure, verasion, and 1 week before harvest time being 71.8%, 

89.5% and 98.9%, respectively. 
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Figure 4.8 a) Symptoms developed on Sauvignon blanc grapevine berries after wounding 
and spray inoculation with Neofusicoccum luteum, b) infected berry, showing black raised 
pycnidia of N. luteum, c) pycnidial ooze showing by white arrow. 

For wounded berries inoculated 1 week before harvest, the pathogens progressed from the 

infected berries and rachii into supporting shoots. The mean upward lengths of colonised 

stems were not significantly affected by species (P=0.094; Appendix D.12.9) (Figure 4.9a) 

but were significantly affected by variety (P=0.021; Appendix D.12.9), with mean shoot 

lengths colonised for Sauvignon blanc and Pinot noir being 3.1 cm and 1.9 cm, respectively 

(Figure 4.9b). The interaction between variety and species was not significant (P=0.237). For 

downward colonisation, lengths of stems were also not affected by species (P=0.118; 

Appendix D.12.10) but were affected by variety (P=0.013), with mean lengths of colonised 

stems for Sauvignon blanc and Pinot noir being 2.4 cm and 1.4 cm, respectively (Figure 

4.9b). The interaction between variety and species was not significant (P=0.170).  
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Figure 4.9 Mean upward and downward progression a) on Neofusicoccum luteum and N. 
parvum b) on Sauvignon blanc (SB) and Pinot noir (PN) potted grapevines. Error bars 
represents standard error of the mean and barswith different leters are significantly different 
at P≤0.05. 
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significantly affected by species (P<0.001; Appendix D.13.1), with incidence of ooze being 

78.2% for N. luteum and 69.1% for N. parvum. There was a significant effect on ooze 

incidence of the different berry stages (P=0.027; Appendix D.13.1), with incidences for 

berries infected at pre-bunch closure, verasion, and 1 week before harvest time being 

significantly different (P<0.05) from each other (46.9%, 75.7% and 93.9%, respectively). 

  
Figure 4.10 Infected mummified berries of Sauvignon blanc with Neofusicoccum luteum 
with raised black pycnidia 1 month after inoculation in the vineyard.  

For the wounded berries at all berry development stages, infection incidence was 

significantly affected by species (P<0.001; Appendix D.13.2), with incidence for N. luteum 

(46.9%) being greater than for N. parvum (36.1%). There was a significant effect on infection 

incidence of the different berry stages (P<0.001), with incidences of berries infected at pre-

bunch closure, verasion, and 1 week before harvest time being significantly different 

(P<0.05) from each other (27.8%, 41.6% and 55.1%, respectively). 

At pre-bunch closure, incidences of infection in wounded berries were not significantly 

affected by species (P=0.110; Appendix D.13.3) but incidences in rachii were significantly 

affected by species (P<0.001; Appendix D.13.4), with mean incidences for N. luteum and N. 

parvum being 39.0% and 23.0%, respectively.  

At veraison, incidences were significantly by affected by species (P<0.026; Appendix 

D.13.5), with 64.3% incidence for N. luteum and 46.0% for N. parvum. Incidences in rachii 

were significantly affected by species (P<0.001; Appendix D.13.6), with mean incidences for 

N. luteum and N. parvum being 81.0% and 54.0% respectively.  

One week before harvest, incidences in wounded berries were significantly affected by 

species (P<0.001; Appendix D.13.7), with mean incidences for N. luteum and N. parvum 
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being 80.3% and 60.2%, respectively.  For rachii, incidences were significantly affected by 

species (P<0.001; Appendix D.13.8), with means for N. luteum and N. parvum being 100% 

and 69.0%, respectively. For wounded berries inoculated 1 week before harvest, the 

pathogens progressed from the infected berries and rachii into supporting shoots. The mean 

downward lengths of colonised tissues were significantly affected by species (P=0.026; 

Appendix D.13.9), with mean lengths for N. luteum and N. parvum being 3.4 cm and 1.6 cm 

respectively. The upward lengths of colonised tissues were also affected by species (P=0.029; 

Appendix D.13.10), with mean lengths for N. luteum and N. parvum being 2.9 cm and 1.4 cm 

respectively. 

In non-wounded berries at 1 week before harvest, infection incidences were significantly 

affected by species (P=0.036; Appendix D.13.11), with 11.7% incidence for N. luteum and 

10.9% for N. parvum, but no infection was found in the rachii.  

4.4 Discussion  
In this study, the effect of different factors on infection processes of N. luteum and N. parvum 

conidia on attached grapevine tissues was investigated.  Wound age in late summer was 

shown to affect infection, since incidence decreased with increasing age from 100% 

immediately after wounding; for hard green shoots, incidence for 42 day and 70 day wounds 

decreased to 33% and 0%, while for wood of trunks, incidence decreased to 0% by 42 days. 

Colonisation distances also reflected the same trends. Studies by Urbez-Torres and Gubler 

(2011) and van Niekerk et al. (2011) also reported decreasing incidence of 

Botryosphaeriaceae species and pathogen colonisation distances with increasing wound age 

in grapevine woody tissues.  Decline in infection with increasing wound age is related to 

wound healing. Biggs (1986) reported that infection incidence decreased with wound age by 

Cytospora leucostoma on peach, with infection incidence being 100% for wounds up to 10 

days old when inoculated, which reduced to 10% for 14 day wounds and 0% for older 

wounds. The microscopy studies conducted by Biggs (1986) on these tissues showed that 

reduced incidence was related to wound healing processes, which involved lignification and 

formation of lignosuberized tissues. He observed that a lignosuberized layer was evident by 

day 3 after wounding which was well developed by day 7. After day 10, a phellem cell layer 

began to develop which was six cells thick by day 21.  He concluded that these wound 

healing processes had decreased the rate of colonization rather than preventing colonization 

of peach by C. leucostoma. Sun et al. (2006) also reported that 1 or 2 days after pruning of 

grapevines, tyloses started to develop in exposed xylem vessels of the pruned canes, 
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continuing until almost all xylem vessels were totally or partially (85%) occluded with 

tyloses after about 6 days. The same phenomenon was reported by Biggs (1987), who 

reported that tyloses were formed in response to wounding in peach, forming impenetrable 

layers in the xylem vessels by developing lignified and /or suberized secondary walls. This 

process has also been reported to be dependent on temperature. Biggs (1990) also showed 

that the rate of suberised tissue formation in wounded bark was greater at higher average 

temperatures than at lower temperatures. 

A further experiment which examined the effect of wound age and season on infection by N. 

luteum, found that incidence in hard green shoots and woody trunks declined from 100% 

immediately after wounding to 12.5 and 4.1%, respectively, for inoculation of 42-day-old 

wounds. Incidences and colonisation distances were also affected by the seasons, being 

highest in autumn and spring, and lowest in winter and summer. Van Niekerk et al. (2011) 

reported from their study in South Africa that Chenin blanc wounds inoculated with N. 

australe directly after pruning in July (mid-winter) had lower infection incidence than 

wounds made in August (late winter). However, in California, USA, Urbez-Torres and 

Gubler (2011) showed that wounds inoculated with N. parvum directly after pruning in winter 

had higher incidences (~80%) than those inoculated in late winter (~50%) and in early spring 

(~30%).  This conflicted with the current study which showed a trend for higher incidence 

and pathogen progression in spring than in winter. The differences in results may be 

associated with the differences in temperature, average daytime temperatures in spring, 

summer, autumn, and winter in the current study were 18.5ºC, 23.7ºC, 19.1ºC, and 14.7ºC, 

respectively. The vine growth conditions may also have affected the results as the 

temperatures within the tunnel houses was likely to be higher than outdoors and these vines 

were observed to develop shoots earlier in spring than the outdoor vines of the Fairhall 

Vineyard. Further, tissues wounded and varieties used were also different to the study by 

Urbez-Torres and Gubler (2011); the field vines (1 and 2-year-old) used in the Napa Valley, 

California were spur pruned Chardonnay and Cabernet Sauvignon, in contrast to the hard 

shoot and trunk wounds made on Sauvignon blanc and Pinot noir in the current study.  

In the current study, the lower overall pathogen progression and incidence in summer might 

be due to higher concentrations of lignin compounds in the wood as the weather became 

warmer. At this time there were also likely to be greater numbers of epiphytes colonising the 

wounds, which Munkvold and Marois (1995) concluded were partly responsible for 

inhibiting infection of grapevine wounds by Eutypa lata. Munkvold and Marios (1995) also 
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reported a high positive correlation between higher mean temperature after pruning and rate 

of suberin accumulation in the pruning wounds. However, a number of other studies (Moller 

and Kasimatis, 1980; Munkvold and Marois, 1995; Chapuis et al., 1998; Largnon and Dubos, 

2000), have reported that grapevine wounds made in late winter were less susceptible to 

infection than wounds made in early winter. In contrast, Serra et al. (2008) showed that in 

Italy the susceptibility of pruning wounds to infection by D. seriata in January, February and 

March (winter) was similar over the three years of the study. Further, the effects on 

incidences in months when pruning/inoculation was conducted varied between years, which 

they concluded was associated with temperature directly after wounding, with higher 

incidences when temperatures were colder. Van Neikerk et al. (2011) also concluded that the 

climatic conditions after pruning affected wound susceptibility and that period of wound 

susceptibility may not be determined necessarily by the time of year that pruning was done. 

These climatic factors may account for the contrasting report by Trese et al. (1980), who 

observed that pruning wounds made in late winter in Michigan USA were more susceptible to 

infection by E. lata compared to early winter pruning wounds.  

Another possible explanation for the higher susceptibility of the wounds in some months can 

be found in differences during these months in the nutritional status of grapevine tissues. 

Ferreira (1999) noted that carbohydrate and nitrogen concentrations in the vine were greatest 

in the dormant season, making the environment more favourable for the establishment of 

infections. Increased carbohydrate in the vine rootstock and higher nitrogen in canes, shoots 

and wood during the dormancy period were also reported by Uys (1981). In the current study, 

the higher infection incidence of grapevines in which wounds were inoculated after leaf fall 

in autumn, could be due to higher nitrogen and carbohydrate content. 

In this study, an experiment was also conducted on the effects of different conidial 

concentrations of N. luteum and pruning wound age on susceptibility of wounds made on 

potted vines of Sauvignon blanc. All concentrations caused 100% infection incidence on 

fresh wounds in green tissues and 93% incidence in trunks, but lesion lengths increased with 

increasing concentrations. Also lesion lengths were longer in green tissues than in the woody 

tissues. Amponsah et al. (2014) also reported similar results on detached soft green shoots of 

grapevines after N. luteum inoculation. In their study, all the conidial doses caused 100% 

infection incidence, with 2 conidia causing shortest lesions of 8 mm and longest lesions 

caused by 200 conidia (42 mm) after 10 days. Similar effects were reported by Pusey and 

Bertrand (1993), who showed that increasing concentrations (104-106 conidial/mL) on 1-year-
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old peach bark caused increasing lengths of necrosis by B. dothidea. Elena et al. (2015) also 

reported the effect of the inoculum dose of D. seriata (10-4000 conidia per wound) on 

pruning wounds of dormant 5-year-old Tempranillo vines in two potted grapevines 

experiments. Isolations showed increasing incidence of 10-100% and 44-100% for the 

increasing conidial concentrations for the two experiments, which was different to the current 

experiment and that reported by Amponsah et al. (2014). The differences may be due to 

differences in tissue type, as Elena et al. (2015) used dormant canes and the current study, 

used hard green shoots and trunks of 2-year-old Sauvignon blanc potted vines in summer. 

Further, the current study has shown multiple times that the Botryosphaeriaceae species 

progress more quickly in soft than harder tissues. Also, species, variety, host growth stage, 

season and methods of isolation have differed between the reported studies.  Several 

researchers have shown that wound infection in grapevines depends on several factors, 

including, variety, age of the plant, virulence of the isolates, experimental and environmental 

conditions (van Niekerk et al., 2004; Sosnowski et al., 2007 and Serra et al., 2008), which 

indicates that further studies should be conducted with a range of Botryosphaeriaceae species 

and tissue type through all seasons of the year to provide a better understanding of this topic.  

The initial study into effects of wound age by N. luteum and N. parvum also showed that 

incidence and lengths of colonisation were greater in bark than wood of the trunks, which 

indicated the potential for saprophytic colonisation of the bark, as reported by Billones-

Baaijens et al. (2012). A further experiment in the current study showed that conidial 

infection and saprophytic presence in the bark, could allow for infection of the wood from 1 h 

to 7 days later when a wound was made. In this study, the pathogen remained latent in the 

bark and when the wound was made it progressed towards the wound. Also in this study 

pathogen incidence was highest when wounds were made after 7 days. Billones-Baaijens et 

al. (2015) isolated from bark and wood segments separately from an entire shoot (3-4 m long) 

taken from a grapevine mothervine in a nursery and found few isolates of the 

Botryosphaeriaceae within the wood and most occurred in the bark, which suggested that 

they were latent on surface tissues.  In addition, Billones-Baaijens (2011) showed that N. 

luteum conidial suspensions applied to the surfaces of canes adhered rapidly and could not be 

totally washed from the surfaces after a few minutes, with minimal recovery of conidia after 

1, 2 and 4 h incubation at room temperature. Dissection and isolation of the bark and outer 

wood layers showed that during this time they had adhered and then germinated, 

progressively colonising the periderm, phloem and xylem but not the pith of the cuttings 
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(Billones-Baaijens., 2011). In the current study, mycelium and germinating conidia were 

observed in samples inoculated onto the bark near lenticels, but without subsequent 

wounding. The mycelia were present in the bark, in underlying wood and cross-sectioned 

tissues, which indicated that pathogen had entered through lenticels. Pusey and Bertrand 

(1993) also reported that non-wounded bark of 1 to 2-year-old peach trees were susceptible to 

infection by B. dothidea, as did Sutton (1990) who observed lenticels as a common entry 

point for B. dothidea infection on apple and pear fruit. Prusky et al. (1983) also reported that 

mango fruit became infected with conidia of Alternaria through lenticels and that the 

pathogen then invaded the intercellular spaces. It therefore seemed likely that infection of 

grapevines was also able to occur through lenticels.  

This study showed that wounded leaf buds, but not non-wounded ones, could be infected at 

the dormant and woolly bud stages. However, buds with emerging green tips had high 

incidences if wounded and low incidences when non-wounded. Wounded buds of Sauvignon 

blanc were slightly more susceptible than buds of Pinot noir. A similar study was conducted 

by Amponsah et al. (2012a) who inoculated wounded woolly buds on Pinot noir vines with 

2000 conidia of N. luteum per bud.  Their results showed infection incidence was 88% and 

73% for wounded and non-wounded buds, respectively, in contrast to the current study for 

which incidence after inoculation with 200 conidia was 46.7% and 0%, respectively. Also in 

their study, most of the inoculated buds failed to burst and some buds developed into 

asymptomatic shoots with internal discolouration from the inoculated point. In the current 

study, buds were not killed by the inoculated pathogen, but the pathogen progressed into 

100% of the supporting canes and emerging shoots, on which necrosis was seen to develop. 

As well as the difference in inoculum concentration, another likely reason for the differences 

in results between this study and that of Amponsah et al. (2012a) is that they covered the 

treated plants with clear polythene bags that were misted inside with sterile water for 24 h to 

provide high relative humidity which would have improved germination and infection. In 

contrast, the buds in the current study were left exposed after inoculation. Wunderlich et al. 

(2011) were also unable to cause disease on non-wounded dormant flower buds of 

Chardonnay and Shiraz when inoculated onto the bud surfaces with 105 conidia of N. parvum 

or D. seriata in the greenhouse and vineyard. They covered buds with plastic bags for 48 h to 

maintain high relative humidity. Smith and Hendrix (1984) showed that when 106 conidia/mL 

of B. dothidea were applied to the entire trees, dormant non-wounded apple leaf buds were 

not susceptible to infection by B. dothidea, but that buds became susceptible to infection at 
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the beginning of silver tip visible stage, and most buds were able to be infected at the green 

tip visible stage. Phillips et al. (1998) also showed the infection of grapevine buds occurred 

when they inoculated a conidial suspension of B. dothidea under bud scales without directly 

wounding them, which may however have provided a more conducive environment that the 

open air of the current study. A study by Ntahimpera et al. (2002) also showed that buds 

collected from pistachio orchards were naturally infected with B. dothidea immediately after 

their formation. In their study they collected 100 symptomless buds from commercial 

pistachio orchards, which were surface sterilised, cut and isolated onto PDA. The results in 

this study showed that non-wounded buds could become infected at the green tip visible stage 

and also that bud infection could progress into green shoots and canes. 

Berries with pinprick wounds were susceptible at all stages of development tested, being 

most susceptible when ripe (1 week before harvest) when some of the non-wounded berries 

also became infected. Overall Sauvignon blanc berries were slightly more susceptible than 

those of Pinot noir. Amponsah et al. (2012a) also reported that attached wounded berries of 

Sauvignon blanc and Pinot noir became infected by N. luteum conidia, with moderate 

incidences (16-28%) at pre-bunch closure and verasion, and high incidences (65-70%) at 

harvest. They also reported rotting of the berries, formation of pycnidia and pathogen 

progression into the supporting shoots of a very few specimens, which was similar to the 

current study, in which berries also oozed conidia when placed under high relative humidity. 

In Australia, Wunderlich et al. (2011) demonstrated that six species of Botrysophaeriaceae 

were able to cause infection of non-wounded, detached ripe berries of Chardonnay and Shiraz 

although infection varied between isolates and species. They also reported that symptomatic 

berries were soft and developed black raised pycnidia and mycelial growth.  Steel et al. 

(2007) also reported isolation of Botryosphaeriaceae spp. from grape flowers and berries in 

low frequency throughout the growing season in Australian vineyards. Lorenzini et al. (2015) 

reported infection capacity of two strains of N. parvum on Garganega grapes when the 

individual, detached berries were incubated in plastic bins. They used unwounded and 

wounded berries and found that virulence of strains was higher in wounded than non-

wounded berries. In another study, Wunderlich et al. (2011) reported that these 

Botryosphaeriaceae species (L. theobromae, N. parvum, N. luteum, D. seraita, B. dothidia 

and D. viticola) are common on reproductive structures. They found that dormant flower 

buds, flowers and pea-sized berries which appeared asymptomatic still yielded low levels of 

Botryosphaeriaceae species. However, many bunches with symptoms of Botryosphaeria 
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bunch rot prior to harvest also showed mycelial growth and formation of black pycnidia on 

berry surfaces. Of their 330 Botryosphaeriaceae isolates, the most common species were D. 

seriata, N. parvum, N. luteum and B. dothidea, which were also found to be common causes 

of canker and dieback. This study has also shown that the same isolates which were 

pathogenic on wounded shoots and canes were also able to infect berries and leaf buds. 

However, the importance of berry and bud infection in New Zealand vineyards as sources of 

infection is unclear and needs further work. 

Conclusion 

This study has provided information about the susceptibility of most grapevine tissues to 

Botryosphaeriaceae species. It has shown that wound susceptibility declined with increased 

wound age, and differed between seasons, with wounds tending to remain susceptible for 

longer in autumn and spring. On fresh wounds, all conidial inoculum doses were found to 

cause 100% incidence of green shoots, and trunk wounds inoculated with two conidia had 

67% incidence while higher doses of conidia caused 100% incidence, and resulted in longer 

lesions. Wounded leaf buds of Sauvignon blanc and Pinot noir were susceptible to infection 

at the dormant woolly stage, and at the green tip visible stage, when non-wounded buds also 

became infected.  Wounded berries were also susceptible from pre-bunch closure to harvest, 

being more susceptible at the 1 week before harvest stage when some of the non-wounded 

berries also became infected. Overall, Sauvignon blanc was more susceptible than Pinot noir. 

This study has provided information on wound susceptibility to Botryosphaeriace infection 

which was useful in the next chapter when developing investigations into Botryosphaericeae 

management strategies by fungicides and biocontrol agents. 
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Chapter 5 

Control methods for protecting wounds  

5.1 Introduction 

For the pathogens associated with grapevine trunk diseases, wounds, especially pruning 

wounds, are regarded as the main point of infection and so require protection (van Niekerk et 

al., 2005a; Urbez-Torres and Gubler, 2011). Bester et al. (2007) investigated the in vitro 

efficacy of ten fungicides against 16 isolates of D. seriata, N. australe, N. parvum and L. 

theobromae, followed by greenhouse studies using young grapevine plants. Their studies 

indicated that benomyl, tebuconazole, flusilazole and prochloraz as liquid formulation 

reduced incidence and the length of colonised tissues in treated shoots, but their efficacy 

varied between isolates and species. Amponsah et al. (2012b) demonstrated the in vitro 

efficacy of 14 fungicides, out of which carbendazim, tebuconazole, procymidone, iprodione 

and flusilazole were effective against N. luteum, N. australe and D. mutila. In a study on 

potted vines they showed that spray application of carbendazim, iprodione, mancozeb and 

flusilazole were most effective at preventing infection by N. luteum conidia. From their 

subsequent field experiment, they reported that spray applications of flusilazole, 

carbendazim, tebuconazole and thio-phanate methyl were effective at preventing infection by 

conidia of N. luteum. Similarly, Pitt et al. (2010b) reported a field experiment with 

carbendazim, flusilazole, cyprodinil+fludioxonil, fluazinam, iprodione and tebuconazole 

applied to wounds by paint brush to prevent infection by conidia of D. seriata. Isolations 

after 10 months showed that use of fungicides at rates 10 x the recommended rates provided 

20-55% reduction in incidence of D. seriata.  

Biological control agents have also been used as wound protectants to provide some control 

of some grapevine trunk diseases, although the efficacy has been reported to vary 

significantly (Fourie and Halleen, 2004b; Sosnowski et al., 2008). Latorre et al. (2013) 

reported Bacillus subtilis and Trichoderma spp. to be ineffective at controlling N. parvum 

infection of blueberry wounds. In contrast, John et al. (2008) reported T. harzianum to 

variable reduction in infection of grapevines by E. lata and Kotze et al. (2011) reported that a 

B. subtilis isolate to reduce infection by a range of grapevines trunk pathogens including 

Botryosphaeriaceae species. 



 

135 
 

All fungicide studies have investigated the efficacy of one application prior to inoculation, 

however when spores were continuously produced in vineyards the fungicides did not give 

prolonged protection (Pitt et al., 2010b). Further, efficacy has varied between reports, largely 

due to the different isolates and Botryosphaeriaceae spp., grapevine varieties and 

experimental conditions used. For effective and economical use of wound protectants in 

vineyards where infection has been reported, knowledge about how long pruning wounds 

remain susceptible to infection will indicate for how long protection is required.  The 

products already reported to be effective against some Botryosphaeriaceae spp. should be 

tested for their efficacy and longevity, by spraying with multiple inoculations over time, 

against the most prevalent species. The potential of biocontrol products to effectively protect 

pruning wounds should also be investigated.  

In this study, products already reported to be effective against some Botryosphaeriaceae spp. 

will be tested for their efficacy by spraying, and longevity with multiple inoculations over 

time, against the most prevalent species.  Investigations into how long pruning wounds 

remain susceptible to infection will also be conducted to show for how long protection is 

required. These will be supported by repeated inoculations of the treated wound to 

demonstrate the period of protection provided by the treatments. 

5.2 Materials and Methods 
5.2.1 Efficacy of fungicides and biocontrol agents on wounds of potted grapevines 

placed outdoors 

In September 2014, 1-year-old potted vines (Sauvignon blanc) were acclimatised to an 

outdoor environment at the Fairhall Vineyard, Blenheim as described in Section 2.2.1. The 

semi-hard green shoots of the vines were pruned to approximately 15 cm using ethanol 

sterilised secateurs and the trunks were wounded by drilling holes of 2.5 mm diameter and 3 

mm deep. The wounds were immediately sprayed with the fungicides Folicur®, Chief®, 

Gem®, Dithane® or Megasta®r, or commercial biocontrol agents (TRI D25 and Serenade®) 

using rates recommended by the manufacturers (Appendix E.1). After 1-2 h (0 days), 7 and 

14 days, the wounds were drop inoculated with conidial suspensions (104/mL) of N. parvum 

(isolate B2141) or N. luteum (isolate G51a2) which were produced from inoculated detached 

green shoots as described in Chapter 2, Section 2.2.2.1. The amounts of spore suspension 

varied with the size of pruned tissue, being 20 µL (200 conidia) and 60 µL (600 conidia) for 

hard green shoots and 2-year-old trunks, respectively. Control plants were sprayed with 

sterile water and inoculated with the fungi (I) or sprayed with sterile water and not inoculated 
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(NI). The six replicate plants of all treatments were arranged in randomised block design 

(RBD). 

The efficacy of treatments was determined after 14 days for hard green shoots and 28 days 

for trunks by isolation. After removal of the end tissue (2 mm), 12 discs were cut at 5 mm 

intervals from the pruned and wounded end down to 60 mm and surface sterilized, which 

involved dipping in 70% ethanol for 30 s, followed by 30 s in sterile water and air drying in a 

laminar flow unit for 1 h. Bark and wood pieces were plated separately on PDA amended 

with chloramphenicol (0.05 g/L) and incubated at 25°C for 3-7 days. Typical colony 

appearance allowed identification of N. parvum and N. luteum. Efficacy assessments of the 

fungicides and biocontrol agents were based on incidences and length of tissues colonised by 

N. parvum and N. luteum.  

5.2.2 Efficacy of fungicides and biocontrol agents on wounds of potted grapevines in a 

tunnel house 

In April 2015, another experiment was conducted inside the tunnel house at the Fairhall 

Vineyard, Blenheim, to reduce levels of natural infection. The hard green shoots of potted 

vines (Sauvignon blanc) were pruned to approximately 15 cm using ethanol sterilised 

secateurs, and immediately sprayed with Folicur®, Chief®, Gem®, Dithane® or Megastar®, 

fungicides, or commercial biocontrol agents (TRI D25 and Serenade®). Two-year-old trunks 

were wounded by drilling a 2.5 mm diam. and 3 mm deep hole into each trunk and the same 

treatments applied. The wounds were drop inoculated with conidial suspensions [(104/mL) of 

N. parvum (B2141) or N. luteum (G51a2)] which were produced from inoculated detached 

green shoots as described in Chapter 2, Section 2.2.2.1. These spore suspensions were applied 

1 and 24 h after the application of fungicides and biocontrol agents. The amounts of spore 

suspension varied with the size of pruned tissue, being 20 and 60 µL (hard green shoots and 

2-year-old trunks, respectively). Control plants were sprayed with sterile water and 

inoculated with either fungus (I) or not inoculated (NI). The six replicate plants were 

arranged in a CRBD. 

The infection incidence of N. luteum and N. parvum was determined after 7 and 14 days (hard 

green shoots and trunks, respectively). From each inoculated tissue, a 1 cm section between 

the dead and live wood was cut and surface sterilized in 70% ethanol for 30 s, followed by 30 

s in sterile water and air drying in the laminar flow unit for 1 h. Bark and wood were plated 

separately on PDA amended with chloramphenicol (0.05 g/L) and incubated at 25°C for 3-7 
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days. Typical colonies of the inoculating fungi indicated incidence and so efficacy of the 

treatment.  

5.2.3 Longevity of fungicides on wounds of potted grapevines using low inoculum of a 

marker isolate in a tunnel house  

The previous experiment (Section 5.2.1) was repeated with some modifications. Green shoots 

and 2-year-old trunks were wounded as in Section 5.2.1, sprayed with the fungicides and 

drop inoculated with the least and intermediate conidial numbers (2 and 40 conidia per 

wound) that were found to cause infection, as determined in a previous experiment (Section 

4.3.3), using N. luteum (G51a2).  For all treatments, fungicides (Folicur®, Chief®, Gem®, 

Dithane® or Megastar®) were applied immediately after wounding and wounds were 

inoculated after ~2 h (Treatment 1) or after 2 weeks (Treatment 2), 4 weeks (Treatment 3), 8 

weeks (Treatment 4) or at 10 weeks (Treatment 5) after wounding. Control plants were 

sprayed with sterile water and inoculated with N. luteum (I) for the first two treatments 

(Treatments 1 and 2) and not inoculated (NI) for all treatments.  The infection incidence and 

the length of tissue colonised by N. luteum were determined in the green shoots and trunks 

(both wood and bark) at 14 and 28 days, respectively, after treatment by making isolations. 

After removal of the end tissue (2 mm), 12 discs were cut at 5 mm intervals from the pruned 

and wounded ends of each treated stem, down to 60 mm. These discs were surface sterilized 

by dipping in 70% ethanol for 30 s, followed by 30 s in sterile water and air drying in a 

laminar flow unit for 1 h. Bark and wood pieces were separated with steile scalpel and plated 

on PDA amended with chloramphenicol (0.05 g/L) and incubated at 25°C for 3-7 days. 

Typical colony appearance allowed identification of N. luteum. Efficacy assessments of the 

fungicides were based on incidences and the length of tissue colonised by N. luteum from 

treated tissues. The six replicate plants per treatment were arranged in a CRBD inside the 

tunnel house. 

5.2.4 Vineyard experiment  

In September 2014, a vineyard experiment was conducted at the Kaituna Vineyard, 

Marlborough, to evaluate the efficacy of five fungicides (Folicur®, Cheif®, Gem®, 

Dithane® and Megastar®) and two biocontrol agents commercially available as pruning 

wound protectants (TRI D25 and Serenade®). The field experiment was established with 

Sauvignon blanc vines planted in 1996. Lignified canes in the vineyard were tagged with 

different colour ribbons to represent the different treatments. There were ten replicate vines 
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(due to logistical issues the experiment was not replicated across blocks) on which four canes 

per grapevine were pruned to two buds using ethanol sterilized secateurs and immediately 

sprayed with the appropriate treatment using a 2 L pressurized home garden sprayer. Wounds 

were drop inoculated with 60 µL conidial suspensions (104/mL) of N. luteum (G51a2) or N. 

parvum (B2141) after 0 h, 7 and 14 days. Control plants were sprayed with sterile water and 

inoculated (I) or sprayed with sterile water and not inoculated (NI).  

Inoculated canes and control canes were harvested from the vines 7 months after inoculation, 

and for each cane a 1 cm section cut from between dead and live wood used for isolation. 

These sections were surface sterilized in 70% ethanol for 30 s, followed by 30 s in sterile 

water and air drying in a laminar flow unit for 1 h and then bark and wood were placed 

separately on PDA amended with chloramphenicol (0.05 g/L) and incubated at 25°C for 3-7 

days.  

5.2.5 Statistical analysis 

Statistical analysis was conducted without the data from non-inoculated control plants which 

were used simply to indicate absence of natural infection. The length of colonised tissues 

were analysed by General Linear Model (Minitab 17th edition) to determine significant main 

effects, and the significance of differences between related treatments was determined using 

Sidak pairwise comparison at P≤0.05. Data of infection incidence in inoculated grapevine 

shoots were analysed by General Linear Model (GLM) using GenStat (16th edition), which is 

considered appropriate for binomial data (McCue et al., 2008), using the logit link function.  

A Bernoulli distribution defined as a binary variable was assumed. Standard errors of 

differences (SEDs) derived from GLM analysis were used to show differences between 

treatment means.  

5.3 Results 
5.3.1 Efficacy of fungicides and biocontrol agents on wounds of potted grapevines 

placed outdoors 

For semi-hard green shoots on potted plants inoculated at 0, 7 and 14 days after application of 

the fungicides and biocontrol agents, incidence of infection was not affected by species 

(P=0.456; Appendix E.2.1) or inoculation time (P=0.769). However, it was affected by 

treatment (P<0.001; Appendix E.2.1). All treatments significantly reduced mean incidence as 

compared to the control (Table 5.1). The least mean incidence was for Cheif® (21.2%) which 

was significantly less (P<>0.05) than for all other treatments, followed by Folicur® (41.0%) 



 

139 
 

which was significantly less (P<0.05) than all other treatments apart from Cheif®. The 

greatest mean incidences were for Gem® (72.0%), TRI D25 (72.9%) and Serenade® (76.9%) 

which did not differ significantly from each other. The interactions were not significant 

(P>0.05). 

Table 5.1: Efficacy of fungicides and biocontrol agents on mean infection incidences of N. 
luteum and N. parvum which were inoculated onto green shoots and trunks of potted 
Sauvignon blanc vines placed outside. Values in parentheses are logit transformed data. 

aValues within columns followed by the different letter are significantly different according the SEDs 
derived from GLM analysis of logit transformed data. 

For trunks, incidence in wood was not significantly affected by species (P=0.690) or 

inoculation time after treatment application (P=0.462; Appendix E.2.2). However, there was 

a treatment effect on incidence (P=0.003). All treatments significantly reduced mean 

incidence as compared to the control, with lowest mean infection incidence for Cheif® 

(38.1%) which was significantly lower (P<0.05) than all other treatments (Table 5.1). This 

was followed by Folicur® (51.6%) and Megastar® (57.7%), with incidence for Folicur® 

being significantly less (P<0.05) than Megastar®.  The greatest mean incidence was for 

Serenade® (80%) which was significantly greater (P<0.05) than for all other treatments apart 

from the control (Table 5.1).  The interactions were not significant (P>0.05). 

For the bark, incidence was not significantly affected by species (P=0.606) or inoculation 

time after treatment application (P=0.617; Appendix E.2.3). However, there was a treatment 

Treatments 

aBotryosphaeriaceae spp. incidence (%) 

Green shoots 
Trunks 

Wood Bark 

Cheif® 21.2  (2.14) e  38.1  (1.45) g 40.9  (1.36)  e 

Gem® 72.0  (0.57) b 71.5  (0.59) cd 68.4  (0.65)  c 

Megastar® 55.2  (0.96) c 57.7  (0.90) e 56.8  (0.92)  d 

Dithane® 59.3  (0.86) c 69.1  (0.64) d 68.3  (0.64)  c  

Serenade® 76.9  (0.47) b 80.0  (0.41) b 82.9  (0.34)  b 

Folicur® 41.0  (1.35) d 51.6  (1.05) f 58.3  (0.89)  d 

TRI D25 72.9  (0.56) b 73.9  (0.53) c 69.2  (0.66) c 

Control 97.1  (0.06) a 91.5  (0.17) a  91.5  (0.17) a 

SED (0.091)            (0.072           (0.071) 
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effect on incidence (P<0.001). All treatments significantly reduced mean incidence as 

compared to the control, with lowest (P<0.05) mean infection incidence for Cheif® (40.9%) 

(Table 5.1). The greatest, (P<0.05) mean incidence was for Serenade® (82.9%). The 

interactions were not significant (P>0.05). 

For the lengths of colonised tissues on green shoots, there was no significant effect of species 

(P=0.561; Appendix E.3.1), however there was a significant effect of inoculation time after 

treatment application (P<0.001; Appendix E.3.1).  Mean distances were 2.4 cm, which was 

greater (P<0.05) than 1.6 cm and 1.1 cm which were similar (P>0.05), for the 0, 7 and 14 

day inoculation time, respectively. There was a significant treatment effect (P<0.001), with 

shorter mean lengths of colonised tissues for all treatments compared to the control (P<0.05). 

The shortest, mean lengths of colonised tissues were for Cheif® (0.4 cm), Folicur® (0.7 cm) 

and Megastar® (1.0 cm) which did not differ significantly (P>0.05) from each other (Table 

5.2). The longest mean lengths of colonised tissues were for TRI D25 and Serenade® (2.0 cm 

and 2.4 cm, respectively) which did not differ significantly (P>0.05) from each other (Table 

5.2). All the interactions were not significant (P>0.05) except the interaction between 

treatment and inoculation time after application (P<0.001). This interaction was associated 

with a trend for greater efficacy at 14 days for the two biocontrol products (TRI D25 and 

Serenade®) whereas efficacy was similar for the different inoculation times for the other 

treatments (Table 5.3).  
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Table 5.2: Effect of fungicides and biocontrol products on the lengths of tissue colonised by 
N. luteum and N. parvum which were inoculated onto green shoots and trunks of potted 
Sauvignon blanc vines at different times after treatment.  

aValues within the columns followed by the different letter are significantly different according to 
Sidak 95% CIs at P≤0.05. 

For length of colonized tissues in wood of the trunks, there was no significant effect of 

species (P=0.259; Appendix E.3.2). There was a significant effect of inoculation time 

(P=0.043), with different (P<0.05) means of 1.8 cm, 1.3 cm and 1.1 cm, respectively for the 

0, 7 and 14-day inoculation times. There was a significant treatment effect on colonization 

distance (P<0.001; Appendix E.3.2), with shorter mean lengths of colonised tissues for all 

treatments compared to the control (P<0.05) with shortest mean distances colonised for 

Cheif® (0.5 cm), Folicur® (0.7 cm), Megastar® (0.8 cm) and Dithane® (1.2 cm) which were 

not significantly different from each other (Table 5.2). The longest colonisation distances 

were for TRI D25 (1.6 cm), Gem® (1.7 cm) and Serenade® (1.8 cm) which did not differ 

significantly from each other. There was a significant interaction (P<0.011; Appendix E.3.2) 

between treatment and inoculation time after treatment application, which was associated 

with a trend for greater efficacy at 14 days for the biocontrol products (Serenade® and TRI 

D25) whereas for Gem® efficacy decreased at 14 days and efficacy was similar for the 

different inoculation times for the other treatments (Table 5.3).  

Treatments 

aMean length of colonised tissues (cm) 

Green shoots 
Trunks 

Wood Bark 

Cheif® 0.4e 0.5d 0.7d 

Gem® 1.5cd 1.7b 1.4bcd 

Megastar® 1.0de 0.8cd 1.3cd 

Dithane® 1.6cd 1.2bcd 1.5bc 

Serenade® 2.4b 1.8b 2.9a 

Folicur® 0.7e 0.7cd 1.3cd 

TRI D25 2.0bc 1.6bc 2.0b 

Control (I) 4.0a 3.1a 3.4a 

Means 1.7 1.4 1.8 
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Table 5.3: Efficacy of fungicides and biocontrol products when pruning wounds on 
Sauvignon blanc were inocuated with N. luteum and N. parvum 0, 7 or 14 days after 
treatment on the mean length of colonised tissues.  

aValues within the columns followed by the different letter are significantly different according to 
Sidak 95% CIs at P≤0.05. 

In addition, colonies characteristic of Trichoderma and Bacillus were observed growing out 

from the tissue from the plants treated with TRI D25 and Serenade®, respectively. All the 

other interactions were not significant (P>0.05). 

Treatments Days 
aMean length of colonised tissues (cm) 

Green shoots Woody Bark 
Cheif® 0 0.4c 0.4d 0.7cd 

Gem® 0 2.0b 1.3abcd 1.4bcd 

Megastar® 0 1.3bc 0.9abcd 1.5bcd 

Dithane® 0 1.5bc 1.3abcd 1.8bcd 

Serenade® 0 4.5a 2.8abc 4.1a 

Folicur® 0 0.8bc 0.8bcd 1.7bcd 

TRI D25 0 4.0a 2.7ab 3.0ab 

Control (I) 0 4.8a 4.1a 4.3a 

Cheif® 7 0.3c 0.6cd 0.8cd 

Gem® 7 1.8bc 1.4abcd 1.7bcd 

Megastar® 7 1.3bc 0.8bcd 1.7bcd 

Dithane® 7 1.7bc 1.4abcd 1.7bcd 

Serenade® 7 1.5bc 1.3abcd 3.0ab 

Folicur® 7 0.7bc 0.7cd 1.4bcd 

TRI D25 7 1.3bc 1.3abcd 2.1bc 

Control (1) 7 4.0a 3.2ab 3.5ab 

Cheif® 14 0.4c 0.7cd 0.7cd 

Gem® 14 1.3bc 2.5abc 1.1cd 

Megastar® 14 0.7bc 0.9bcd 1.1cd 

Dithane® 14 1.1bc 0.9bcd 1.0cd 

Serenade® 14 1.0bc 1.1abcd 1.5bcd 

Folicur® 14 0.6bc 0.7cd 0.8cd 

TRI D25 14 0.7bc 0.4d 0.4d 

Control (I) 14 3.2ab 2.1abcd 2.3bcd 
Means 1.7 1.4 1.8 
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For lengths of colonized tissues in bark of the trunks, there was a significant effect of species 

(P=0.029; Appendix E.3.3), with mean lesion length of tissue colonized being greater 

(P<0.05) for N. luteum (2.0 cm) than for N. parvum (1.6 cm). There was a significant effect 

of inoculation time after treatment application (P<0.001; Appendix E.3.3), with different 

(P<0.05) means of 2.7 cm, 1.8 cm and 1.6 cm, respectively for the 0, 7 and 14 day 

inoculation times. There was a significant effect of treatment (P<0.001), with shorter 

(P<0.05) mean lengths of colonised tissues for all treatments compared to the control except 

Serenade®. The shortest, mean lengths of colonised tissues were for Cheif® (0.7 cm), 

Megastar®e (1.3 cm), Folicur® (1.3 cm) and Gem® (1.4 cm; Table 5.2). Longest mean 

lengths of colonised tissues were for TRI D25 (2.0 cm) and Serenade® (2.9 cm). All the 

interactions were not significant (P>0.05) except between treatments and inoculation times 

after application (P<0.038; Table 5.3), which was again associated with a trend for greater 

efficacy at 14 days for the biocontrol products compared with similar efficacy for the 

different inoculation times for the other treatments.  

5.3.2 Efficacy of fungicides and biocontrol agents on wounds of potted grapevines in a 

tunnel house 

Wounds inoculated on hard green shoots of potted plants with N. luteum and N. parvum, 1 h 

and 24 h after application of the fungicides and biocontrol products, showed similar infection 

incidences for the two species (P=0.295; Appendix E.4.1) but inoculation time was 

significant (P=0.047), with overall mean infection incidences of 59% for 1 h and 73% for 24 

h. There was a significant effect (P<0.001) of treatments on infection incidence. All 

treatments significantly (P<0.05) reduced mean incidences as compared to the control, with 

least mean incidence being for Cheif® (23.7%), which was significantly less (P<0.05) than 

for all other treatments (Table 5.4). This was followed by Folicur® (41.0%) while the 

greatest means were for TRI D25 and Serenade® (both 83.0%). The interactions were not 

significant (P>0.05). 

For wood of the trunks of potted plants, there was no significant effect on infection incidence 

of species (P=0.757; Appendix E.4.2) or inoculation time (P=0.332). There was a significant 

effect (P<0.001; Appendix E.4.1) of treatment on infection incidence. All treatments 

significantly reduced mean incidence as compared to the control, with least mean incidence 

being for Cheif® (40.7%), which was significantly less (P<0.05) than for all other treatments 

(Table 5.4). This was followed by Folicur® and Megastar® (both 53.5%), while the greatest 
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mean incidences were for TRI D25 and Serenade® (both 91.5%). The interactions were not 

significant (P>0.05). 

On bark there was no significant effect on infection incidence of species (P=0.785; Appendix 

E.4.3) or inoculation time (P=0.390). The treatments significantly affected infection 

incidence (P<0.001; Appendix E.4.3). All treatments significantly reduced mean incidence as 

compared to the control, with least, (P>0.05) mean incidences being for Cheif® (41.0%), 

followed by Folicur® (48.7%) and Megastar® (60.6%), while TRI D25 (87.4%) and 

Serenade® (91.6%) had highest mean incidences which were not significantly different 

(P>0.05) (Table 5.4).  The interactions were not significant (P>0.05). 

Table 5.4: Effect of fungicides and biocontrol products on mean infection incidences of N. 
luteum and N. parvum which were inoculated onto hard green shoots and trunks of potted 
vines of Sauvignon blanc in a tunnel house. Values in parentheses are logit transformed data. 

 

 

 

 

 

 

 

 

 

 

 

 

aValues within the columns followed by the different letter are significantly different according to 
SED derived from GLM analysis of logit transformed data. 

5.3.3 Fungicide longevity  

The effect of inoculum concentration on infection incidence of green shoots was significant 

(P=0.044 Appendix E.5.1), with mean infection incidences being 46.2% with 2 

conidia/wound and 57.2% with 40 conidia/wound. There was a significant effect of treatment 

time on infection incidence (P=0.031); the most effective treatment was Treatment 5, which 

was inoculated after 10 weeks and the least was Treatment 3, which was inoculated after 4 

Treatments 
aBotryosphaeriaceae spp. isolated (%) 

Green shoots Wood Bark  

Cheif® 23.7  (2.00) e 40.0  (1.36) e 41.0  (1.35) f 

Gem® 64.4  (0.74) c  74.5  (0.52) c 70.1  (0.62) c 

Megastar® 57.9  (0.90) c 53.5  (1.01) d 60.6  (1.13) e 

Dithane® 64.4  (0.74) c 73.7  (0.54) c  70.6  (0.60) c 

Serenade® 83.0  (0.34) b 91.5  (0.17) b 91.6  (0.17) b 

Folicur® 41.0  (1.35) d 53.5  (1.01) d 48.7  (0.83) d 

TRI D25 83.0  (0.34) b 91.5  (0.17) b 87.4  (0.25) b 

Control 100  (0.00)  a  99.9  (0.00) a 100  (0.00) a 

SED          (0.012)          (0.085)           (0.095) 
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weeks with mean infection incidences of 41.0% and 62.4%, respectively (Table 5.5). There 

was a significant effect of fungicide on infection incidence (P<0.001), with the least mean 

incidence being for Cheif® (16.2%), which was significantly less (P<0.05) than for Folicur® 

(32.6%) which was less (P<0.05) than for Megastar® (41.0%; Table 5.6). The least effective 

fungicide was Gem® (72.8%). The interactions were not significant at P=0.05. 

Table 5.5: Effect of different treatments on mean infection incidences of N. luteum and N. 
parvum which were inoculated onto green shoots. Fungicides were applied and wounds 
inoculated after ~2 h (Treatment 1) or after 2 weeks (Treatment 2), 4 weeks (Treatment 3), 8 
weeks (Treatment 4) or at 10 weeks (Treatment 5) after wounding. Values in parentheses are 
logit transformed data. 

 

 

 

 

 

 

 
 

aValues within the columns followed by the different letter are significantly different according to 
SED derived from GLM analysis of logit transformed data. 

 In the wood of trunks, the effect of inoculum concentration on infection incidence was not 

significant (P=0.498) nor was the effect of treatment time (P=0.443). However, there was a 

significant effect of fungicide treatment (P<0.001; Appendix E.5.2) with all fungicides 

significantly reducing (P<0.05) incidence compared with the control. The least mean incidence 

being for Cheif® (32.6%), which was significantly less (P<0.05) than for Megastar® (49.2%), 

which was less (P<0.05) than for Folicur® (52.6%; Table 5.6). The least effective fungicide 

was Gem® (76.1%).  The interactions were not significant at P=0.05. 

In the bark of trunks, the effect of inoculum concentration on infection incidence was not 

significant (P=0.586) nor was the effect of treatment time (P=0.350). There was a significant 

effect of fungicide treatment on infection incidence (P<0.001; Appendix E.5.3), with all 

fungicides significantly reducing (P<0.05) incidence compared with the control. The least 

mean incidence being for Cheif® (32.0%), which was significantly less (P<0.05) than for 

Megastar® (49.0%) which was less (P<0.05) than for Folicur® (52.5%; Table 5.6). The least 

Treatments aInfection incidence % 

T1 46.2  (1.20) a 

T2 61.7  (0.81) b 

T3 62.4  (0.80) b 

T4 47.6  (1.16) a 

T5 41.0  (1.40) c 

SED         (0.050) 
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effective fungicide was Gem® with mean infection incidence of 76.1%. The interactions 

were not significant at P=0.05. 

Table 5.6: Effect of fungicides on mean infection incidences of N. luteum and N. parvum 
which were inoculated onto green shoots and trunks. Values in parentheses are logit 
transformed data. 

 

 

 

 

 

 

 

aValues within the columns followed by the different letter are significantly different according to 
SED derived from GLM analysis of logit transformed data. 

For the length of colonised tissues, the effect of inoculum concentration on green shoots was 

significant (P<0.001: Appendix E.6.1), with longer mean lengths for 40 conidia/wound than 

for 2 conidia/wound (0.9 cm and 0.6 cm, respectively) (Table 5.7). There was a significant 

effect of treatment time on the length of colonised tissues (P=0.012). Overall the most 

effective was Treatment 1, which was inoculated after 2 h with a mean length of 0.5 cm and 

the least effective was Treatment 2, which was inoculated after 2 weeks with a mean length 

of 1.0 cm (Figure 5.7). There was a significant effect of fungicide (P<0.001), with all 

fungicides significantly reducing (P<0.05) incidence compared with the control. The least 

(P<0.05), mean lengths were for Cheif® (0.3 cm), Folicur® (0.5 cm) and Megastar® (0.7 

cm) which were not significantly different (P>0.05) to each other (Table 5.8). The longest 

similar (P>0.05) mean lengths of colonised tissues were for Gem® and Dithane® (1.3 cm 

and 1.2 cm, respectively, which were not significantly different (P>0.05) to each other. The 

interactions were not significant at P=0.05. 

 

 

 

Fungicides 
aBotryosphaeriaceae spp. isolated (%) 

Green shoots Wood  Bark  

Cheif® 16.2  (2.43) f 32.6  (1.66) f 32.0  (1.66) f 

Gem® 72.8  (0.56) b  76.1  (0.49) b 76.1  (0.49) b 

Megastar® 41.0  (1.36) d 49.2  (1.12) e 49.0  (1.12) e 

Dithane® 66.1  (0.70) c 69.4  (0.64) c 69.1  (0.64) c 

Folicur® 32.6  (1.63) e 52.6  (1.03) d 52.5  (1.03) d 

Control 83.6  (0.33) a 82.8  (0.40) a 80.1  (0.40) a 

SED (0.069) (0.047) (0.055) 
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Table 5.7: Effect of different treatments on mean length of N. luteum and N. parvum which 
were inoculated onto different tissues. Fungicides were applied and wounds inoculated after 
~2 h (Treatment 1) or after 2 weeks (Treatment 2), 4 weeks (Treatment 3), 8 weeks 
(Treatment 4) or at 10 weeks (Treatment 5) after wounding.  

 

 

 

 

 

 

 

aValues within the columns followed by the different letter are significantly different according to 
Sidak. 95% CIs at P≤0.05 

For wood of trunks, there was a significant effect of inoculum concentration (P=<0.035; 

Appendix E.6.2) on the length of colonised tissues, with longer mean distances for 40 

conidia/wound than for 2 conidia/wound (0.8 cm and 0.7 cm, respectively). The effect of 

treatment time was also significant (P=0.025). Overall the most effective treatment was 

Treatment 1 with a mean length of colonised tissues of 0.6 cm and the least effective was 

Treatment 2 with a mean length of 1.0 cm (Table 5.7). There was a significant effect of 

fungicide (P<0.001), with shortest (P<0.05) mean lengths being for Cheif® (0.4 cm), 

Folicur® (0.6 cm) and Megastar® (0.7 cm) which were not significantly different (P>0.05) to 

each other (Table 5.8). Lengths for the remaining treatments were similar (P>0.05) to each 

other with a trend showing longest, mean lengths of colonised tissues for Dithane® and 

Gem® (1.1 cm and 1.2 cm, respectively). The interactions were not significant at P=0.05. 

For bark of trunks, there was a significant effect of inoculum concentration on the length of 

colonised tissues (P<0.043; Appendix E.6.3), with longest mean length of colonised tissues 

for 40 conidia/wound and least for 2 conidia/wound (1.1 cm and 0.9 cm, respectively). There 

was a significant effect of treatment time (P<0.001) on the length of colonised tissues, with 

the most effective treatment being Treatment 1 (0.8 cm) and the least effective being 

Treatment 2 (1.5 cm) (Figure 5.7). There was a significant effect of fungicide on lengths of 

colonised tissues (P<0.001). The shortest (P<0.05) mean lengths of colonised tissues were for 

Cheif® (0.5 cm; Table 5.8). The longest (P<0.05) mean lengths of colonised tissues were for 

Gem® and Dithane® (1.4 cm and 1.3 cm, respectively) which were not significantly different 

Treatments aGreen shoots aWood  aBark 

T1 0.5b 0.6b 0.8c 

T2 1.1a 1.0a 1.5a 

T3 1.0ab 1.0a 1.2ab 

T4 0.8ab 0.9a 0.7bc 

T5 0.6b 0.9a 0.7bc 

Means 0.8 0.9 1.0 
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(P>0.05). The interactions were not significant at P=0.05. Overall trends for all fungicides, 

treatment times and inoculum doses are shown in Appendix F.2. 

Table 5.8: Effect of fungicides on the mean length of colonisation by N. luteum on different 
wound tissues of potted Sauvignon blanc grapevines. 
 

 

 

 

 

 

 

aValues within the columns followed by the different letter are significantly different according to 
Sidak 95% CIs at P≤0.05. 

Table 5.9: Effect of fungicides on the mean length of colonisation by N. luteum when applied 
at 2 or 40 conidia per wound to different tissues of potted Sauvignon blanc grapevines. 

Fungicides 
aMean length of colonised tissues (cm) 

Inoculum 
conc. Green shoots Wood  Bark  

Cheif® 2 0.2d 0.3d 0.4c 

Gem® 2 1.1ab 1.1ab 1.2abc 

Megastar® 2 0.5bcd 0.6bcd 1.0abc 

Dithane® 2 1.1ab 0.9abc 1.1ab 

Folicur® 2 0.4cd 0.6bcd 1.0abc 

Cheif® 40 0.3yz 0.4yz 0.7xy 

Gem® 40 1.5w 1.3w 1.5w 
Megastar® 40 1.0wxy 0.7wxyz 1.0wxy 
Dithane® 40 1.4w 1.2w 1.4wx 
Folicur® 40 0.6xyz 0.7wxyz 1.0wxy 

Means    0.835  0.935         1.0 
aFor each inoculum concentration, values within the columns followed by the same letter (a-d for 
inoculum concentration 2 conidia/wound, and x-y for inoculum concentration 40 conidia/wound) are 
not significantly different according to Sidak 95% CIs at P≤0.05. 

  

 

Fungicides 
aMean length of colonised tissues (cm) 

Green shoots Wood  Bark  
Cheif® 0.3c 0.4b 0.5b 

Gem® 1.3a 1.2a 1.4a 

Megastar® 0.7b 0.7b 1.0a 

Dithane® 1.2a 1.1a 1.3a 

Folicur® 0.5bc 0.6b 1.0a 

Means 0.083 0.093 0.1 
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5.3.5 Vineyard experiment  

When wounded canes in the vineyard were inoculated with N. luteum and N. parvum at 0, 7 

and 14 days after application of the fungicides and biocontrol products there was no 

significant effect of species or inoculation time (P=0.776, P=0.194, respectively; Appendix 

E.7.1) on infection incidence of the cane wood. However, there was a significant effect 

(P<0.001) of treatment, with all treatments significantly reducing (P<0.05) mean incidence 

compared with the control. The lowest mean incidence was for Cheif® (23.3%), which was 

significantly less (P<0.05) than for Folicur® (25.0%), which was less (P<0.05) than for 

Megastar® (26.2%) (Table 5.10). The least effective treatments (P<0.05) were Serenade® 

and TRI D25, with mean infection incidences of 76.6 and 72.9%, respectively.  The 

interactions were not significant at P=0.05, except the interaction between the fungicides and 

time (P<0.001), which was associated with greater efficacy at 7 and 14 days of Serenade® 

and TRI D25 than for the 0 day treatment, whereas for most other treatments efficacy 

remained similar or decreased with application after 7 and 14 days compared with 0 days 

(Table 5.11). 

Table 5.10: Mean infection incidences of N. luteum and N. parvum applied after fungicides 
and biocontrol products on wounded canes. Values in parentheses are logit transformed data. 

Treatments 
aBotryosphaeriaceae spp. isolated (%) 

Wood  Bark  

Cheif® 23.3  (2.75) h 27.9  (2.47) g 

Gem® 43.7  (1.84) d 51.2  (1.55) d 

Megastar® 26.2  (2.60) f 30.0  (2.37) f 

Dithane® 32.9  (2.28) e 38.3  (2.01) e 

Serenade® 76.6  (0.76) b 78.3  (0.71) b 

Folicur® 25.0  (2.66) g 30.0  (2.37) f 

TRI D25 72.9  (0.88) c 74.1  (0.83) c 

Control              86.9  (0.54) a   89.0  (0.64) a 

SED            (0.015)           (0.014) 
aValues within the rows and columns followed by the different letter are significantly different 
according to SED derived from GLM analysis of logit transformed data. 

On cane bark, infection incidence was not significantly affected by species (P=940; 

Appendix E.7.2) or time of fungicides application (P=0.608) but was affected (P<0.001) by 

fungicide treatment, with all treatments significantly reducing incidence compared with the 
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control. The least mean incidence was for Cheif® (27.9%), which was significantly less 

(P<0.05) than for Folicur® and Megastar® (both 30.0%). The least effective treatments 

(P<0.05) were Serenade® and TRI D25 (78.3% and 74.1%, respectively; Table 5.10).  

Table 5.11: Mean infection incidences of N. luteum and N. parvum applied 0, 7 and 14 days 
after treatments on wounded canes of Sauvignon blanc in the vineyard. Values in parentheses 
are logit transformed data. 

Treaments Time 
aBotryosphaeriaceae spp. isolated (%) 

Wood  Bark 
Cheif® 0 20.0  (2.95) e 23.7  (2.67) f 
Gem® 0 36.2  (2.13) c 43.7  (1.42) d 
Megastar® 0 21.2  (2.87) e 23.7  (2.20) e 
Dithane® 0 26.2  (2.59) d 32.5  (2.25) e 
Serenade® 0 92.5  (0.29) b 93.7  (0.26) b 
Folicur® 0 20.0  (2.95) e 23.7  (2.67) f 
TRI D25 0 92.5  (0.29) b 92.5  (0.29) c 
Control 0 96.1  (0.09) a 99.9  (0.00) a 
Cheif® 7 25.0  (2.66) e 30.0  (2.36) e 
Gem® 7 47.5  (1.69) d 55.0  (1.42) c 
Megastar® 7 28.7  (2.46) e 32.5  (2.25) e 
Dithane® 7 36.2  (1.13) c 41.2  (1.90) d 
Serenade® 7 71.2  (0.92) b 72.5  (0.90) b 
Folicur® 7 27.5  (2.53) bc 32.5  (2.25) e 
TRI D25 7 65.0  (1.11) bc 66.2  (1.07) bc 
Control 7 86.2  (0.29) a 85.0  (0.52) a 
Cheif® 14 25.0  (2.66) d 30.0  (2.36) e 
Gem® 14 47.5  (1.69) c 55.0  (1.42) c 
Megastar® 14 28.7  (2.46) e 33.7  (2.20) e 
Dithane® 14 36.2  (2.13) c 41.2  (1.90) d 
Serenade® 14 66.2  (1.08) b 68.7  (1.07) b 
Folicur® 14 27.5  (2.52) bc 33.7  (2.20) e 
TRI D25 14 61.2  (1.23) b 63.7  (1.14) bc 
Control 14 78.5  (0.35) a 82.1  (0.44) a 
SED         (0.043)         (0.040) 

aValues within the columns followed by the different letter are significantly different according to 
SED derived from GLM analysis of logit transformed data. 

All the interactions were not significant at P=0.05 except the interaction between the 

fungicides and time (P<0.001), which was associated with greater efficacy at 7 and 14 days 

of Serenade® and TRI D25 than for the 0 day treatment, whereas for most other treatments 
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efficacy remained similar or decreased with application after 7 and 14 days compared with 0 

days (Table 5.11).   

5.4 Discussion 

In this study the efficacy of fungicides and biocontrol agents, which were reported to have 

some potential for control of the Botryosphaeriaceae, was investigated in potted vines and in 

a vineyard on different tissues and at various times with respect to inoculation by N. parvum 

and N. luteum. Overall, the effects of the fungicides were similar for all tissues, semi-hard 

shoots and wood and bark of trunks. In the vineyard experiment, pathogen incidence was 

high in the inoculated control (86.9%) and was reduced by all tested products, with lowest 

incidence in tissues treated with Cheif® (23.3%), Folicur® (25%) and Megastar® (26.2%). 

The length of colonised tissues after 1 month in potted vines and same varietyshowed the 

same overall trends (0.53, 0.90 and 1.03 cm, respectively). Amponsah et al. (2012b) also 

reported that the most effective fungicides for protecting wounds of 2-year-old potted 

grapevines (variety Pinot noir), against infection by conidia of N. luteum applied after 24 h, 

were carbendazim, iprodione, mancozeb and flusilazole (all 0% incidence) although 

tebuconazole was less effective (20% incidence). In another vineyard experiment assessed 

after 6 months they reported incidences to be 0, 2.7 and 3.7%,  for flusilazole, carbendazim 

and tebuconazole, respectively. The differences in incidence between this study and that of 

Amponsah et al. (2012b) are hard to explain, as both studies used manufacturers’ 

recommended field rates applied as sprays. However, Amponsah et al. (2012b) set up their 

field studies in vineyards where Botryosphaeriaceae spp. had not been found. They also used 

Pinot noir for their studies, although this variety was shown to have similar susceptibility to 

Sauvignon blanc by Amponsah et al. (2011).  The inoculum concentrations in the current 

study (200-600 conidia per wound) were about 10% of those used by Amponsah et al. 

(2012b), however the results presented in Chapter 4 and by Amponsah et al. (2014) showed 

that incidence was not affected by conidial numbers used for inoculation. The same lower 

conidial inoculum concentration of 104 was used throughout the experiment in this Chapter to 

allow comparison between the 

 different experiments.  

In this study, the colonisation lengths by N. luteum and N. parvum across all tissues showed 

similar trends with regards to incidences for the fungicides, with mean distances in the 

outdoor experiment being 0.53, 0.90 and 1.03 cm, respectively, for Cheif®, Folicur® and 
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Megastar®. Amponsah et al. (2012b) reported lengths of dieback lesion for these fungicides 

after 3 months to be 3.32, 5.02 and 4.14 cm, respectively. The very low colonisation 

distances in the current study were probably due to the short incubation period of 1 month 

during which pathogen did not have adequate time to establish inside the grapevine tissues. 

Luque et al. (2008) also reported that carbendazim was the most effective fungicide in their 

study, with 83.4% reduction in infection of oak trees by B. corticola. Pitt et al. (2012) also 

reported carbendazim as the most effective fungicides for prevention of grapevine pruning 

wounds by D. seriata and D. mutila. Sosnowski et al. (2008) reported that benomyl (a 

benzimidazole; same chemical group as carbendazim) applied onto pruning wounds of field 

vines reduced the infection incidence of naturally occurring Botryosphaericeae spp. by 27-

41% when applied at 1 mL/L, which was a similar rate as used in the current experiment. 

They also reported that, of 15 fungicides tested in the field, benomyl was the most effective at 

reducing colonisation of pruning wounds by E. lata. Further, applications of 2 mL/L were 

shown to provide twice this level of control against E. lata.  Other fungicides, such as 

fluazinam, pyrimethanil and pyraclostrobin also reduced colonisation of wounds by E. lata 

but only when applied at much higher concentrations than the recommended field rates. 

Ayres and Sosnowski (2013) reported that when wounds on 1-year-old canes of Cabernet 

Sauvignon were treated with 2-10 times the recommended field rates of tebuconazole with a 

paint brush and inoculated 1 day later with E. lata spores (500/wound) the treatment reduced 

the infection incidence by 83-87%. However, Pitt et al. (2012) showed that 10 mL/L of 

carbendazim did not significantly reduce incidence of Botryosphaericeae spp. in comparison 

to the lower dose of 1 mL/L. This was probably because assessment was carried out one year 

later, when natural inoculum had fallen on susceptible wounds, long after the likely efficacy 

period of the fungicides. If assessments had been conducted after a few weeks or months, 

they might have been able to demonstrate greater effects. Application of fungicides at higher 

doses may increases efficacy as shown by Sosnowski et al. (2008) and Ayres and Sosnowski 

(2013), however if applied at higher dosages there is a possible risk of phytotoxicity that will 

influence the long-termvine health. Fludioxonil at higher application concentrations was 

reported to increase the phytotoxicity effects on grapevine leaves (Petit et al., 2009). 

Similarly, the phytotoxicity of captan on pepper, and carbendazim on tobacco was reported to 

be more pronounced with higher application concentrations (Garcia et al., 2002; Tort and 

Tu’rkyilmaz, 2003).  
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In the current study treating wounds with TRI D25 and Serenade® failed to reduce the 

infection incidence and pathogen colonisation when inoculation was done just after their 

application. However, in the experiment which inoculated wounds at 0, 7 and 14 days after 

treatment, there were reduced colonisation distances for TRI D25 applied 7 and 14 days 

before pathogen inoculation, which were the same as those for flusilazole (13 and 7 mm, 

respectively), although at 0 days distances were similar to the control (40 and 48 mm, 

respectively). Serenade® also reduced colonisation distances for 7 and 14 days compared to 

the 0 day treatment, being 15, 10 mm and 45 mm, respectively. Biocontrol agents need time 

to establish and to colonize the wound before they are effective at preventing infection (Lo et 

al., 1998). Similar results were reported by Latorre et al. (2013), who used same biocontrol 

agents as in this thesis, Bacillus subtilis (Serenade®) and Trichoderma spp. (Trichonativa®) 

provided no or weak protection (incidences of 100 and 50%, respectively) when applied 24 h 

before inoculation of N. parvum on 1-year-old blueberry stems. However, benomyl and 

iprodione applied at 0.1% and 0.06%, respectively, were both highly effective (0% 

incidence). John et al. (2005) reported the efficacy of biocontrol agents against E. lata 

ascospores. They reported that that when spores were applied to grapevine pruning wounds in 

the field, 14 days after wounding and application of T. harzianum, F. lateritium or Vinevax 

(T. harzianum), they reduced the recovery of the pathogen as compared to pathogen 

inoculation on the day after wounding and biocontrol application.  Kexiang et al. (2002) also 

observed greater control of apple ring rot caused by Botryosphaeria berengeriana f. sp 

piricola by Trichoderma spp. when applied 3 days before the pathogen than when inoculated 

at a same time. Further, Kotze et al. (2011) demonstrated that some biocontrol agents were as 

effective as benomyl when applied 7 days before pathogen inoculation in field vines assessed 

8 months later. Bacillus subtilis isolate EE 1/10 reduced the overall mean incidences for four 

Botryosphaeriaceae spp. compared with the water control (15.2 and 34.2%, respectively). 

However, the Trichoderma spp. isolates USPP-T1 and USPP-T2 reduced mean incidences of 

the four Botryosphaeriaceae spp. even further, to 5.6 and 12.5%, respectively when the mean 

incidence for the benomyl treatment was 16.5%. The results of the current study however 

showed lower efficacy for the biocontrol agents than the Cheif® and Folicur® treatments and 

Pitt et al. (2012) also reported that Vinevax provided limited protection against 

Botryosphaeriaceae species. In contrast to the results of this study in which Serenade® (B. 

subtilis) was not effective, Ferreira et al. (1991) reported that a B. subtilis strain isolated from 

grapevine applied to wounds on 2-year-old canes, provided 100% suppression of E. lata 

infection. The greater success of this treatment might have been because they covered the 
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wounds with aluminium foil after inoculation, whilst in the current study the wounds were 

left open. Also using different bacterial isolates may have been a factor, as different isolates 

are known to have different efficacy against pathogens. Alternatively, there may have been 

differences in the susceptibility of the pathogens used, E. lata compared with 

Botryosphaeriaceae spp., to antibiotics produced by B. subtilis. 

In the current study, TRI D25 was not as effective in the vineyard experiment as when used 

with potted plants placed in an outdoor but sheltered position. Incidences of 65.0 and 61.2% 

for the 7 and 14 day inoculations, respectively, indicated much lower efficacy than for the 

potted plant assays. Kredics et al. (2003) reported that the Trichoderma strains used in 

biocontrol are often sensitive to environmental conditions, especially low temperatures and 

dry conditions which are likely to inhibit their activity when used in aerial environments. 

Therefore, these products may need to be applied under particular environmental conditions 

which allow for germination and mycelia growth as well as production of anti-fungal 

compounds which prevent establishment of pathogens. 

The factors which may affect efficacy are the formulation and concentration of the products.  

In the current study fungicides and biocontrol agents were applied as a spray, mixed to 

manufacturers’ recommended field rates. When spray and paste formulations were compared 

by Diaz and Latorre (2013) in Chile, they found that paste applications containing (w/v) 1% 

benomyl, 0.1% pyraclostrobin, 0.5% tebuconazole and 1% thiophanate-methyl reduced the 

infection rate of D. seriata, Inocutis sp. and Pa. chlamydospora in pruning wounds of 

grapevine (Cabernet Sauvignon) better than spray applications. Future work is warranted to 

investigate the efficacy of different formulations of the most effective treatments identified in 

the current study.  

In the first experiment on potted vines outdoors, there was no effect of inoculation time (0, 7 

and 14 days) on incidence (67.7%, 68.4% and 62.1% respectively). In the second experiment 

when vines were retained in the tunnel house incidence was greater for 24 h (73%) than 1 h 

(59%). These effects were probably due to the sapwood dripping from wounds (bleeding). 

Serra et al. (2008) reported that susceptibility of grapevine pruning wounds to D. seriata on 

15-year-old Sauvignon blanc plants in Alghero, northern Sardinia, Italy pruned in January, 

February and March was very high during most of the trial. However, in March, infection 

percentages decreased when inoculated soon after pruning, which they considered was due to 

the bleeding of grapevine spurs reducing infection. Although the inoculation time after 

fungicide application did not affect incidence it did affect the length of colonised tissues, 
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which were longest when freshly treated wounds were inoculated than when wounds were 

inoculated 7 and 14 days after treatment. However, this time effect was not evident for the 

systemic fungicides Cheif® and Folicur®. 

In this study the efficacy of fungicides was tested to see whether they could provide 

protection over a longer period to repeated inoculations with N. luteum conidia. The most 

effective fungicide was Cheif® in green shoots and wood/bark and all fungicides were most 

effective at preventing infection by the inoculum applied 2 h later. The present study showed 

that when fungicide treated wounds were challenged by the pathogens 2 weeks after 

treatment, its efficacy was poorer than with the 2 h inoculation (incidences of 61.7% and 

46.2%, respectively). The reduced efficacy of fungicides observed in the present study might 

be attributed to breakdown of the fungicide in the wound sites, as was observed by other 

researchers. Price and Carter (1975) reported that the extractable amount of methyl 

benzimidazole-2-yl carbamate in the sapwood had reduced by 45% 2 weeks after application 

to pruning wounds. Another study by Kotze et al. (2011) showed that when benomyl-treated 

wounds were infected with the N. australe, N. parvum, Diplodia seriata, Lasiodiplodia 

theobromae, Eutypa lata, Phaeomoniella chlamydospora or Phomopsis viticola 1 week after 

treatment, its efficacy was poor. In the current study, the reduced infection incidences when 

inoculations were done at week 8 and 10 after treatment were probably due to the wounds 

having healed sufficiently to become impervious to conidial infection. This corresponds to 

the results in Chapter 4 where infection incidence was reduced when 28 day wounds on green 

canes and trunks were inoculated with N. luteum conidia compared with inoculation of 

wounds immediately. This reduction in infection incidence of pruning wounds due to the 

healing process in the wounds was also shown by other researchers in different host plants 

and with different filamentous fungi (Eskalen et al., 2007; Urbez-Torress and Gubler, 2011). 

Since the less effective control was observed with 40 conidia/wound than with two 

conidia/wound, this may indicate survival of some conidia long enough to outlast the 

fungicides. 

In the vineyard experiment Cheif®, Folicur® and Megastar® were the most effective 

fungicides. They provided reductions in infection incidences (25.0, 27.5 and 28.7%, 

respectively) compared to the control (78.5%) even when inoculated 14 days after treatment 

with two Neofusicoccum spp. which indicated that they are effective for at least that length of 

time.  
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Conclusion 

In summary, these results showed that all treatments were able to reduce infection of pruning 

wounds but with differences in efficacy between treatments. Although the biological agents 

provided some control in potted vines, they were not as effective as Cheif®, Folicur® or 

Megastar® in the field. Although total protection was not achieved with any of the 

applications, Cheif® allowed greatest reduction in infection of grapevine pruning wounds. 

From these results, as well as other reports in the literature, Cheif®, Folicur® and Megastar® 

can be suggested to grape growers as fungicides to be evaluated as pruning wound 

protectants. Folicur is now registered in New Zealand as a wound protectant as Gelseal Ultra 

Spray-on (New Zelanad Winegrower Magazine, 2016).  Further, since they greatly reduced 

the lengths of colonised tissue, this might result in removal of infected areas on shoots in 

Marlborough vineyards when they trim the upper shoots and side shoots of vine several times 

during summer. 
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Chapter 6 

Concluding discussion 

The overall aim of this study was to improve understanding of the spore production, dispersal 

infection dynamics, wound susceptibility and evaluation os treatments to protect wounds 

from nfection of the most common Neofusicoccum species in a New Zealand vineyard 

setting. In this chapter the key findings of this research are discussed with respect to future 

research needs and development of sustainable control programmes that are practical enough 

to meet the needs of grape growers. 

Pathogenicity and conidium production on grapevine tissues 

This study has demonstrated great variation in pathogenicity of different isolates of N. luteum 

and N. parvum used to infect different stem tissues of grapevine, and is the most extensive 

comparison, worldwide, of multiple isolates of N. luteum and N. parvum in terms of 

pathogenicity and conidial production. Pathogenicity was generally similar for the two 

species tested although there was a trend for production of more conidia from N. luteum than 

N. parvum. Variability in virulence between isolates and species has also been observed by 

other researchers, although only Urbez-Torres and Gubler (2009) used large numbers of 

isolates as used in this study to investigate pathogenicity. Greater pathogenicity of some 

species has also been reported, for example Lasiodiplodia theobromae by Urbez-Torres and 

Gubler (2009), N. parvum by Billones-Baajiens et al. (2014) and N. luteum by Amponsah et 

al. (2014). Further, other researchers have reported different outcomes in species occurrence, 

biology, and epidemiology from country to country and even between different grape-

growing areas within the same country (van Niekerk et al., 2004; Urbez-Torres and Gubler, 

2009; Amponsah et al., 2011; Billones-Baajiens et al., 2014), probably due in part to 

differences in climatic conditions and grape varieties. Billones-Baajiens et al. (2013) 

demonstrated that the assay parameters affected the lesion lengths caused when 114 

Botryosphaeriaceae isolates were used to inoculate excised green shoots and 1-year-old 

rooted canes of Sauvignon blanc in different batches over time. Their experiments also 

showed that all isolates and species were pathogenic although the Diplodia species isolates 

were pathogenic on canes but not on green shoots. Since lengths of lesions were significantly 

affected by experimental batch, which reflected inherent host and environmental factors over 

time, this demonstrates that pathogen characteristics are only one type of factor to affect the 
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final disease outcome. Most of the subsequent experiments in this thesis used mixed isolate 

inoculum to infect grapevine tissues in case the individual isolates were affected differently 

by the outdoor environments of the assays. Further, natural inoculum in the field is likely to 

involve multiple isolates from different necrotic tissues.  

In the current study, the numbers of conidia released from lesions on detached stems infected 

by the isolates of the two species also varied greatly between isolates and was directly 

proportional to their demonstrated pathogenicity. This is a novel finding as there are no 

similar published reports of differing sporulation capacity of Botryosphaeriaceae species and 

isolates. Amponsah et al. (2008) used three isolates of each species for their sporulation study 

but did not show differences between isolates, only between species. Knowledge of the 

sporulation capacity of isolates was important in this study because selected isolates were to 

be used for production of inoculum in further assays. Further, the evidence of overall 

sporulation capacity from necrotic tissues provided here gives some understanding of 

potential inoculum levels which may occur in the field.  

Temperature and relative humidity were shown in this study to affect the release of N. luteum 

and N. parvum conidia from pycnidia on detached shoots under laboratory conditions and on 

attached shoots in growth chambers. All isolates of N. luteum and N. parvum were able to 

release conidia at all temperatures (10-25°C) and relative humidities (80-100%) tested but 

numbers were higher in high RH (~100%) and temperature (25°C). In the vineyard, oozing 

by pycnidia was also observed from naturally infected canes and shoots soon after rainfall 

events. This novel research provides further understanding of factors which may affect 

inoculum levels in the field. However, further investigations should be conducted to validate 

these results under natural conditions in vineyards. These should include studies that monitor 

individual pycnidia on marked stem tissues, which are fixed onto platforms for ongoing 

observation, to observe the effects of moisture, temperature, light and host tissues on numbers 

of conidia released, periods of repeated release and productive period of the pycnidia.  

Conidium dispersal of Botryosphaeriaceae species in Marlborough vineyards 

Rainwater traps collected Botryosphaericeae conidia many times while trapping in Blenheim 

vineyards, with D. mutila and N. australe being the most common species, as was also 

reported by Baskarathevan et al. (2012) who sampled necrotic tissues.  A Burkard spore trap 

was also able to confirm presence of these conidia, during rainfall and up to 2 h after rainfall 

ceased, although it trapped comparatively few conidia.  Since this type of trap can accurately 
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show the timing of spore release it should be used to trap spores over an entire year. The 

effects of temperature and relative humidity in the canopies could be recorded with Tinytag® 

data loggers and with reference to the nearest weather stations, which could also provide 

information on the minimum level of rainfall needed for spore release and dispersal.  

This study also showed the dispersal distances of conidia released in vineyard settings. 

However, the experiments were conducted over limited periods. Further experiments which 

used marker strains and a Burkard trap might be able to demonstrate longer distance dispersal 

as well as timing of the secondary spread cycle. If the experiment was set up in vineyards 

with different climatic conditions, it could also provide useful information about how other 

factors affect dispersal distance, particularly wind speed and direction. Development of 

control strategies might also be improved by information derived from spore trapping over a 

number of years, especially during trimming and pruning. Further, the role of insects in the 

spread of conidia should be investigated since they have been shown to affect dispersal of 

fungal spores. Moyo (2013) caught arthropods in traps placed next to fresh cane pruning 

wounds in South African vineyards during winter. When the washings from millipedes, ants, 

spiders and beetles were used for molecular identification, most samples from all these 

insects contained DNA of Petri disease pathogens but 10% also contained DNA of D. seriata.  

This study has provided information on the pathogenicity of Botryosphaeriaceae species, and 

potential sources of inoculum as well as the dispersal distances and how the environmental 

factors such as temperature and relative humidity affect release of conidia. The data from this 

study do not directly contribute to improving management practices of the Botryosphaeria 

disease, but they do provide some important information to be used in combination with 

spore trapping data, temperature, humidity, wind speed, rainfall and seasonal trapping of 

pathogens from infected vineyards to better understand the seasonal behaviour of conidia. 

These factors are vital to the spread and development of disease.  

In this study, ascospores were not collected during sampling nor found when inspecting 

necrotic tissues in vineyards. However, future research should sample the air of vineyards in 

different regions and seasons using a Burkard trap to determine whether ascospores are 

released in New Zealand vineyards, and the species identity by molecular methods. Since 

perithecia and ascospores identified as belonging to the Botryosphaeriaceae have rarely been 

found under natural vineyard conditions, further studies should investigate whether 

Botryosphaeriaceae species are homothallic or heterothallic. A study by Bihon et al. (2011) 

reported that intensive scrutiny of the natural symptomatic tissues in pine had failed to find 
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the sexual state of D. pinea and thus the fungus had been considered exclusively asexual. 

However, their more recent population genetics study Bihon et al. (2014) showed high 

genotypic diversity, suggesting that the pathogen had a cryptic sexual stage. When they 

interrogated the structure of the MAT locus within sequenced genomic DNA of D. pinea 

isolates they found complete and apparently functional copies of the MAT genes (MAT1-2-1 

and MAT1-1-1), with both idiomorphs having a 1:1 ratio in the populations examined, as 

would be expected in heterothallic sexually reproducing populations. However, they did not 

attempt to induce sexual reproduction in the laboratory. Similar investigations into presence 

of different mating types among the Botryosphaeriaceae species, with a view to inducing 

sexual reproduction and ascospore production, could form the basis of an interesting study. 

The Plant Pathology Culture Collection at Lincoln University has several hundred 

Botryosphaeriaceae species which could be used to search for mating types and perhaps 

induce ascospore production under laboratory conditions. However, Urbez-Torres (2011) 

commented that induction of sexual reproduction was difficult under laboratory conditions, 

and recent studies by Elena et al. (2015) failed to produce sexual fruiting bodies under 

experimental conditions even though they had observed vegetative compatibility reactions 

among D. seriata isolates from grapevines. Phillips et al. (2005) reported that some of the 

Botryosphaeria iberica isolates used in their study were from perithecia and ascospores of 

these pathogens found infecting Quercus species in Spain, so sexual reproduction studies 

should be widened to include pathogenicity studies on other hosts. 

Factors that affect infection of grapevine stems, buds and fruit 

Wound age in late summer was shown to affect rate of infection and differed between tissues, 

with hard shoots being susceptible to infection by N. luteum conidia until 56 days old and 

trunk wood until 28 days old, which also demonstrated decreasing incidence and colonisation 

distances during the ageing process. However, the season when wounds were made also 

affected incidence, which was higher in autumn and spring than summer, when trunk wounds 

were minimally susceptible at 42 days old. Another study showed that inoculum density was 

also an important factor; inoculation of freshly wounded grapevine tissues with as little as 2 

conidia/wound caused 100% incidence in hard shoots and 66.7% incidence in trunks of 

young potted vines. However, as the wounds aged, more conidia were required to cause high 

infection incidence and pathogen colonisation distance. These studies have provided new 

information on the factors affecting infection of canes in a Marlborough vineyard in much 

more detail than the single-factor experiments conducted by Amponsah et al. (2014), who 
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inoculated trunk wounds of Pinot noir potted vines with 250 conidia of N. luteum in 

Canterbury and in summer only. Further, they covered inoculated wounds with Parafilm™ 

which was not used in current experiments which were considered to be representative of 

natural infection in vineyards. Urbez-Torres and Gubler (2011) also reported that pruning 

wounds of Chardonnay and Cabernet Sauvignon in California, USA were susceptible to N. 

parvum and L. theobromae for up to 84 days when inoculated monthly over 5 months in 

autumn and winter with 5 x 104 conidia per wound. However, their studies used much higher 

numbers of conidia and focussed on the timing of pruning with different varieties to those 

used in this study. This study has also shown that infection by low numbers of N. luteum 

conidia is likely and represents a great risk to grape growers, especially as this species is 

known to progress rapidly through grapevine stems, often without development of obvious 

symptoms (Amponsah et al., 2011). However, these experiments were conducted with just 

one species and on potted vines, so further studies are needed to determine the effects of 

these factors on infection rates of different species in the field.  

The effects of season and pruning wound age, which has not been investigated previously, 

showed that pruning wounds remained susceptible to infection by N. luteum for up to 28 days 

after pruning in summer and winter and 42 days after pruning in spring and autumn, with 

decreasing susceptibility over time. Grapevine pruning in Marlborough typically occurs in the 

dormant season from mid-May through to the end of August. When large cuts are required, 

such as for reshaping the heads of the vines, they are usually made in September (pers. 

comm. Andrew Naylor 2014). Since many reports have concluded that Botryosphaericeae 

spp. spores were present whenever rainfall had occurred to trigger release and to disperse 

them, the susceptibility of pruning wounds is of great concern. Urbez-Torres et al. (2010) 

showed in their study that spores were trapped from the mid autumn to early spring in 

Californian vineyards and Eskalen et al. (2013) reported that Botryosphaeriaceae spp. conidia 

were trapped in all seasons in Californian avocado orchards. In New Zealand, Amponsah et 

al. (2009b) also showed that Botryosphaericeae spp. conidia were present in rainfall traps 

throughout the year. Since colonisation distances in hard shoots were shown by this study to 

be 2.9 cm after 2 weeks and by Amponsah et al. (2011) to be 7.3 cm after 9 weeks, it seems 

likely that infection of trimming wounds could lead to infection of the vine structure. These 

studies should be repeated in vineyards where infection of trimmed shoots should be tracked 

and dieback measured, so that growers can be made aware of the timeframe for pruning out 

the infected shoots and the symptoms to watch out for. If experiments were set up in 
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vineyards destined for removal, these may also provide demonstration sites for grower 

workshops.   

This study showed that inoculation of bark with conidia could result in infection of the wood 

below and that the germinating conidia grew rapidly in the direction of cuts made into the 

wood of the canes. When sections of inoculated lenticels were observed by microscope, 

hyphal invasion through lenticels was indicated by the large amount of mycelium covering 

the surface and internal tissues about the lenticels. This novel result indicates that wounds are 

not necessary for infection, as it occurred in the unprotected tissues used in these 

experiments. However, these results appear to contradict the findings of Amponsah et al. 

(2011) who was not able to isolate the inoculated pathogen from non-wounded green shoots 

or trunks. Further, it is the general understanding reported by other researchers that the 

Botryosphaeriaceae are wound pathogens. Clearly, these results have implications for the 

potential control of this disease, for which most studies have focussed on protection of 

pruning wounds. Further studies are required to validate these results, and they should be 

conducted in vineyards with marker strains of pathogens to exclude other types of natural 

infection.  

In the current study, leaf buds were infected with N. luteum and N. parvum conidia 

throughout all stages of development for superficially wounded buds, with a meanof 48.3%. 

Non wounded buds were only able to be infected (~30%) at the green tip visible stage. These 

results contrast with the findings reported by Amponsah et al. (2012a), who reported higher 

incidences in non-wounded “swelling” buds (73%) after wounding and inoculation with N. 

luteum conidia. However, the inoculated area was protected by covering with a moist plastic 

bag in that study which may have allowed for higher incidence by providing high relative 

humidity and temperature. The studies by Phillips (1998) in Portugal, who ‘inserted’ 105 

conidia of P. viticola and B. dothidea under the scales of each bud, were conducted on 

detached shoots of variety Espadeiro and held in a protected environment and so were quite 

dissimilar from the current work. Further, the work by Wunderlich et al. (2011) in New South 

Wales, Australia, which inoculated non-wounded buds at the dormant stage with 1000 

conidia of N. parvum and D. seriata, and covered them with plastic bags after inoculation, 

was relatively unsuccessful as they recovered the pathogens from only 6% and 12%, 

respectively, of the buds, and observed no necrotic symptoms. In the current study, the 

supporting canes were shown to be colonised rapidly by the pathogen, leading to diseased 

shoots and potential inoculum production early in the growing season. If these shoots were 
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not detected and removed, the infection is likely to spread into the canes and even vine 

trunks, in which these pathogens have been shown to move downwards and upwards in the 

wood of living vines. Clearly, bud infection could occur in the field and lead to dieback of 

developing shoots and canes. Therefore, future research should investigate ways to protect 

buds from infection. If this is not possible, growers might need to monitor the health of new 

shoots in vineyards so that they can remove any symptomatic shoots to prevent further 

disease progression into the structure of the vine.  

Berries also became infected after inoculation with N. luteum conidia. The berries at the 

intermediate development stages required wounding but berries at the pre-harvest stage were 

able to be infected without wounding. Further, the subsequent colonisation of rachii and 

supporting shoots means that the pathogen can spread rapidly through a bunch. Since infected 

berries also produced pycnidia, which can ooze conidia in all temperatures and relative 

humidities likely to be found during berry development, these tissues can act as another 

secondary source of inoculum. Amponsah et al. (2012a) also demonstrated similar effects 

when they wounded the berries which were protected with plastic bags and held in a 

greenhouse. Clearly, these results have shown that field berries may become infected with 

Botryosphaericeae species with the potential for secondary bunch rots, such as those caused 

by Botrytis cinerea. Further investigations should determine whether Botryosphaericeae 

species pre-dispose berries to infection by other extremely damaging pathogens.  Also, if the 

canes colonised by the Botryosphaericeae species which infected bunches were not detected 

and removed during winter pruning, the infection is likely to spread into the vine structure. 

Amponsah et al. (2011) reported that after winter dormancy began, dieback developed 

rapidly in asymptomatic but infected tissues. In addition, the colonisation distances always 

extended further than the visible lesions; this evidence indicates the potential for spread from 

peripheral tissues into vine arms and trunks, ultimately resulting in vine death. Further 

research is required to validate these pathways of Botryosphaeriaceae infection in various 

grapevine tissues within vineyards and to develop pruning strategies which may eliminate the 

infected tissues.  

Efficacy of fungicides and biocontrol agents for protecting wounds  

The fungicide sensitivity study conducted on potted and field grown vines showed that 

Cheif®, Folicur® and Megastar® were effective at reducing infection by N. luteum and N. 

parvum, even when inoculation was carried out 14 days after treatment.  The biological 

control product, TRI D25, was as effective as Megastar® but less effective than Cheif®, 
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which was the most effective overall. These treatments are also likely to control many other 

Botryosphaeriaceae species, since in vitro and field studies by Bester et al. (2007), Amponsah 

et al. (2012b) and Pitt et al. (2012) showed that these fungicides were effective against a wide 

range of these species.  However, none of the fungicides were able to completely prevent 

infection in this study, even when inoculum doses were reduced to 2 conidia per wound.  

However, with low inoculum levels the fungicides reduced the colonisation distances to very 

low levels (3-8 mm) after a few weeks. Therefore, the slower pathogen progression might 

allow for removal of the infections by trimming and pruning. These studies have shown that 

only a few conidia are needed for successful infection and conidia are likely to be available 

whenever rainfall has occurred. Therefore, effective management of these pathogens with 

chemicals is likely to be extremely difficult. Further research should be done to investigate 

ways to make these products more effective at preventing bud, fruit, bark and wound 

infection. It is possible that repeated applications of the systemic fungicides found effective 

in this study might prevent colonisation of the bark by these pathogens. Further, higher 

concentrations might be more effective at preventing bark and wound infection than the 

normal field rates used in the current study. However, before such fungicide strategies can be 

adopted by grape growers, residue testing of the fruit will be necessary to establish the 

withholding periods. 

Since TRI D25 was shown to prevent infection if allowed to colonise the tissues prior to 

challenge by the pathogen, further studies should investigate whether this biocontrol agent 

can colonise bark for prolonged periods when applied to vines  Such a strategy might reduce 

infection via bark and even prevent infection of wounds made through that bark. Further 

studies should be conducted to investigate ways to provide good coverage and to ensure 

establishment of these agents. Investigations should also aim to determine the longevity of 

the biocontrol agents within bark of different stem tissues to determine the potential need for 

reapplication. Further, the efficacy of such treatments should be investigated with different 

varieties and in different regions since Mutawila et al. (2011) showed that in South Africa, 

reduction of pathogen incidence by Trichoderma spp. varied between varieties, being 10.3% 

in Chardonnay and 66.7% in Chenin blanc.  
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Summary  
This study has provided new information on the disease cycle of Botryosphaeria diseases in 

vineyards. It has also shown how environmental conditions affect sporulation which occurs 

on grapevine stems of different ages as well as on fruit. This study also showed the effective 

dispersal distances of conidia and their infection efficacy on wounds in Marlborough 

vineyards. Further, it has demonstrated that infection can progress rapidly into the vine 

structure which can ultimately lead to vine death. The information about the length of time 

for which pruning and trimming wounds remained susceptible, and the capacity for other 

tissues to become infected without the need for wounds has demonstrated that management 

of this disease requires a multi-pronged strategy. Further monitoring of how weather 

conditions affect sporulation in the field using a Burkard spore trap might allow for timing 

strategies that avoid pruning during such conditions. This could be used for deciding 

trimming times and timing of large cuts but is unlikely to be used for normal pruning which 

needs to be continuous in winter due to shortage of labour.  

Vineyard sanitation could reduce inoculum sources; this might mean removal of all cane 

pruning, rather than just mulching them as is currently practised in Marlborough vineyards. 

Elena and Luque (2015) reported that grapevine debris already infected with D. seriata were 

able to produce conidia for up to 3.5 years after pruning when placed in natural vineyard 

conditions, and the viability of these conidia decreased significantly between 2 and 3.5 years. 

Further, the current study showed that fresh cane prunings were able to be infected. 

Therefore, removal of these tissues should be investigated along with Burkard spore trapping, 

to determine whether this practice reduces dispersed inoculum. Frequent inspection of vines 

and removal of necrotic canes and shoots could prevent disease progression into the 

permanent wood of the vines. However, strategies for protection of tissues from infection 

with chemical and biological products must also be considered as necessary for more than 

just wounds; overall protection is clearly necessary for prolonged periods throughout the 

year. 
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Appendix A - Recipes 

A.1 Potting mix composition (8-9 months) 

Potting mix 

60% Horticultural bark,  

30% Premier bark chips,  

10% Screened peat,  

Fertilisers were added to the mix, with the following amounts per m3:  

2 Kg Basacote® plus 6 M (Compo),  

4 Kg Nutricote® 8/9month 13N (Yates),  

1 Kg Penetraide®, (Hort-fert) 

2.5 KgDolomite,  

1 Kg, Agricultural Lime  

1.5 Kg Gypsum (screened) 

0.5 Kg Magri-Trace granular (Hort-fert) 

1 Kg Tribon® (Hort-fert) 

 

A.2 All recipes 

A.2.1 loading dye 

40% (w/v) Sucrose (Sigma Chemical Co., USA) 

0.25% (w/v) Bromophenol blue 

0.25% (w/v) Xylene cyanol 

Preparation: All ingredients were added to 8 mL of sterile nanopure water and mixed on a magnetic 
stirrer until dissolved. The final volume was made up to 10 mL, mixed, dispensed as 1 mL aliquots 
and store at -20◦C. 

 

A.2.2 TAE 

242g   Tris (invitrogen life technologies, CA, USA) 

57.1 mL   Glacial acetic acid 

100 mL    0.5 M Ethylenediaminetetra-acetic acid (pH 8.0) 

Preparation: In 1 L bottle all ingredients were added with 800 mL of ROW, dissolved on magnetic 
stirrer, the final volume was made up to 1000 mL, autoclaved for 15 min at 121◦C and 15 Psi. Prior to 
use the resulting 10x stock was diluted to 1x. 
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A.2.3 CTAB buffer 

2 mL of 1 M Tris (pH 8) 

4 mL of 0.5 M EDTA 

16 mL of 5 M NaCl 

2 g of CTAB 

Millipore water added to make up to a total volume of 100 mL. 

 

A.2.4 MDE Gel Mix 

12.5 ml of 2xMDE  

8.0 ml of 5xTBE 

19.5 ml of Millipore water 

Total of 40 mL per gel 

To the above mix, add the catalysts: 

+ 30 µL TEMED (N,N,N’,N’-tetra-methyl-ethylenediamine) 

+280 µL 10% w/v APS (ammonium persulfate) - 0.05 g/0.5 ml 

 

A.2.5 5x TBE (Tris-borate) 

54 g Tris Base (J.C Baker) 

27.5 g Boric Acid 

20 mL of 0.5M EDTA pH8 

Millipore water to make up to 1 litre 
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Appendix B – Analyses for Chapter 2 

B. 1 Analysis of variance (ANOVA) for detached grapevine shoots of Sauvignon blanc 

B.1.1 Lesion lengths on soft green shoots for blocks and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 40.364 8.073 7.24 <0.001 

Species 1 1.937 1.937 1.74   0.192 

Total 83 128.215    

 

B.1.2 lesion lengths on semi-hard shoots for blocks and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 128.079 25.616 14.36 <0.001 

Species 1 3.984 3.984 2.23   0.139 

Total 83 269.426    

 

B.1.3 Lesion lengths on soft green shoots for blocks and isolates  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 1.823 0.364 7.76 <0.001 

Isolates 13 12.784 0.983 20.92 <0.001 

Total 83 17.662    

 

B.1.4 Conidial numbers from soft green shoots for blocks and isolates  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 1.823 0.36468 7.76 <0.001 

Isolates 13 12.784 0.938335 20.92 <0.001 

Species 2 1.249 0.6244 3.08   0.051 

Total 83 17.662    
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B.1.5 Lesion lengths on semi-hard shoots for blocks and isolates 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 128.08 25.616 22.38 <0.001 

Isolates 13 66.94 5.149 4.50 <0.001 

Total 83 269.426    

 

B.1.6 Conidial numbers from semi-hard shoots for blocks, species and isolates  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 2.512 0.502 3.05   0.370 

Isolates 

Species 

13 

2 

15.804 

0.6300 

1.215 

0.315 

21.89 

1.27 

<0.001 

  0.285 

Total 83 21.926    

 

B. 2 ANOVA for attached grapevine shoots  

B.2.1 Lesion lengths on attached soft green shoots for isolates 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Isolates 7 3.240 0.462 6.29 <0.001 

Error 40 2.945 0.073   

Total 47 6.185    

 

B.2.2 Conidial numbers from soft green shoots for isolates  

Source of variation d.f. s.s. m.s. F-Value P-Vale 

Isolates 7 7.125 1.017 78.81 <0.001 

Error 40 0.516 0.012   

Total 47 7.642    
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B.2.3 Lesion lengths on soft green shoots for grapevine varieties and species  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.001 0.001 0.03 0.859 

Species 1 0.206 0.206 4.98 0.032 

Variety*Species 1 0.035 0.035 0.86 0.361 

Total 39 1.737    

 

B.2.4 Conidial numbers from soft green shoots for grapevine varieties and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.712 0.712 7.89   0.008 

Species 1 0.275 0.275 30.48 <0.001 

Variety*Species 1 0.006 0.006 0.67   0.418 

Total 39 0.667    

 

B.2.5 Lesion lengths on semi-hard shoots for grapevine varieties and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.065 0.065 6.42 0.016 

Species 1 0.026 0.026 2.62 0.114 

Variety*Species 1 0.008 0.008 0.80 0.377 

Total 39 0.469    

 

B.2.6 Conidial numbers from semi-hard shoots for grapevine varieties and species  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.003 0.003 0.28   0.600 

Species 1 0.213 0.213 17.51 <0.001 

Variety*Species 1 0.004 0.004 0.37   0.548 

Total 39 0.660    
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B.2.7 Lesion lengths on trunks for grapevine variety and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.176 0.176 4.27   0.046 

Species 1 1.414 1.414 34.27 <0.001 

Variety*Species 1 0.000 0.000 0.00   0.963 

Total 39 3.075    

 

B.2.8 Lesion lengths on semi-hard shoots for grapevine varieties and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 5.091 5.091 11.51 <0.001 

Species 1 18.695 18.695 42.27 <0.001 

Variety*Species 1 1.013 1.013 2.29   0.136 

Total 63     

 

B.2.9 Conidial numbers from semi-hard shoots for grapevine varieties and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety  1 4.532 4.532 123.19 <0.001 

Species 1 0.023 0.023 0.64   0.428 

Variety*Species 1 0.001 0.001 0.03   0.863 

Total 63 6.76    

 

B.2.10 Lesion lengths on grapevine canes for varieties and species 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Variety 1 0.165 0.165 5.96   0.021 

Species 1 0.877 0.877 31.66 <0.001 

Variety*Species 1 0.037 0.037 1.36   0.253 

Total 31     
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B.3 ANOVA of numbers of conidia produced from grapevine shoots for blocks, species, isolates, 

temperatures and relative humidities  

B.3.1 Conidial numbers from detached semi-hard shoots  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Block 5 0.868 0.173 3.35   0.006 

Isolates 

Species 

5 

1 

9.659 

32.37 

1.931 

32.37 

37.32 

0.02 

<0.001 

  0.895 Temperature 3 29.90 9.968 192.55 <0.001 

RH 2 13.63 6.816 131.67 <0.001 

Block*Isolates 25 1.81 0.072 1.40   0.099 

Block*Temperature 15 1.61 0.107 2.08   0.011 

Block*RH 10 0.65 0.065 1.26   0.250 

Isolates*Temperature 15 1.62 0.108 2.10   0.010 

Isolates*RH 10 1.48 0.148 2.86   0.002 

Temperature*RH 6 0.67 0.112 2.17   0.046 

Isolates*Temperature*RH 30 2.15 0.071 1.45   0.006 

Species*Temperature 3 2.5311 8.43721 4.55   0.004 

Species*RH 2 2.22311 1.11155 6.00   0.003 

Species*Temperature*RH 6 1.661 2.76900 1.49   0.179 

Total 414 78.505    
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B.3.2 Conidial numbers from attached semi-hard shoots  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Isolates 

Species 

5 

1 

3.207 

12.46 

0.654 

12.46 

123.68 

0.84 

<0.001 

  0.362 

Temperature 1 0.30 0.304 57.51 <0.001 

RH 1 0.809 0.809 153.06 <0.001 

Isolates*Temperature 5 0.073 0.014 2.80   0.020 

Isolates*RH 5 0.045 0.009 1.71   0.137 

Temperature*RH 1 0.025 0.025 4.76   0.031 

Isolates*Temperature*RH 5 0.064 0.012 2.42   0.039 

Total 143 5.22 0.005   
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Appendix C – Analyses for Chapter 3 

C.2 ANOVA of conidial numbers in rain water samples for vineyards, grapevine varieties and 

months in 2015 

C.2.1 Neofusicoccum spp. conidia in rain water samples  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Months 3 0.10747 0.03582 14.36   0.004 

Vineyard 2 0.02035 0.01017 4.08   0.076 

Variety 1 0.01839 0.01839 7.37   0.035 

Months*Vineyard 6 0.022404 0.003734 1.50   0.318 

Months*Variety 3 0.008434 0.002811 1.13   0.410 

Vineyard*Variety 2 0.159055 0.079528 31.87 <0.001 

Error 6 0.014972 0.002495   

Total 23 0.35108    

 

C.2.2 Diplodia spp. conidia in rain water samples   

Source of variation d.f. s.s. m.s. F-Value P-Value 

Months 3 0.057915 0.019305 4.85 0.048 

Vineyards 2 0.158644 0.079322 19.94 0.002 

Variety 1 0.000219 0.000219 0.06 0.822 

Months*Vineyard 6 0.112224 0.018704 4.70 0.041 

Months*Variety 3 0.006196 0.002065 0.52 0.684 

Vineyard*Variety 2 0.33918 0.016959 4.26 0.070 

Error 6 0.023863 0.003977   

Total 23 0.392981    

 

  



 

196 
 

Appendix D – Analyses for Chapter 4 

D.1 GLM analyses of logit incidences for different wound ages and species 

D.1.1 Green shoots 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Wound age 29.94 6 4.99 65.0  <0.001 

Species 0.40 1 0.40 65.0    0.531 

Wound age*Species 2.05 6 0.34 65.0    0.912 

 

D.1.2 Wood of trunks  

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Wound age 36.61 6 6.10 65.0 <0.001 

Species 0.00 1 0.00 65.0   1.000 

Wound age*Species 0.00 6 0.00 65.0   1.000 

 

D.1.3 Bark of trunks 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Wound age 33.06 6 5.51 65.0 <0.001 

Species 0.64 1 0.64 65.0   0.425 

Wound age*Species 0.91 6 0.15 65.0   0.998 

 

D.2 ANOVA of colonisation distances for wound age and species 

D.2.1 Green shoots 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Wound age 6 50.2762 8.3794 52.49 <0.001 

Species 1 0.3344 0.3344  2.09    0.153 

Wound age*Species 6 0.8814 0.1469 0.92   0.486 

Error 65 10.3758 0.1596   

Total 83 62.9470    
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D.2.2 Wood of trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Wound age 6 11.8095  1.96825 17.00 <0.001 

Species 1 0.0000  0.00000 0.00    1.000 

Wound age*Species 6 0.6667 0.11111 0.96   0.459 

Error 65 7.5238  0.11575   

Total 83 20.8095    

 

D.2.3 Bark of trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

  Wound age                            6                 72.8424      12.1404           40.47         < 0.001 

  Species                                  1                 0.4876        0.4876             1.63              0.207 

  Wound age*Species              6                 0.4157        0.0693             0.23              0.965 

  Error                                      65              19.4986       0.3000 

  Total                                      83              94.5657 

 

  

D.3 ANOVA of infection incidences in grapevine tissues for wound ages and seasons  

D.3.1 Green shoots 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Season 3  1.3333  0.4444  3.51    0.018 

Wound age 4  12.3000  3.0750  24.28  <0.001 

Season*Wound age 12  0.8333  0.0694  0.55    0.877 

Residual 95  12.0333  0.1267     

Total 119  28.8000    
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D.3.2 Trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Season 3  1.2250  0.4083  3.28    0.024 

Wound age 4  15.1333  3.7833  30.39 <0.001 

Season*Wound age 12  1.0667  0.0889  0.71    0.734 

Residual 95  11.8250  0.1245     

Total 119  29.9250     

 

 D.4 ANOVA of colonisation distances in grapevine tissues for wound ages and seasons 

D.4.1 Green shoots 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Seasons 3 26.48 8.8276 11.18 <0.001 

Wound age 4 138.26 34.5643 43.79 <0.001 

Seasons*Wound age 12 13.36 1.1135 1.41   0.173 

Error 100 78.93 0.7893   

Total 119 257.03    

 

D.4.2 Trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Seasons 3 9.210 3.0700 9.19 <0.001 

Wound age 4 67.689 16.9223 50.66 <0.001 

Seasons*Wound age 12 3.884 0.3237 0.97   0.173 

Error 100 33.403 0.3340   

Total 119 114.187    
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D.5 GLM analyses of logit incidences for wound ages and inoculum concentrations  

D.5.1 Green shoots 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Wound age  29.63 3 9.88 95.0  <0.001 

Inoculum conc. 1.80 4 0.45 95.0    0.772 

Wound age*Inoculum conc. 6.46 12 0.54 95.0    0.885 

 

D.5.2 Trunks 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Wound age 25.72 3 8.57 95.0  <0.001 

Inoculum conc. 8.21 4 2.05 95.0    0.093 

Wound age*Inoculum conc. 5.59 12 0.47 95.0    0.930 

 

D.6 ANOVA of colonised distances in tissues for tissues and inoculum concentrations 

 D.6.1 Green shoots 

Source of variation   d.f.     s.s.    m.s. F-Value P-Value 

Inoculum conc. 4 6.105 1.5263 3.06    0.020 

Wound age 3 89.292 29.7639  59.74  <0.001 

Inoculum conc.*Wound age 12 9.535  0.7946 1.59    0.105 

Error 100 49.820 0.4982   

Total 119 154.752    

D.6.2 Trunks 

Source of variation   d.f.     s.s.    m.s. F-Value P-Value 

Inoculum conc. 4 11.249 2.8122 7.10 <0.001 

Wound age 3 78.051 26.0169 65.72  <0.001 

Inoculum conc.*Wound age 12 9.738  0.8115   2.05   0.027 

Error 100 39.588  0.3959   

Total 119 138.625    
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D.7 GLM analyses of logit incidences after saprophytic infection of bark, for infection 

positions/treatments, species and grapevine varieties 

D.7.1 Canes 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Species 0.40 1 0.40 55.0  0.529 

Treatment 6.22 2 3.11 55.0  0.050 

Variety 0.05 1 0.05 55.0  0.826 

Species*Treatment 0.31 2 0.16 55.0  0.856 

Species*Variety 0.04 1 0.04 55.0  0.834 

Treatment*Variety 0.07 2 0.03 55.0  0.966 

Species*Treatment*Variety 0.06 2 0.03 55.0  0.969 

 

D.7.2 Wood of trunk 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Species 0.03 1 0.03 54.8  0.871 

Treatment 10.35 2 5.18 54.9  0.009 

Variety 0.07 1 0.07 54.8  0.791 

Species*Treatment 4.56 2 2.28 54.8  0.112 

Species*Variety 0.07 1 0.07 54.8  0.788 

Treatment*Variety 0.07 2 0.03 54.8  0.966 

Species*Treatment*Variety 0.07 2 0.03 54.8  0.968 
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D.7.3 Bark of trunk 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Species 0.00 1 0.00 54.8  0.946 

Treatment 6.61 2 3.31 54.8  0.044 

Variety 0.83 1 0.83 54.8  0.365 

Species*Treatment 1.00 2 0.50 54.8  0.611 

Species*Variety 0.23 1 0.23 54.8  0.636 

Treatment*Variety 0.78 2 0.39 54.8  0.680 

Species*Treatment*Variety 0.23 2 0.12 54.8  0.889 

 

D.8 GLM analyses of logit incidences after saprophytic infection of Pinot noir bark for species 

and infection positions/treatments 

D.8.1 Wood of trunk 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Species 0.67 1 0.67 24.9  0.422 

Treatment 7.28 2 3.64 24.9  0.041 

Species*Treatment 0.57 2 0.29 24.9  0.753 

 

D.8.2 Bark of trunk 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Species 1.03 1 1.03 30.0  0.318 

Treatment 8.62 2 4.31 30.0  0.023 

Species*Treatment 0.22 2 0.11 30.0  0.896 
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D.9 ANOVA of infection incidences after inoculation next to lenticels for segment positions, 
tissue types, species and grapevine varieties 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.4885 0.48846  2.61   0.111 

Species 1 0.0561 0.05612   0.30   0.586 

Tissue types 2 1.9237 0.96184 5.13   0.008 

Segments types 2 3.6404 1.82020 9.71  <0.001 

Variety*Species 1 0.0561  0.05612 0.30    0.586 

Variety*Tissue types 2 0.0267  0.01337  0.07    0.931 

Error 70 13.1162 0.18737   

Total 107 28.6644    

 

D.10 ANOVA of infection incidences in leaf buds for inoculation at different stages of 

development for species and grapevine varieties 

D.10.1 All wounded bud stages together 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 59.85 59.853 6.59 0.037 

Variety 1 133.33 133.333 14.68 0.006 

Stages 2 286.78 143.391  15.78  0.003 

Error 17  63.60 9.085   

Total 11 543.57    

 

D.10.2 Dormant wounded buds 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.03258 0.03258  1.51 0.238 

Variety 1 0.03258 0.03258   1.51 0.238 

Species*Variety 1 0.02944 0.02944  1.36 0.261 

Error 15 0.32376 0.02158   

Total 23 0.56425    
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D.10.3 Woolly wounded buds  

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.034210  0.034210 1.95  0.182 

Variety 1 0.008145 0.008145 0.47  0.506 

Species*Variety 1 0.008145 0.008145  0.47 0.506 

Error 15 0.262630  0.017509   

Total 23 0.381611     

 

D.10.4 Green wounded buds 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.05600 0.05600 0.50 0.491 

Variety 1 0.10979  0.10979 0.98  0.339 

Species*Variety 1 0.02275   0.02275 0.20  0.659 

Error 15 1.68866  0.11258   

Total 23 1.94145    

 

D.10.5 Non-wounded green buds 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.008145  0.008145   0.37  0.552 

Variety 1 0.000020 0.000020 0.00  0.976 

Species*Variety 1 0.000020 0.000020 0.00  0.976 

Error 15 0.329575      0.021972   

Total 23 0.562878    
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D.11 ANOVA of colonised distances in green shoots and canes for buds infected at different 

stages, species and grapevine varieties 

D.11.1 All bud stages together progression into green shoots 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1  0.90750 0.907500 162.19 <0.001 

Variety 1  0.30083 0.300833 53.77  <0.001 

Stages 2 0.81500 0.407500 72.83   <0.001 

Error 7 0.03917 0.005595   

Total 11 2.06250    

 

D.11.2 All bud stages together progression into canes 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.96333 0.963333 238.00 <0.001 

Variety 1 0.33333 0.333333 82.35  <0.001 

Stages 2 0.87167  0.435833 107.68  <0.001 

Error 7 0.02833 0.004048   

Total 11 2.19667    

 

D.11.3 Dormant buds progression into green shoots  

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 2.92053 2.92053 26.63  <0.001 

Variety 1 0.91853 0.91853  8.38    0.006 

Species*Variety 1 0.01920 0.01920  0.18    0.678 

Error 44 4.82533 0.10967   

Total 47 8.68360    
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D.11.4 Dormant buds progression into canes  

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 3.43470  3.43470 29.67 <0.001 

Variety 1 1.21603 1.21603 10.50   0.002 

Species*Variety 1 0.08003 0.08003 0.69    0.410 

Error 44 5.09400 0.11577   

Total 47 9.82477    

 

D.11.5 Woolly buds progression into green shoots 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 3.25521 3.25521 34.55 <0.001 

Variety 1 0.82688 0.82688 8.78   0.005 

Species*Variety 1 0.02521 0.02521 0.27   0.608 

Error 44 4.14583 0.09422   

Total 47 8.25313    

 

D.11.6 Woolly buds progression into canes 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 3.41333  3.41333 31.83   <0.001 

Variety 1 0.90750  0.90750  8.46    0.006 

Species*Variety 1 0.04083 0.04083  0.38     0.540 

Error 44 4.71833  0.10723   

Total 47 9.08000    
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D.11.7 Green tip buds progression into green shoots 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 5.1352  5.13521 31.10 <0.001 

Variety 1 1.4352 1.43521  8.69    0.005 

Species*Variety 1 0.0752 0.07521 0.46    0.503 

Error 44 7.2642 0.16509   

Total 47 13.9098    

 

D.11.8 Green tip buds progression into canes 

Source of variation  d.f.     s.s.      m.s. F-Value P-Value 

Species 1 5.2669 5.26687 30.11 <0.001 

Variety 1 1.6502 1.65021  9.43     0.004 

Species*Variety 1 0.0919 0.09187  0.53     0.472 

Error 44 7.6958  0.17491   

Total 47 14.7048    

 

D.12 ANOVA of data for berries inoculated at different developmental stages for species and 

grapevine varieties 

D.12.1 Infection incidences in all berry stages 

  Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 60.75  60.75 4.84     0.064 

Variety 1 252.08 252.08 20.07    0.003 

Stages 2 7789.50  3894.75 310.10  <0.001 

Error 7 87.92 12.56   

Total 11 8190.25    
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D.12.2 Infection incidences in berries at pre-bunch closure 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.065412 0.065412  6.33 0.017 

Species 1 0.064127 0.064127 6.21 0.018 

Variety*Species 1 0.001818 0.001818 0.18 0.678 

Error 33 0.340976 0.010333   

Total 47 0.881282    

 

D.12.3 Infection incidences in rachii of berries at pre-bunch closure  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.08859 0.08859 5.79 0.022 

Species 1 0.10723 0.10723 7.01 0.012 

Variety*Species 1 0.01296 0.01296 0.85 0.364 

Error 33 0.50466 0.01529   

Total 47 1.09667    

 

D.12.4 Infection incidences in berries at veraison 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.47864 0.478643 14.73 <0.001 

Species 1 0.00631 0.006310 0.19   0.662 

Variety*Species 1 0.00007 0.000069 0.00   0.964 

Error 33 1.07262 0.032504   

Total 47 1.97594    
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D.12.5 Infection incidences in rachii of berries at verasion  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.41075 0.410753 12.12 <0.001 

Species 1 0.00905 0.009054 0.27   0.609 

Variety*Species 1 0.00003 0.000031 0.00   0.976 

Error 33 1.11811 0.033882   

Total 47 2.42647 0.410753   

 

D.12.6 Infection incidences in berries at harvest  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.31057 0.310570 6.07  0.019 

Species 1 0.33219 0.332195 6.49  0.016 

Variety*Species 1 0.00557 0.005571 0.11  0.743 

Error 33 1.68790 0.051149   

Total 47 3.05885    

 

D.12.7 Infection incidences in rachii of berries at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 0.36499 0.364991 10.68 0.003 

Species 1 0.22462 0.224623 6.57 0.015 

Variety*Species 1 0.00695 0.006946 0.20 0.655 

Error 33 1.12780 0.034176   

Total 47 2.49044    
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D.12.8 Incidences of pycnidia in infected berries inoculated at different developmental stages for 
species and grapevine varieties 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Stages 2 7.9657 3.98287 23.93  <0.001 

Variety 1 0.0305 0.03046 0.18    0.670 

Species 1 0.4874 0.48739 2.93    0.090 

Stages*Variety 2 0.0152 0.00762 0.05    0.955 

Stages*Species 2 0.1980 0.09900 0.59    0.553 

Variety*Species 1 0.0000 0.00000 0.00    1.000 

Stages*Variety*Species 2 0.0457 0.02285 0.14    0.872 

Error 121 20.1352 0.16641   

Total 143 30.6750    

 

D.12.9 Distances of colonisation upwards in canes from berries inoculated at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 16.333 16.333 5.74 0.021 

Species 1 8.333 8.333 2.93 0.094 

Variety*Species 1 4.083 4.083 1.44 0.237 

Error 44 125.167 2.845   

Total 47 153.917    

 

D.12.10 Distances of colonisation downwards in canes from berries inoculated at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Variety 1 14.083 14.083 6.72 0.013 

Species 1 5.333 5.333 2.55 0.118 

Variety*Species 1 4.083 4.083 1.95 0.170 

Error 44 92.167 2.095   

Total 47 115.667    
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D.13 ANOVA of infection incidences of berries for species and development stages in the 

vineyard  

D.13.1 Incidences of pycnidia in wounded berries at all development stages  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 8.9073 4.45366 95.66 <0.001 

Stages 2 0.2425 0.24252 5.21   0.027 

Species*Stages 2 0.0888 0.04440 0.95   0.392 

Error 50 2.3279 0.04656   

Total 65 12.1044    

 

D.13.2 Incidences in wounded berries at all stages  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 1.1437 1.14371 18.23 <0.001 

Stages 2 5.6057 2.80285 44.67 <0.001 

Error 260 16.3147 0.06275   

Total 263 23.0641    

 

D.13.3 Incidences in wounded berries at pre-bunch closure 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.05189 0.05189 2.60 0.110 

Error 86 1.71586 0.01995   

Total 87 1.76775    

 

D.13.4 Incidences in rachii of wounded berries at pre-bunch closure 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.5290 0.52901 29.74 <0.001 

Error 86 1.5298 0.01779   

Total 87 2.0588    
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D.13.5 Incidences in wounded berries at veraison 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 0.0698 0.069799 5.17 0.026 

Error 86 1.022621 0.013503   

Total 87 1.16016    

 

D.13.6 Incidences in rachii of wounded berries at veraison 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 1.670 1.6697 12.85 <0.001 

Error 86 11.174 0.1299   

Total 87 12.844    

 

D.13.7 Incidences in wounded berries at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 3.571 3.5711 29.23 <0.001 

Error 86 10.508 0.1222   

Total 87 14.079    

 

D.13.8 Incidences in rachii of berries at harvest  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 4.291 4.2913 36.35 <0.001 

Error 86 10.154 0.1181   

Total 87 14.445    
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D.13.9 Distances of colonisation downwards in canes from wounded berries inoculated at 
harvest  

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 13.14 13.136 6.78 0.026 

Error 10 19.36 1.936   

Total 21 68.59    

 

D.13.10 Distances of colonisation upwards in canes from wounded berries inoculated at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species 1 16.41 16.409 6.54 0.029 

Error 10 25.09 2.509   

Total 21 89.50    

 

D.13.11 Incidences in non-wounded berries at harvest 

Source of variation   d.f.     s.s.      m.s. F-Value P-Value 

Species  1 0.5707 0.5707 4.55 0.036 

Error 68 8.5216 0.1253   

Total 69 9.0922    
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Appendix E - Analyses and information for Chapter 5 

E.1 Fungicides and biocontrol agents tested  

Treatment Active ingredient Fungicide group Field rate Supplier 

Folicur® 430 g/L tebuconazole Demethylation Inhibitor 
(DMI) 30 mL/100L Bayer CropScience 

Chief® 500 g/L carbendazim Methyl Benzimadazole 
Carbamate 100 mL/100L Agronica 

Gem® 500 g/L fluazinam 2,6-dinitro-aniline 100 mL/100L Agronica 

Dithane™ 750 g/kg mancozeb Dithiocarbamate 210 g/100L Dow Agrosciences 

Megastar™ 200 g/kg flusilazole Demethylation Inhibitor 
(DMI) 20 g/100L Grochem 

TRI D25 Trichoderma spp. Biocontrol 100 g/100L Bayer CropScience 

Serenade Bacillus subtilis Biocontrol 400g/100L Bayer CropScience 

 

E.2 GLM analyses of logit incidences for inoculation of potted grapevines at different times, 

species and treatments 

E.2.1 Hard green shoots  

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 47.26 7 6.75 235.0  <0.001 

Species 0.56 1 0.56 235.0    0.456 

Time 0.53 2 0.26 235.0    0.769 

Fungicides*Species 4.60 7 0.66 235.0    0.708 

Fungicides*Time 11.13 14 0.79 235.0    0.674 

Species*Time 0.51 2 0.26 235.0    0.774 

Fungicides*Species*Time 3.70 14 0.26 235.0    0.997 
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E.2.2 Wood of trunks 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 22.53 7 3.22 234.9  0.003 

Species 0.16 1 0.16 234.9  0.690 

Time 1.55 2 0.77 234.9  0.462 

Fungicides*Species 8.35 7 1.19 234.9  0.308 

Fungicides*Time 5.67 14 0.41 234.9  0.973 

Species*Time 0.26 2 0.13 234.9  0.876 

Fungicides*Species*Time 9.47 14 0.68 234.9  0.796 

 

E.2.3 Bark of trunks 

Fixed term  Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 27.63 7 3.95 234.9  <0.001 

Species 0.27 1 0.27 234.9    0.606 

Time 0.97 2 0.48 234.9    0.617 

Fungicides*Species 1.41 7 0.20 234.9    0.985 

Fungicides*Time 10.55 14 0.75 234.9    0.719 

Species*Time 0.50 2 0.25 234.9    0.777 
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E.3 ANOVA of colonised lengths for inoculation of potted grapevines at different times, species 

and treatments 

E.3.1 Green shoots 

Source of variation d.f.    s.s.    m.s. F-Value P-Value 

Fungicides 6 109.719 18.2864 16.61 <0.001 

Species 1 0.373 0.3734 0.34   0.561 

Wound age 2 67.86 33.93 30.18  <0.001 

Fungicides*Species 6 3.392 0.5653 0.51   0.798 

Fungicides*Wound age 12 101.44 8.45 7.68 <0.001 

Species*Wound age 2 0.656 0.328 0,30   0.743 

Fungicides* Species* Wound age 12 1.823 0.1519 0.14  1.000 

Error 210 231.262 1.10   

Total 251 516.537    

 

E.3.2 Wood of trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Fungicides 6 63.563 10.5939 6.46 <0.001 

Species 1 0.477 0.47 1.95   0.259 

Wound age 2 10.469 5.234 3.19   0.043 

Fungicides*Species 6 6.596 1.099 0.67   0.674 

Fungicides*Wound age 12 44.335 3.696 2.25   0.011 

Species*Wound age 2 1.777 0.8886 0.54   0.582 

Fungicides* Species* Wound age 12 11.188 0.9324 0.57   1.866 

Error 210 344.26 1.6394   

Total 251 488.693    
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E.3.3 Bark of trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Fungicides 6 105.642 17.6070 14.60 <0.001 

Species 1 5.833 5.8332 4.84   0.029 

Wound age 2 50.898 25.449 21.10  <0.001 

Fungicides*Species 6 8.616 1.43 1.19   0.312 

Fungicides*Wound age 12 27.187 2.265 1.88   0.038 

Species*Wound age 2 0.504 0.2521 0.21   0.811 

Fungicides* Species* Wound age 12 18.921 1.5767 1.31   1.216 

Error 210 253.242 1.2059   

Total 251 470.843    

 

E.4 GLM analyses of logit incidences for inoculation of potted grapevines at different times, 

species and treatments 

E.4.1 Green shoots 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 35.33 7 5.05 160.0  <0.001 

Species 1.11 1 1.11 160.0    0.295 

Time 4.02 1 4.02 160.0    0.047 

Fungicides*Species 1.03 7 0.15 160.0    0.994 

Fungicides*Time 3.94 7 0.56 160.0    0.785 

Species*Time 1.69 1 1.69 160.0    0.196 

Fungicides*Species*Time 1.42 7 0.20 160.0    0.984 
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E.4.2 Wood of trunks 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 35.31 7 5.04 154.9  <0.001 

Species 0.10 1 0.10 154.9    0.757 

Time 0.95 1 0.95 154.9    0.332 

Fungicides*Species 0.41 7 0.06 154.9    1.000 

Fungicides*Time 6.25 7 0.89 154.9    0.513 

Species*Time 0.00 1 0.00 154.9    0.989 

Fungicides*Species*Time 1.30 7 0.19 154.9    0.988 

 

E.4.3 Bark of trunks 

Fixed term Wald statistic d.f. Wald/d.f. chi pr 

Fungicides 26.15 7 3.74 <0.001 

Species 0.07 1 0.07   0.785 

Time 0.74 1 0.74   0.390 

Fungicides*Species 3.18 7 0.45   0.868 

Fungicides*Time 6.58 7 0.94   0.474 

Species*Time 0.08 1 0.08   0.783 

Fungicides*Species*Time 5.00 8 0.62   0.758 
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E.5 GLM analyses of logit incidence of N. luteum on potted grapevine plants for inoculum 

concentrations, re-inoculation times and treatments 

E.5.1 Green shoots 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Inoculum conc. 4.09 1 4.09 353.0    0.044 

Treatment 10.76 4 2.69 350.3    0.031 

Fungicides 52.14 5 10.43 295.8  <0.001 

Fungicides*Treatment 6.19 20 0.31 295.3    0.998 

Fungicides*Inoculum conc. 1.89 5 0.38 295.0    0.864 

Treatment*Inoculum conc. 2.77 4 0.69 296.0    0.597 

 

E.5.2 Wood of trunks  

Fixed term Wald statistic n.d
.f. 

F statistic d.d.f. F pr 

Fungicides 37.52 5 7.50 295.6 <0.001 

Treatment 3.74 4 0.94 295.1   0.443 

Inoculum conc. 0.46 1 0.46 294.9   0.498 

Fungicides*Treatment 3.16 20 0.16 295.2   1.000 

Fungicides*Inoculum conc. 3.39 5 0.68 294.9   0.641 

Treatment*Inoculum conc. 0.82 4 0.20 295.5   0.936 

Fungicides*Treatment*Inoculum conc. 3.28 20 0.16   
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E.5.3 Bark of trunks 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 24.27 5 4.85 295.4  <0.001 

Inoculum conc. 0.30 1 0.30 294.9    0.586 

Treatment 4.46 4 1.11 295.0    0.350 

Fungicide*Inoculum conc. 11.25 5 2.25 294.9    0.049 

Fungicide*Treatment 4.39 20 0.22 295.1    1.000 

Inoculum conc.*Treatment 0.94 4 0.23 295.3    0.919 

Fungicide*Inoculum conc.*Treatment 7.71 20 0.39 295.3  

 

E.6 ANOVA of colonised lengths of tissues on potted grapevine plants, for inoculum 

concentrations, re-inoculation times (treatments) and fungicides (plus biocontrol products)  

E.6.1 Green shoots  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Fungicides 4 52.905 13.2261 18.46 <0.001 

Inoculum conc. 1 4.613 4.6128 6.44   0.012 

Treatment 4 13.913 3.4782 4.85 <0.001 

Fungicides*Inoculum conc. 4 0.427 0.1068 0.15   0.963 

Fungicides*Treatment 16 7.132 0.4458 0.62   0.865 

Inoculum conc.*Treatment 4 1.550 0.3876 0.54   0.706 

Fungicides* Inoculum conc.*Treatment 16 2.150 0.1344 0.19   1.000 

Error 245 175.575 0.7166   

Total 299 268.570    
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E.6.2 Wood of trunks  

Source of variation d.f. s.s. m.s. F-Value P-Value 

Fungicides 4 25.032 6.25798 13.92 <0.001 

Inoculum conc. 1 2.022 2.022212 4.50  0.035 

Treatment 4 5.119 1.27969 2.85  0.025 

Fungicides*Inoculum conc. 4 1.247 0.31165 0.69  0.597 

Fungicides*Treatment 16 3.379 0.21117 0.47  0.960 

Inoculum conc.*Treatment 4 3.998 0.99946 2.22  0..067 

Fungicides* Inoculum conc.*Treatment 16 1.362 0.08503 0.19  1.000 

Error 245 110.128 0.44950   

Total 299 161.075    

 

E.6.3 Bark of trunks 

Source of variation d.f. s.s. m.s. F-Value P-Value 

Fungicides 4 26.393 6.5983 10.49 <0.001 

Inoculum conc. 1 2.613 2.6133 4.15   0.043 

Treatment 4 27.402 6.8505 10.89 <0.001 

Fungicides*Inoculum conc. 4 4.159 1.0397 1.65   0.162 

Fungicides*Treatment 16 3.251 0.2032 0.32   0.994 

Inoculum conc.*Treatment 4 2.153 0.5383 0.86   0.491 

Fungicides* Inoculum conc.*Treatment 16 3.723 0.2327 0.37   0.998 

Error 245 154.163 0.6292   

Total 299 246.245    
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E.7. GLM analysis of logit incidences for species, inoculation times after treatments and 

fungicides (plus biocontrol products) in the vineyard 

E.7.1 Wood of canes 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 781.20 7 111.60 1626.9 <0.001 

Species 0.08 1 0.08 1626.0  0.776 

Time 3.28 2 1.64 1626.1  0.194 

Fungicides*Species 7.64 7 1.09 1626.0  0.366 

Fungicides*Time 102.97 14 7.35 1626.0 <0.001 

Species*Time 1.52 2 0.66 1626.0  0.568 

Fungicides*Species*Time 2.93 14 0.21 1626.0  0.999 

 

E.7.2 Bark of canes 

Fixed term Wald statistic n.d.f. F statistic d.d.f. F pr 

Fungicides 666.42 7 95.20 1627.4 <0.001 

Species 0.01 1 0.01 1626.6  0.940 

Time 1.00 2 0.50 1626.7  0.608 

Fungicides*Species 5.16 7 0.74 1626.6  0.640 

Fungicides*Time 98.02 14 7.00 1626.6 <0.001 

Species*Time 0.52 2 0.26 1626.6  0.772 

Fungicides*Species*Time 6.16 14 0.44 1626.6  0.962 
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Appendix F - Additional information and results 

F.1 Mean temperature, RH and rainfall for Blenheim (http://hortplus.metwatch.co.nz/ for the duration 
of the experiment with weather conditions (Chapter 4). 

 

F.2 Mean lengths of colonised tissues of Neofusicoccum luteum from different grapevine inoculates 
with 2 and 40 conidia/wound after fungicides application. Fungicides were applied and wounds 
inoculated after ~2 hours (Treatment 1) or after 2 weeks (Treatment 2), 4 weeks (Treatment 3), 8 
weeks (Treatment 4) or at 10 weeks (Treatment 5) after wounding. 
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